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Abstract: In this manuscript, we establish some coupled fixed point results forlmeancontraction using mixed monotone property
in G-metric spaces. We also give some examples in support of outstesu
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1 Introduction Definition 1 (see [1]). Let X be a nonempty set, and let
G: X x X x X — R", be a function satisfying:

Fixed point theory has a wide application in almost all

fields of quantitative sciences such as biology, chemistry(G1)G(x,y,z) =0if x=y=1z

comport science, economics, physics and many(G2)0< G(x,x,y), forall x,y € X; with x #y,

introduced branches of engineering. Banach contractiofG3)G(x,X,y) < G(X,Y,z), for all x,y,z € X with z#Y,

principle is one of the care subject that has been studiedG4)G(X,Y,z) = G(x,z,y) = G(Y,zX) = ---, (Symmetry in

It has so many different generalizations with different all three variables), and

approaches. (G5)G(x,y,2) < G(x,a,a) +G(a,y,2), for all x,y,z.a € X,
¢-contraction, was given by Boyd and Won§g] in (rectangle inequality),

1969. Mustafa and Simsl] introduced the notion of
generalized metric spaces or G-metric spaces as #enthe functiorG is called a generalized metric, or, more
generalization of metric spaces in 2006. Based on thespecifically aG-metric onX, and the pairX,G) is a G-
concept ofG-metric spaces, Mustafa et &,p,6] proved ~ metric space.

several fixed point theorems for mappings satisfying

; . " Clearly these properties are satisfied wiB®, y, z) is
different contractive conditions. In 2006, Gnana-Bhaskar. . - - - 28
and Lakshmikantham 2] introduced the notion of the perimeter of the triangle with verticesxaty andz in

coupled fixed point and proved some fixed point theoremS(Ré’5f)uir;[hbeerstta I;g's%ﬁ):g the interior of the triangle shows that

under certain conditions. Many authors focused on

coupled fixed point theory and proved remarkable resultDefinition 2 (see []). Let (X, G) be aG-metric space. The

(see e.q.7,8,9,10,11)). sequencdxy} € X is G-convergent t if it converges to
The aim of this paper is to show that most of coupled x in the G-metric topology,T(G).

fixed point theorems in metric spaces can be easily_ . .. :
obtained in G-metric spaces from well known fixed point Detf|n|t|dan.?;((se>¢<a [Z])'XLEt (X,<) b_e anart'al.lg tordhered
theorems in the literature. setand- = A x A = € a mappingr IS sad to have

the mixed monotone property (X, y) is monotone non-
decreasing ix and is monotone non-increasingyinthat
. . is, for anyx,y € X,

2 Preliminaries i

X1 <X = F(x1,y) <F(x2,y), forxg,x € Xand

Here we recall some basic definitions. Throughout this
(Xy1), foryiy,eX.

F
paperN* is the set of non-negative integers. yi<y2=F(xy2) <F
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Definition 4 (see B]). An element(x,y) € X x X is said to
be a coupled fixed point of the mappiRg X x X — X if

F(x,y)=x and F(y,x)=y.

Throughout this pape(X, <) will denote a partially
ordered set an@ will be a G-metric onX such thai{ X, G)
is a complete metric space. Further, the product space
X satisfies the following:

uv) <(xy)eux, y<v,

forall (x,y),(u,v) e XxX. (1)

Theorem 5. Let (X,<) be a partially ordered set and

(X,G) be a complet&-metric space.

Let F : X x X — X be a mapping having the mixed

monotone property oK
Assume that forakk > u,y<v

Y(G(F(xy),F(u,v),F(uv))
< %IJJ(G(X, u,u) +G(y,v,v))

- ¢(G(X7 u, U) + G(yv vV, V)) (2)
whereg € @ andy € W. Suppose that there exigt, yo €
X such that

Xo < F(X0,¥0); Yo < F(Yo,Xo)-

Suppose that either

(a)F is continuous, or
(b)X has the following property:
(Hif non-decreasing sequenggtends tax, thenx, <
x for all n,
(ihif non-increasing sequengg tends toy, theny, >y
for all n,
then there exist,y € X such that

F(X’y):Xv F(yvx):y

Proof. Let Xg, Yo € X be such that
Xo < F(X0,¥0); Yo > F(Yo,%o)

We construct the sequencgs,} and{yn} as follows:

Xn =F(Xn-1,¥n-1), ¥n=F(¥n-1,%-1),

forn=123,... 3)

By mixed monotone property df, we can easily show
that

(4)

From @2), (3) and @), we have

Y(G(Xn+1,%n+2,%n+2))
= W(G(F (Xm)/n), F (Xn+1»Yn+1>7 F (Xn+17Yn+1))

1
< E(G(Xnaxmrlaxnﬂ) +G(Yn,Yn+1,Yn+1))

— @ (G(%n, %n+1,%n+1) + G(Yn, Yn+1,Yn+1))
Y(G(Yn+1:Ynr2:Ynr2))
(G(F (Yn; %), F (Yn+1:Xn+1), F (Yns1: Xns1))

(5a)

(G(Yn, Yn+1,Ynt1) + G(Xn, Xn 11, Xn+1))
= 0(G(Yn, Yn+1,Yn+1) + G(Xn, Xn+1, Xn+1))
Now equationsga) and 6h), gives

(5b)

Y(G(Xn+1,%n+2,%n12)) + W(G(Yn+1,Yni2,Yni2))

1
< EL.U(G(XnaXm-lan-ﬁ—l) +G(Yn, ¥nt1,Yn+1))
—2¢(G(%n,Xn+1,%n+1) + G(Yn, Yn+1,Ynt1))
Due to the property ofy, we have

(6)

Y(G(Xnt1,Xn+2, Xn4+2) + G(Ynr1, Ynt-2, Yni2))
< Y(G(Xnt1,Xn+2,%n42)) + l.U(G(Yn+1,Yn+Z7Yn+2)2 )
7
Combining 6) and (7), we get

Y(G(Xn+1, %12, %n12) + G(Yn+1,Yni2,Yni2))
< Y(G(Xn, X1, %n+1) + G(Yn, Y1, Yni1))
—2¢0(G(Xn, Xn+1,Xn+1) + G(Yn, Ynt1,Yn+1))

Supposedh = [G(Xn, Xn—1,%n—1) + G(¥n,Yn—1,¥n-1)]. Then
we get

W(ohi2) < W (A1) —2¢(dny1) foralln,  (8)
which becomes
Y(dhi2) < Y(dhy1) foralln.

Since Y is non-decreasing, we get that, , > &,,1 for
all n. Hence{d,} is a non-increasing sequence. Since it is
bounded below, there is sorde> 0 such that
lim o, = o.
n—o0
We shall prove thad = 0. Suppose, on the contrary, that
0>0.
Letting n — o in (8) and having in mind that we
supposet_lqub(t) >0 for allr > 0 and IiOrQ P(t) =0, we
t—

have
0<0-2¢(0) <o

which is a contradiction. Thu®, = 0, that is,

lim &, =

n—-co

[G(Xn, Xn-1,%n—1) + G(Yn,Yn-1,Yn-1)] =0
9)

lim
n—-o0
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Now, we shall show that{x,} and {y,} are Cauchy Hence by ), (3) and (L4), we get,

sequences. Suppose on the contrary that at least one of

{xn} and {yn} is not Cauchy. So, there exists> 0 for
which we can find subsequenceg,k)}, {Xmw)} Of {X}

ahnd {Ynig }r {Ymao} of {yn} with n(k) > m(k) = k such
that

G(Xn() s Xm(k) > Xm(k) ) + C(Yn(k)» Ym(k)» Ym())) = €. (20)

Additionally, corresponding ton(k), we may selech(k)
such that it is the smallest integer satisfyint0)( and
n(k) > m(k) = k. So, we get

G(Xn(k)—1> Xm(k) s Xm(k)) T C(Yn(k)—1> Ym(k)» Ym(k)))
< €. (12)

By using the triangle inequality and having0j and (1)
in mind we obtain

£ <ty
k) Xm(k)» Xm(k)) + G(Yn(k)» Ym(k) - Xm(k)))

Yn(k)» Yn(k)—1: Yn(k)—1)
Yn(k)—1> Ym(k) > Ym(k) )
< G(Xn(k) s Xn(k)— 1: Xn(k) 1)
+ G(Yn(k)s Yn(k)—1> Yn(k)—1) + € (12)

Supposing — « in (12) and using 9) we get

lim = lim [G(Xn, %n-1,%1-1) + G(Yn,¥n-1,Yn-1)] = €.

n—oo n—oo

Again by the triangle inequality

(k)> Xm(k)) + G (Yn(k)» Ym(k)» Ym(k))

tk— G(Xn(k) s X
(K)> Xn(K)+1 Xn(k)+1)

)

G(Xn(k)»

G(Xn( +15 Xm(k)+ 1 Xm(k) +1)
(Xm K)+1> Xm(k) » Xm(k ))
G(Yn(k)» Yn(k)+1> Yn(k)+1)
(yn +1,ym )+15 Ym(k +1)
+G(ym(k+17ym 7ym(k))

W(G(Xn (k)41 Xm(k)+1> Xm(k)+1))
(G ( K)> Yn(k ) ( m(K)» Ym(k)»
W(G(Xn(k) s Xm(k)» Xm(k)) T C(Yn(k)» Y() > Ym(k)))

& (G(Xn(ky» Xm(k)» Xm(k)) + G (Yn(k)» Ym(k) Ym(k)))
(15a)

F (Xm(k)» Ym(k)

= WG(F (Yn(k)» Xn(k)) s F Ymiky» Xmk) )» F (Yim(k) s Xmii))

(k)> Ym(k)) + G(Xn(ie) s Xm() s Xmik) ))

(15b)
Combining @3) with (153 and (L5b), we obtain
W(tk) < W +1+ Ok +1+ GXn(k)+ 15 Xm(k)+ 1> Xm(k) + 1)
+ G(Yn(k)+1, Ym(k)+1, Ym(k)+1))

1
< SYGnk+1+ O 1) T W () —

<5 2¢ (t)-

Lettingk — oo, we get a contradiction. This shows that

{Xn} and{yn} are Cauchy sequences.
SinceX is a complete metric space, there existe X
such that
limx,=n and
N—co
suppose that the condition (a) holds. Then frah gnd
(16), we have

X = lim X,
n—o

= r!mo F(Xn—1,Yn-1)

limy, =y (16)
n—-o0

=F (rllmxn—la rlligrLYn—l)
=Fxy).
Analogously, we also observe that
y = lim yo = lim F(yn-1,%-2) = F(x.Y).
Thus, we have
Fxy)=x F(.x) =Y.

Let us assume that the assumption (b) holds. Singé
is non-decreasing ang, tends tox and also{y,} is non-
increasing ang, tends toy, we havex, <x, y, >, for all
n, by the condition (b).

< Oh+1 + Omik)+1 Consider
+ G(Xn(l)+1, Xm(k)+ 1> Xm(k)+1) G(x,F(x,y),F(x,y))
+ G(Yn(k)-+ 1 Ym(k) + 1 Ym(k)+1) - (13) < G(X, Xn+1,Xn41) + G(Xns1, F(X,Y), F (X y))
= G(Xa Xn+17xn+1) + G(F (Xn7yn)7 F (Xa y)v F (X7 y))
Sincen(k) > (k. then < G(X,Xnt1, %n+1) + %w(G(xmx, X) +G(¥n,¥.Y))
Xn(k) = Xmky AN Yoy < Y- (14) = 0(G(%n,%,X) + G(¥n,Y.Y))- (17)
@© 2014 NSP
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As n goes too in (17) and using 16), we get that We shall show thatx,y) and (u,v) are equal. By the

G(x,F(x,y),F(x,y)) =0. assumption of the theorem, there existsh) € X x X
Thus,x = F(x,y). Analogously, we get that that is comparable tdx,y) and (u,v). Define sequences
{an} and{by} such that
F(y:x) =Y.
a=ap, b=hy
Thus, we proved that F has a coupled fixed point.
Corollary 6. Let (X,<) be a partially ordered set and and
(X,G) be a completé&-metric space. LefF : X x X — X
be a mapping having the mixed monotone property<on an = F(an-1,bn-1),
Suppose that there exiks [0, 1) such that bn = F(bh_1,8n-1)

for all n. Since(x,y) is comparable with(a,b), we may

assume thatx,y) = (a,b) = (ap, bp).
Recursively, we get that

G(F(x,y),F(u,v),F(u,v)) < g[G(x, u,u) + G(y,v, V)]

for all x> u, andy < v. Suppose that there exigt, yo € X

such that (x,y) = (an,by) foralln. (18)
Xo < F(X0.Y0): Yo > F(Yo,%o)- By (2) and (L8), we have
Suppose that either W(G(X,ans+1,8n4+1))
(a)F is continuous, or = Y(G(F(X,y),F(an,bn),F(an,bn))
(b)X has the following property: 1
(i)if non-decreasing sequengg — x, thenx, < x for < EL,U(G(X,an, an) + G(Y, bn, bn))
all n,
(ii)if non-increasing sequenacg — Yy, theny, >y for — 9(G(x,an,an) + G(¥,bn, bn)), (192)
all n, W(G(Y, bni1,bni1))
then there exist,y € X such that = W(G(F(y,Xx),F(y,x),F (bn,an))
1
Fxy)=x F(.x) =Y. < 5¥(G(y,bn;bn) +G(x.an, an))

- 9(G(Y.bn.bn) + G(x.an,a1)  (19b)

Proof. It is sufficient to takep(t) =t and¢(t) = — in

the above theorem. Setyh = G(X,@n,an) + G(Y, bn,bn). Then, from (99 and
(19b), we have

Y(¥hi1) = P(¥h) —2¢(yn) foralln,

which implies
In this section we shall prove the uniqueness of the coupled Vo1 < Y.
fixed point. For a producK x X of a partial ordered set . )
(X, <) we define a partial ordering in the following way: ~Hence, the sequencgy} is decreasing and bounded

3 Uniqueness of coupled fixed point

For all (x,y), (u,v) € X x X below. Thus, there exisis> 0 such that
Xy <(wv) & x<uy>wv lim ya=y.

We say thatx,y) is equal to(u,v) if and only ifx=uand  Now, we shall show thay = 0. Suppose to the contrary

y=V. thaty > 0.

Theorem 7.In addition to the hypothesis of Theorem 5, Lettingn — o in

suppose that for al(x,y),(u,v) € X x X, there exists

(a,b) € X x X that is comparable t¢x,y) and(u,v), then Y1) < Y(¥h) — 20 (W),

F has a unique coupled fixed point.

Proof. The set of coupled fixed points &f is not empty
due to Theorem 5. Assume tHaty) and(u, v) are coupled
fixed points off, that is,

we get that
W(y) < @ly) —lim () < @(y)
which is a contradiction. Thereforg= 0. That is,

Fiy,X) =y, F(wu)=v. lim y, = 0.

n—oo
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Consequently, we have [4] Z. Mustafa, A new structure for generalized metric spaces
with applications to fixed point theory, PhD thesis, The
lim G(x,ap,a,) =0 and 1limG(y,bpb,) =0  (20) University of Newcastle, Callaghan, Australia, (2005).
n—e e [5] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point
Similarly, we show that theorem for mapping on complete metric spaces, Fixed Point

Theory Appl. 200812, (2008). Article ID 189870
(21) [6] Z. Mustafa and B. Sims, Fixed point theorems for contractive
mappings in complete G-metric spaces, Fixed Point Theory
o ) Appl 2009,10, (2009). Article ID 917175
Combining @0) and Q1) gives that(x,y) and (u,v) are  [7] N.V. Luong and N.X. Thuan, Coupled fixed points in partially
equal. ordered metric spaces and application, Nonlinear Ai4l.,
983-992 (2011).
[8] S. Binayak, N. Choudhury, A. Metiya and A. Kundu, Coupled
4 Examples coincidence point theorems in ordered metric spaces, Ann.
Univ. Ferrarab7, 1-16 (2011).
E[9] B.S. Choudhury and A. Kundu, A coupled coincidence
point result in partially ordered metric spaces for compatible

lim G(u,ay,an) =0 and limG(v,b,b,) =0
n—o0 n—o

We give some examples to show that our results ar

effective. mappings, Nonlinear Anal73, 2524-2531 (2010) .
Example 8.Let X = [0, ) with the metricG(x,y,z) = [Xx—  [10] E. Karagynar, Couple fixed point on cone metric spaces,
y— 2], for all x,y,z € X and the following order relation: Gazi Univ. J. Sci.24, 51-58 (2011).
[11] B. Samet, Coupled fixed point theorems for a generalized
XYy€EX, Xxy&Xx=yor(xyeZandx=y), Meir-Keeler contraction in partially ordered metric spaces,

Nonlinear Anal.,74, (2010).
whereZ is the set of integers and is the usual ordering.
LetF : X x X — X be given by
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Let, ¢ : [0,00) — [0,0) be given by

Yt)=2t, and ¢(t) = é forallt € [0,).

It is easy to check that all the conditions of Theorem 5 are
satisfied.

By applying Theorem 5 we conclude thkt has a
coupled fixed point.

In fact, F has two coupled fixed points. They df&0)
and(%, %). Therefore, the conditions of Theorem 5 are not
sufficient for the uniqueness of a coupled fixed point.
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