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Abstract: In this paper, the periodic solutions of a strongly quadramnlinear oscillator whose motion is described with the
generalized Van der Pol equation are studied. A new metheddban homotopy and averaging is employed to determinertie li
cycle motion. Three types of quadratic nonlinearity arestered: the coefficients of the linear and quadratic temmagasitive, the
coefficient of the linear term is positive and that of the qa#id term is negative and the opposite case. Comparisdnthétnumerical
solutions is also presented, revealing that the preseritadéeads to accurate solutions.
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1 Introduction periodic solutions of quadratic nonlinear oscillatorslod t
form
Over the last century, perturbation methods based on ) ) _

circular functions have been successfully developed to X+ C1x+ Cox° = e (x,X) 2)

accurately determine approximate solutions for weakly

non linear oscillators in the form which are associated with many physical systems such as
. . betatron oscillators and vibration of shells. It is therefo
X+ crx = ef(xX). (1) also an important area of nonlinear vibration

investigation. The analytical solution was enough to
explain some of the phenomena which occur in the real
systems. For example, in a Van der Pol electrical circuit
' the existence of a limit cycle was explained by the energy
store in the capacitor during the slowly varying part of the
motion, while during the abrupt changes the energy was
Peing suddenly released. Unfortunately, the quantitative
values obtained analytically were not enough accurate.
' This was the reason why the Van der Pol equation was
' extended with nonlinear terms. The generalized Van der
' Pol oscillator is

Here ¢; is a constante a small positive parameter.
Classical methods, such as harmonic balance
Lindstedt—Poincaré,  Krylov—Bogoliubov—Mitropolski
averaging and multiple scalesl,p,3,4], have been
conducted to approximate periodic solutions of Eq.

Recently, many authors have been developing variou
elliptic function methods such as elliptic harmonic
balance method, elliptic Krylov-Bogoliubov method
elliptic averaging method, elliptic Galerkin method
elliptic Rayleigh method, elliptic perturbation method
elliptic Lindstedt-Poincaré method and elliptic homaotop
averaging methody]6,7,8,9,10,11,12,13 14]. However,
most of these methods are related to cubic nonlinear
oscillators, and very few of them have analyzed the
equation with quadratic nonlinearity.

In this paper the elliptic homotopy averaging method wheree¢ is a constant which is often assumed to be small
was presented by authord4] for certain oscillators (€ < 1), ¢ wherei =0,...,3 are constant coefficients and
having cubic nonlinearity will be used to analyze the dots denote derivatives with respect to time

X+ Cix+ X2 = € (o — Cax¥) X, (3)
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2 The solution of the generating equation It can be shown that E¢11) is indeed identical to Eq7),
because

We first solve the so-called generating equation of(2y.
acn’t+b=a(l-sn’r)+b=a st +b;.  (13)

%+ C1x+ X = 0. (4)
Typelll : ¢y <0, c, > 0.
with initial conditions: Similarly, whenc; < 0, ¢, > 0, the solution of Eq(4)
. can be expressed by
x(0)=q,  x0)=0. (5)
, , _ X = ap dn’T + by, (14)
Eqg. (4) has an exact analytical solution which can be
expressed by Jacobian elliptic function. Let the solutionpere
be denoted by ay — (a/kz) bp—a+b— a/kz. (15)
x=aep’(wt,k?) +b, (6)  Itcan also be proved that EQL4) is equivalent to Eq(7).

Therefore, one can use Eq3) and (8 — 10) as a unified
here ep(wt,kz) denotes a convenient Jacobian elliptic solution of Eq.(4) later.
function:sn(wt, k?), cn(wt,k?) or dn(wt,k?) according to
the type of Eq.(4) which depends on the sign of and
c2. The constanta, wandk? are called the amplitude, the 3 Basic idea of the elliptic homotopy
angular frequency and the modulus of the elliptic ;
function, respectively, and is called the bias. (A survey averaging method
of elliptic functions is given in the Appendix). The
constantso, b andk? are the known values which depend
on a. Three types of Eq(4) will be discussed in detail:
(a)cy > 0 andc, > 0, (b)c(l )> 0 andc, < 0 and (c)c; < 0 AX) —f(r)=0, req, (16)
and c; > 0. All the three types of equations have a wjth the boundary conditions of:
physical meaning: case (a) corresponds to the oscillator
with a hardening sprindl], case (b) to the oscillator with B(x,dx/dn) =0, rer, (17)
a softening spring 1] and case (c) is the first modal
equation of transversal vibrations of a cantilever beamwhereA, B, f(r) andl™ are a general differential operator,

To explain this method, let us consider the following
function:

for example, Refs.15,16,17]. a boundary operator, a known analytical function and the
Typel : ¢;> 0, c,> 0. boundary of the domaif®, respectively.
For this type of oscillator the generating functionis as  Generally speaking the operatican be divided into
follows [11]: two partsF andN whereF is alinear, andN is nonlinear.

Therefore, Eq(16) can be written as follows:
x = acn?(wt,k?) 4 b. 7)
F(x)+N(x)—f(r)=0. (18)
Substituting Eq(7) into Eq.(4) and equating coefficients
by the same order of functicen 7, the values ok?, a, b, By the homotopy technique se€l§19,20,21], we
andw are obtained as: construct a homotopy of E¢16) x(r,p) : Q x [0,1] — R
which satisfies:

212
a= 27, ®
2
H(x.p) = (1 p)[F(x) ~F(0)] 19)
b~ [40?(2K2 — 1) + ¢1] © +p[A(X) - f(r)] =0, pe[0,1], re Q,
2¢2 which is equivalent to
2
a9 H (x, p) = F(x) — F (Xo) + PF (Xo) + P[N(X) — f(r)] =0
o = e T (10 HOGP) = F09—F )+ PF )+ PINGO ()] =0
Typell 1 ¢;> 0, ¢,< 0. wherep £[0,1] is an embedding parameter, axgis an
It is worth pointing out that whem;> 0, c,< 0, the  initial approximation which satisfies the initial conditis.
solution of Eq.(4) can be expressed by By introducing an embedding paramefewith values in
the interval[0, 1], a transformation of the variabi€t) to
X — ay ST + by, (11) X(t, p) is done. The homotopy transformed E8) is
where (1= p) [(X+CcaX + C2X2) — (%o+ CaXo + C2X3) | (21)
a=-a bp=a+b. (12) +p [(X+ X + C2X2) — £(CoX — caX2 X)| =0,
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with transformed initial conditiori5)

X(0,p) =q,

wherexo = Xo(t) is the initial approximate solution which
has the form of6)

X(0,p) =0, (22)

X0 = aep’(wt,k?) +b=aep’+b. (23)
Using the Maclaurin series expansion
_ < (X n .

Xt.p) =%+ 3 ()P n=123.. (@4

where X(t.p)

X(t,p )

Xn = Xn(t) = , 25

0 = Xa(t) ( ), (25)

the nonlinear differential Eq21) is transformed into the
system of linear differential equations

pC : %o+ C1X0 4 C2X3 = 0, (26)

pl T X1+ pj_X]_ + ZC?XOX1 + (Xo+caxo+ C2X(2)) 27)
= £(CoXo — C3X§%0).
Applying Egq. (23) the differential Eq. (27) is
transformed into the first order deformation equation

%1+ C1xq +2C; (aep?+b) xy 28)
: ) :
=¢ (coa(epz) —cza(aep®+b) (epz))
The relation (28) is a nonlinear nonhomogeneous
differential equation with time variable coefficient. To
find the exact analytical solution for the E@8) is not an

elliptic integral of the first kind 22]. The averaged
relation(30) is

c K(epz') (ep?)) + Cl< [(ep?)] 2> +[(ep?)]”
x 2cy(aep®+h)| =¢ [Coa< [(EPZ)} 2>
—c3a<(a ep? +b)? {(epzﬂ 2>} ,

4K

(31)

where(...) =z¢ o~ (...)dT, T = wt. The left side of the
Eqg. (31) is always zero and the right side represents the
condition for limit cycle motion

(co— cab?) < [(es?)] 2> - 203ab<(ep)2 [(er?)] 2>
e <<ep>4 Cal 2> o
(32)

Solving the system of algebraic E¢8— 10) and(32),
the constants, w, b andk? are obtained.

4 A study of thetype | of generalized Van der
Pol oscillator

As an application of the elliptic homotopy averaging
method, type | of the generalized Van der Pol oscillator is
studied in detail.

Oscillator type 1:¢>0,¢c, > 0
oscillator the generating solution is

For this type of

x = acn’(wt,k?) +b=acn®+b. (33)

easy task. Our aim is not to solve the equation but toAccording to the aforementioned procedure the solution of

determine the amplitude of steady-state motion.

Due to the property of the series expansi{@b) and
the form of the left side of the Eq27) the solution of
(28) is assumed in the form of the first time derivative of
the elliptic function in(23)

x1 = c(ep?), (29)

wherec is a constant. Substituting the assumed solution

(29) into (28) we obtain
c [(epz')“+ ci(ep?) + 2¢, (aep?+b) (epzﬂ

= {coa(epzj —cza(aep®+ b)2 (epzj} . (30)

This is the moment when the averaging procedure is

introduced. The averaging is done for the period of
elliptic function &K (k?), whereK (k?) = K is the complete

(27) is assumed

x1 = ¢(cn?) = —2ccwen sndn, (34)

wherec is a constant. Substituting4) into relation(32)
we obtain

(Cags)a® + (2csb gp)a— (co — c3b?) qu =0,  (35)

where

g1 =Mo— (k2—|— Mg+ k2M6
= 152 [(—2+ 3K —kHK +2(1 - k*+ k*)E] ,
2 =My — (k2—|—2)M4+ (2k2+ 1)Me — k2M8
= rous [ (8— 232+ 18— 3k°) K
+ (—8+19K%— 9k*+6Kk°) E]
0z = Mz — (k>4 3)My + (3k% + 3)Ms
—(3k2+ 1)Mg+ k2M10

= g5 | (—16+ 64Kk? — 93K+ 50k° — BK8) K
+ (—16—56k*+ 66k* — 20K° + 10k®) E]
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quadratic nonlinear oscillatory systems. lllustrative
ol ] example show that the results of the present method are in
excellent agreement with those obtained by a fourth order
Runge-Kutta method.

Appendix: Elliptic functions

depdt

For the convenience of our readers, we collect some facts
on Jacobian elliptic functions (see re2?]) for details.
-o1 | 1 Jacobian elliptic functions satisfy algebraic relations
which are analogous to those for trigonometric functions.
The fundamental three elliptic functions are
) 1 cn(t,k), sn(t,k), and dn(t,k). Each of the elliptic
functions depends on the modulksas well as the
s — o2 w o o argumentr. Note that the elliptic functionsh andcn may

: be thought of as generalizations of sin and cos where their
period depends on the modulkis

Fig. 1: Limit cycle solutions of Eq. (37) obtained analytically 'The elliptic functions satisfy the following identities,
(—) and numerically (- - -). which are analogous to $irco$=1:

sn’+cen’=1, KPsn®+dn’ =1, kcn?+ 1— k? = dr?.

hereM,,, n=1,....5 are the averaged elliptic functions Before the averaging it is very convenient to transform all
which are given in the Appendix, arfel = E(k?) is the  the elliptic functions to sinus elliptic function
complete elliptic integral of the second kinz{. _ , .
From the amplitude modulation Eq(35), the SV cn”=Sn"—S1,
stationary amplitude is obtained by solving the algebraic sn“dn? = sn? —k?sn?,
Eq.(35). Thus, the stationary amplitudewhich mustbe  cn?dn? = 1— (1+k?) sn? + k?sn?,

positive, is given by sn? en? dn? = sn? — (K2 + 1) sn* + k2snb,
5 sn? en* dn? = sn? — (K2 4-2) sn* + (2k? + 1) sn® — k?sn8,
 —(2c3bap) £ \/(ZCabQ2) +4(cat3) (Co — c3b?) a1 sn? cn® dn? = sn? — (k24 3) sn* 4 (3k? 4 3) sn®
&= a0 : (3@ 1 1)s® + k2sni0.
(36) : . - : .
Solving Eq.(8—10), and(36) the parameters of the orbital Averaging the sinus elliptic functions according @2]
motionk?, a, b, andw are obtained. one gets
4K 4
M= | siPdr= 2 [K—El,
— 0
5 Application. . ” S
Consider the equation 4=/, 3 T‘%[( +K)K—2(1+KIE]
., : 4K
%+ 0.9x+0.9%¢ = £ (0.1 —x2) %, (37) Mg = / P dr — 1gke[(S+3k2+4k4)K
0
From Eqgs(8— 10) and(36), we havew = 0.501186a = 2
1.22047 b— —0.755452 anck? — 0.728825. Using the —(8+ 7K+ 8KY)E],
analytical solution in the first approximation My 2 — /4K S22 g7 — 2m(1 + k?)Mom + (1 — 2m)Mom, 2
5 :
x = 1.2204%n%(0.501186,0.728825 — 0.755452 (38) 0 (2m-+1)k

The approximate solutiof38) and the solution obtained
by fourth-order Runge-Kutta method are compared inReferences
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