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1. Introduction

In this paper we study the nonlinear Sgtinger equation

with combined power-type nonlinearities

l
ipr + Ap — V(z)p + kZ axleP* e
=1

- _Zl bilpl% e =0, t >0,
J:

©0(0,2) = pg(x), v € RN.

1)

Hereg = p(x,t): RY x [0,T) — C is a complex valued
function, andd) < T + oo is the maximal existence time,

N is the space dimension,= /—1, A is the Laplace
operator inkY and the nonlinear power exponepis ¢;
with the coefficientsi, b; satisfy

(H1)ay > 0, 1kl, b; > 0, 1js;
H)1l<g<ga<---<q=q<p=p<p-1<
o< pr<ooforN =1,2;
I1<g <g1<--<q=q<p=p <p-1<

N+2 .
s < p1 < J5 for V3,

andV (z) satisfies

(H3) irgNV(x)O is a real-valued function from®" to R,
e

(H4)‘ lim V(z) = oo,

(H5)V (z) € LY(RN).

Problem (1) arises in various physical contexts in the
description of a nonlinear wave such as propagation of a
laser beam, water waves at the free surface of an ideal fluid
and plasma waves. And it has been investigated by many
authors. R. T. Glassey [1] studied the Cauchy problem of
ius + Au — Ap|ulPru — AajulP2u = 0. He arrived at some
results on local and global well-posedness, asymptotic be-
havior and finite time blow up of the solution in different
energy spaces.

The Cauchy problem afi;+Au—|z|[*utay |u|P~tu =
0 was discussed by Fukuizumi Reika [2], G. Chen and J.
Zhang [3]. They showed some sharp criteria for global ex-
istence and blowing up of the solution. Further, the same
problem was studied by Yunyun Wei and Guanggan Chen
[4]. They established the existence of the solutions of the
Cauchy problem and proved that the standing wave is non-
linearly unstable. In addition, J. Shu and J. Zhang [5] in-
vestigated the Cauchy problem af; + Au + |uPu —
|u|% = 0 and obtained the blow up and global existence
of the solution.

D. Fujiwara [6] considered the Cauchy problemi@f+
Ap —V(z)e + |p[P~tp = 0, He proved that the smooth-
ness of the Sckidinger kernel for potentials of quadratic
growth. There is still much literature concerned with the
existence and blow up results for the analogical equations,
we refer the reader to Y. Tsutsumi and J. Zhang [7], J.
Zhang [8] and the references therein.

Motivated by the above works, we are interested in
problem (1). By using potential well theory introduced by
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Payne and Sattinger [10], as well as the concavity method

introduced by Levine [11]. Liu [12] introduced a family
of potential wells which include the known potential well

as a special case. Recently, this method was extended by

Xu [13] to study the Cauchy problem of nonlinear Klein-
Gordon equation with dissipative term. for other related re

sults, we refer to the reader to [14],[15],[16],[17],[1&B],[20].

l

- / Vel + o2 + V@)lpl2 = 3

k=1

arlolP T+ " bylplo T (6)

Jj=1

Now we can get the local well-posedness for problem

we define some invariant manifolds and derive sharp con{1) in energy spacél. (see [21] and [22]).

ditions for the global existence and blow up of the solution
of problem (1) and generalize the results in [9].
Throughout this paper, we ugg- ||5: to denote the
norm of H1(R™) and|| - ||» of LP(RY). For simplicity,
hereafter, we will denotg . - by [ - and use: to denote
various positive constants.
This paper is organized as follows. In Section 2, we

give some concerned preliminaries, define some function-

tion ¢ of problem (1) inC'([0, T7;

Lemma llet oy € H. Then there exists a unique solu-
H) for someT € (0, o<
(maximal existence time), and eitHEr= oo (global exis-

tence) or elsd” < oo and

tlin%HgaHH = oo (finite time blow up.

als and prove some invariant sets. In Section 3, we give
a sharp condition for the global existence and blow up ofFirst we have the following lemmas by similar arguments

problem (1). In Section 4, we establish family of potential

in [1], [7].

wells. In the last two sections, we discuss some invariant

sets, global existence and finite time blow up of solutions

by family of potential wells method.

2. Variational problem and invariant
manifolds

For problem (1), we define the energy space in the course

of nature by
H= {w € H'(RY): /V(:r)\w\Q < oo}. )

Here and hereaftef/ becomes a Hilbert space, continu-
ously embedded iff ' (RY), endowed with the inner prod-
uct as follows

<y >im / VYVE 0+ V(e ()

whose associated norm we denote py| 4.
We also define the following functionals

l

Lemma 2Letyp, € H andy be a solution of problem (1)

in C([0,T]; H). Then one has
J1e2 = [ 1ol ™
E(p) = E(¢0), ®)
P(¢) = P(po). )

Lemma 3 Let<p0 eH and<p be a solution of problem (1)

in C([0,T); H). SetJ(t) = [V (z)|¢|*. Then one has
l
N(pr —1)
J// / v 2 2 a
Vel? = V()| 272(pk+1) k
o™+ + Z b [pl# . (10)

By similar argument as in [7], we have the following lemma.

Lemma 4Letyp, € H and be a solution of problem (1)

E(y) _1 / IV|? + V(z)|e? - QZ Ok in C([0,T]; H). If J”(t) < 0, then the solutiorp(z, t) of
2 o Pkt 1 problem (1) blows up in finite time.
lp|Prtt 4+ 2 m er 1 ||, (4) We define a manifold as follows
j=1"
M :={¢ € H\{0} : I(¢) = 0}
l . . ..
1
= / Vol? + ol? + V(@)|gl? — 2 Z and consider a constrained variational problem,
. k=1 .
» s N d= wlg]{f(w- (11)
Pk 2 q;
o lel + ]lel (5)
j=1 Lemma5d > 0.
@© 2012 NSP
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proof FromI () = 0, we have for 1kl andc is a various positive constant. Singg > 1
for 1ki, we havep, > 1 and

1
P(e) =5 [ V6l + 1o + V@l - 2
2 kz—:l /IWI2 + el + V(a)el? > e (15)
Ak Pe+l ~ b 4;+1
p;ﬁ-lwl +2;qj+1|@| Hence
> 1 196 + 1o + Vo - 20 Plo)> (5= o7 [ 196 41 + ValloP
2 p+1 2 p+l1
1 9 s >c0,
aplePH + ——= > bjle[@ ™!
; p+1 ; ! which implies thatd > 0.
_(1__1 2 2 2 Theorem 1Define
~(3-537) [196P 416 + Vil
K ={¢ e H\{0}, P(¢) <d,I(¢) <0}.  (16)
> <0, (12) K is an invariant manifold of (1), that is, if, € K, then
the solutiony(z, t) of problem (1) also satisfies(z, t) €
i.e. P(¢) > 0. Thus from (11), we gef0. K foranyt € [0,T).
. ulglitthe following we use the Sobolev embedding in- proof Let g, € K. By Lemma 1, there exists a unigue
quality olz,t) € C([0,T); H) with Too such thaty(z,t) is a
solution of problem (1). As Lemma 2 demonstrates,
pitl
Jrert a1 + 1P+ violel?) P(¢) = Plgo), t€[0.T).
1<k<l, ThusP(pg) < dimplies thatP(y) < dforanyt € [0, 7).
(13) Now we showI(y) < 0 for t € [0,7). Otherwise,

from the continuity ofl(¢(t)) in ¢, there is &, € [0,7T)
441 suchthatl (o(z,t1)) = 0. By (5), (6) and

2

Jrelmt <o (1962 4162 + vialoPar) s (3

——— ) [ IV, t)[* + oz, t1)]?
1<j<s. 2 p+1>/

(14) + V(z)|p(z, 1) [2e > 0,

Here and hereaftef,, c; denote various positive constants. ,q havep(z,t1) # 0. OtherwiseP(¢(z, t1)) = 0, which
FromI(¢) = 0 it follows that contradicts withP (o (z, ¢1))c > 0. From (11), it follows

that P(¢(x,t1))d. This contradicted wittP(¢(z, 1)) < d
/|Vs0\2 + lol” + V(2)|p|? for anyt € [0,T). Thereforel (o(z,t)) < 0forall t €
[0,T"). Now we prove thap(z,t) € K foranyt € [0,T).
B : it o 441 This completes the proof of Theorem 1.
= /Z%\@I - Z bjlel By the same argument as Theorem 1, we can get the
k=1 J=1 following results.
l
< /Zak\ﬂp“l Theorem 2Define
k=1
PR R={y e H\{0}, P(v) <d,I(¢) > 0}. 17)

Zl:akck (/ IVel? + lof® + V(m)lw|2>

k=1

c (/ IVeol® + [ef® + V($)|w|2>

ThenR is an invariant manifold of (1).

pot1
2

3. Sharp conditions for global existence
potl

2 2 2\ % :
Here we usg [ [Vy|? + |¢|> + V(2)|¢[*) > torepre Theorem 3If ¢, € R U {0}, then the solutionp(z,t) of

sent the largest one of the valugls| V|2 + |¢]? + V (z)|¢|?) pfoblem (1) globally exists ohe [0, c0).
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proof First, we letyy € R. Thus Theorem 2 implies that Note that
the solutiony(z, ¢) of problem (1) satisfies that(x,t) €

Rfort €[0,T). For fixedt € [0,T), we denotep(z, t) = . ) , =N —1)
. Thus we haveP () < d, I(y) > 0. It follows that from J /|V90| )|l Z o+ 1)
(5) and (6),
ag|pP*o + Z 7+1)) bile|¥ e
1 )/ 2 2 2
5= ) [ [Vel" +lel” + V(x)lel N(p—1
p
2 b 2 < [1veP - Vil - 52
<3 [ 190P + lol? + Viallol - 2 | :
l . /Zaklﬂpwlsﬂ—zbﬂﬂqﬁl@
D aulpl = 3 byl - =
— — 2 2 N(p—-1)
k=1 =1 [Veol” = V(@)le]” — o
. 2(p+1)
<L 19l 4 o2 + Vi) — 23 2 o )
3 | Vel +le olP-2) Vel + ol + V(@]
S b N(p— 1)) / 2
petl 4 o J qj+1 < - (1 t V()|
pk+1|g0| + ﬂqﬁllwl 2(p+ 1)
7= =—cJ(t) <0,
<d,
wherec, = 1+ % > 0. Now we show that there
which indicates exists aI} € (0,00) such that/(t) > 0 fort € [0,T})
andJ(T;) = 0. Otherwiseyt € [0, 00), J(t) > 0.
Set
2p+1 J'(t)
/|w|2 + ol + V(z)lpl® < (pf+1)d. (18) 90 = Ty

It is easy to show that

Therefore in view of Lemma 1, (18) implies thaglobally

exists ont € [0, 00). gt = {]N(Sf)) - (?(Sf?) < =8¢, — g3(t). (19)

Let oo = 0. From (7), we haver = 0, which shows

that ¢ is a trivial solution of problem (1). Theorem 3 is Next let us turn to show(t) # 0 for anyt € [0, 00).

completed. Arguing by contradiction again, suppose that thereiig a
such thaty(to) = 0, i.e., J'(to) = 0. By J"(¢) < 0, we
haveJ'(t) < 0 for t € (tg,00). Hence we havg(t) < 0
for t € (to,00). For any fixedt; > tq, dividing (19) by
g%(t), we have

Theorem 4Whenl < ¢, < gs—1 < - <1 =¢<p=

p<p1<---<p andN > 22”“) If oo € K, then g _ Se
the solutionp(a:, t) of problem (1) blows up in finite time. g2(t) g3(t) '
Further we derive
. t g/(T) t
proof Sincey, € K, from Theorem 1, we have(x, t) € / 5 dT < / —1dr,
K,i.e. I(p) < 0. Therefore t 92(7) t
namely,
2 2 2 ! > ! +(t—1t1)
/|V90| + lol” + V()¢ 9t ~ g(t) 1)

l s . - - -
which indicates there existsta > t; such that
< [ Sl = 3 bifel .
k=1 j=1

g(t) > 0 forany t € (t2, ). (20)

@© 2012 NSP
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This contradicts witty(¢) < 0 for ¢ € (¢9, c0). Hence we
haveg(t) # 0 for anyt € [0, o). By (20), fort € (0, c0)
, we have

1
— > — + 1.
g(t) = g(0)
Hence,J'(t) > 0 fort € (‘ﬁ ,oo). ThereforeJ(t) is
increasing in(’ﬁ ,oo) and

J"(t) < —8e, J(t) < —8¢,J(0) < 0.

Further we have
t

/ T'(7)dr < —8e, J(O)t,
0

ie.,
J'(t) — J'(0) < =8¢, J(0)t,

that is,
J'(t) < J'(0) — 8¢, J(0)t.

Again, we have
t
/ J'(r)dr < J'(0)t — 4c. J(0)t2,
0

namely
J(t) — J(0) < J'(0)t — 4, J(0)t2.
Therefore we have
J(t) < J(0) + J'(0)t — 4c. J(0)t?,
which contradicts with/ () > 0 for ¢ € [0, c0). Hence we

know that there exists & < (0,00) such that/(¢) > 0
fort € [0,71) andJ(T}) = 0. By the inequality [7]

2
el Vel - [IVV(@)ell.

We get
Jim [[Vel| = oo,

which indicates
Jim [[il] = oo,
i.e. the solution of problem (1) blows up in finite time.
Remarkt is clear that
{¢ € H,P(¥) <d} = KURU{0}.

Thus Theorem 3 shows that Theorem 4 is sharp.

4. Family of potential wells and the
properties

In this section we introduce a family of potential wells
and show some properties of them. Then in the follow-
ing sections, these conclusions shown in this section will
be used to prove the global existence and non-global exis-
tence. First we give some lemmas and by using them we
introduce two familie W5} and{V;}. For Cauchy prob-
lem (1) with||¢o|| # 0 we define

lellz =lellzn + 1V (@)lelZ:
=Vel? + lel? + IV (@)lel?,

H={peH[|el=lvoll}

l

1
3o =5 [ 196 + lol? + V@)lel? 23
k=1

Qg
P+ 1

s
b:
ol 423 gl
j=1"

I;() = / Vo + ol + V(@)

l s
> a4+ T bylel9
k=1 j=1

Proposition 1[23], [24], [25], [26] Assume thatl < p <
242 forn > 3and1 < p < oo forn = 1,2, andy, €
H!(R™). Then the Cauchy problem (1.1) admits a unique
solutiony(t) € C([0,T); H(R™)) for someT" € [0, c0)
(maximal existence time), and¢) satisfies (7), (8), (9).

Proposition 2[23] Let (¢) be a solution of problem (1)
with oo € H, T be the existence time of¢),

F(t) = / V(@) 2|l

Theny(t) e Hfor0 <t < T

F'(0) =8 [ (962 = IV@)PloP - 3216,

0<t<T

and )
1
llell? < IVellF=(t), 0t <T.

Proposition 3[27] Let 1 < p < 22 forn > 3 and1 <
p < oo forn = 1,2 and@ be the ground state solution of
the following nonlinear elliptic equation:

RemarkApparently the results in this paper generalizes the

results in [9].

—Au+u = |[ulP" u in R™.

@© 2012 NSP
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Then the best constant > 0 of the Gagliardo-Nirenberg’s
inequality,

17125, < el fIEE 2 V. @)
is given by
n(p—1)—4
_20p+1) (4( 1)@2))74 -
“Tap- D\ kD 2
x[|Q Y.

From (21) we can obtain the following lemma.

Lemma 6 Letp satisfy (A)o € H. Theny_*_, b; ]|l 11—

l ;
Y arllelli iy # 0and|[ V| # 0, where
(A) 1+2 <p<Zforn>3andl+ 2 < p < oo for
n=1,2.

Next we discuss the relations betwe¥ip|| and the
sign of Is(¢), which are crucial for obtaining the main re-
sults in this paper.

Lemma 7 Letp satisfy (A). Assume thate H and

s\
r(d) = (C’—Mo> , My

)If ||Vl < 7(6), thenIs(p) > 0.
(i)If I5(¢) < 0, then||Vy|| > r(9).
(i)If I5(¢2) = 0, then|| Vo] > (5).

= [lpollti— =

)

proof

()Sincey € H implies|| V| # 0, from ||V|| < r(d)
we get

l
1
Zb lellg, qJ+1 Z“k”‘t"”ﬁil
k=1

<Zb UVt

§5||V<PH27

which givesls(¢) > 0.
(ilFrom I5(¢) < 0 we get

s l
i+1 .41
SIVell® <D billelle Ty = arllelbit
j=1 =
<C\ Mo||Ve||?||Vel|?,

which gives||Vy|| > r(9).

(iii)From I5(¢) = 0 we get

q;+1

1
+1
a+1 Z ar el
k=1

<CMo|| Vo’ Vel

8lIVel® = billel
j=1

which together with| V|| # 0 gives||Vy|| > r(9).

As is well known that in spacé/!(R™), Poincaé in-
equality does not hold, so that one can not use the impor-
tant fact that||Vu|| is equivalent to||u||z:. In order to
overcome this difficulty, we introduce the spabié R™),
so that by (7) and (21) the norni&/¢|| and |||z are
equivalent in some sense again.

Definition 1.For problem (1) with||po|| # 0 we define

1nf J(p), N5 = {p € H|I;(¢) = 0},8 > 0.

PENs

d(5)

In the following Lemma 8 we estimate the value of
d(d) and give its expression (1), which palys an im-
portant role in the proof of the main results of this paper.

Lemma 8Letp satisfy (A). Then

()d(5) > a(8)r*(8) for a(s) = 3 — -2,
0<6< bt
(i)
d((5) (5"(13 1) 4]¥_126d(1)’
0<d< — ptl (23)
proof

(iyFor anyy € N5, 0 < § < 2EL we have|| V|| > r(d)
and

l

eol* - 22

b; .
RIS R
j=1 J

1 ) 9
< (5 - m) Vel +
=a(0)[[Vel? > a(é)r?(s),
which givesd() > a(8)r?() for 0 < & < 4.
(i) (@)From the definition ofi(1) it follows that for any
€ > 0 there exists @ € N; such that

d(1) < J(p) <d(1)+e
Foré > 0, definex = A(4). Then

l
<_ > arfplPt
k=1

J(¢) :—||V<PH2 +lel +V(a

P 115(90)

n(p—1)—4
2

8|Vl = A

@© 2012 NSP
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+y bj|90‘“+1) : Definex = A\(6). Then

'L(P
Hence for each > 0 there exists a unique IVel? = ( Z ag|ePH1

([ balp)\ "0 .
o -(55) +ij|s0q-"“>

where

and
a(p) = Vel a(p)\ "0
l s A= ( - > !
- _Za | |pk+1+2b,| |%+1 )
= kY o v : Sincey € N implies thatda(p) = b(y) we get
= J:
Sincey € N, impliesa(p) = b(y) we get A(8) = (%) e
A(6) = on=D=1. Fromy* € A; and the definition ofl(1) we have
Note that||o* || = [|¢|l = [|oll, YA > 0 we have
©A(0) € N;s. From the definition ofi(d) we get d(1) < J(pY)
d(0) X
n(p—1)
<J(p") =3 *a(p) — m/\ 7 b(p)
1 no=1)
“Lyzge) - Loy,
SN al) ] (%) ”
1. a4 1 n(p—1) 1 /1\"-D-2 1
—_—)nlp—-1)—4 — n(p—1)—4 = — —
59 a(yp) 79 b(e) 5 (5> ©) o
4 1 6
=y na [ :
(27 547) 2 1 s
- 26
From (24) and (6) be)  (20)
1 1 p—1
J(@) - 266(()0) p+1 ((,0) 2(p+1) (SD) B <1> n(p—1)—4
it follows that o
d(s) 1 11
<smn (L 20 \2ptD) () (ﬂl(w S ptl 5b(¢)>
2 p+1 p—1
1 2 1
<§FE=D=a ( L) (p+1) (d(1) +¢), 1\ 701 g q
p+1
£0<o<——. it follows that
From the arbitrariness afwe obtain X
+1-26 doy< (L) e=L (L0 _IJ()
(6) <6”(5’ 1) 4% (1)7 - (; 2(p+1) 2 p+1 ()0
1
0<s< Pl (25) . )
2 1\ 03 p—1 (1 4§
<(3 (5o ) @) +e),
(b)Let s > 0. From the definition ofi(4) it follows (p+1) p+
that for any= > 0 there exists & € N such that
p+1
d(0) < J(p) < d(0) +e. O<5<T
@© 2012 NSP
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and V ={peHp) <0,J(p) <d}
16 \2(p+1) ~ p+1
npp-1-4 ( — — ——— 1 = - -
d(d) +¢e >0 (2 p+1> p— d(1), Ws={p€ H|Is(p) >0,J(p) <d(6)},0<6< 5
0<s< Pl 27) ~ pt1
2 Vs = {p € HlI5(p) <0,J(p) <d(9)}, 0 <8 < =——.

From (27) and the arbitrariness ofve get

s p+1-—26 p+1
> jnlp-1)—4 — - .

d(é) > ¢ ] d(1),0<é < 3
(28)

From(25) and (28) we obtain (ii) in this lemma.

Corollary 1.Letp satisfy (A). Then

()lims_o d(5) = 0, lim;_ pas d(d) = 0;

(i) d(9) is continuous o) < § < 2t

(iii) d(9) is increasing orD < § < a, decreasing o <
§ < il and takes the maximud(a) até = a =
2(p+1)
n(p—1)"
proof Conclusions (i) and (ii) follow from (ii) in Lemma

8 immediately.
Conclusion (iii) follows from (ii) in Lemma 8 and

, _ B @ A4 2n
d'(6) =Ala—6)0% A= 771(;0— )= 4al(l)7
_d-n(p-1)
Con(p—1)—4
EEY]
F 9
d = dja)
[ i=a g TER
Figure 1

Definition 2.For problem (1) with||io|| # 0 we define

2(p+1)
n(p—1)’

W ={p € H|I(¢) >0,J(p) <d},

I(p) = L(y), d=d(a), a =

5. Invariant sets and vacuum isolating of
solutions

In this section we discuss the invariant sets and vacuum
isolating of solutions for problem (1). We consider the case
0< E((po) < d.

Theorem 5Let p satisfy (A),po € H. Assume thad <
e < d, §; < 09 are two roots of equatiod(d) = e. Then

()All solutions of problem (1) witlE' (o) = e belong to
W for 6 € [61, 02], providedI () > 0.

(iDAll solutions of problem (1) withE(¢,) = e belong to
Vs for ¢ € [01, d2], providedI (¢g) < 0.

proof

(Let p(t) € C ([O,T); EI) be any solution of problem

(1) with E(pg) = e andI(ypg) > 0, T be the ex-
istence time ofp(t). Firstly we provey, € W; for
d € [61,02). From

1

§|||V(x)|<ﬂo||2+J(800) = E(po) = e < d(6), 0 € [61, 2]
(29)

we getJ(pg) < d(d) for § € [01,02]. On the other

hand,(¢o) > 0 implies ||¢o|| # 0. Hence from (29)

we can getls(po) > 0 for § € [d1,d2]. Otherwise

there exists @ € [0,, J2] such that/5(¢¢) = 0 which

together with||po|| # 0 gives J(po) > d(d). This

contradicts (29). Next we prove thatt) € W; for

§ € [01,02), t € (0,T). Arguing by contradiction,
we suppose that there existsae (0,7) such that
(tg) € OW;s for somed € [0y, d2], i.e. Is(¢(to)) =0

or J(p(tg)) = d(d). From (7) we get

LIV @Il + T(e) = Blgo) < d(d),

0 € [01,02], t € (0,T). (30)
HenceJ(p(tp)) = d(§) is impossible. IfI5(¢(to))
0, then byllio(to) || = [lwol| # 0 we getJ(p(to))
d(6) which contradicts (30).

(iLet ¢(t) € C ([O,T); ﬁ) be any solution of problem
(1) with E(po) = e, I(¢o) < 0, T be the existence
time of ¢(t). FromI(ypg) < 0 and (29) we can get
o € Vs for é € [01,d2]. The remainder of this proof
is similar to that in part (i).

IVl
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From (30) it follows that if0 < E(pg) = e < d, and
01 < &9 are two roots of equatiod(d) = e, then for any ) ) )
§ € [61,05], ¢ € N is impossible. Therefore for the set IV (z)]el” + [[Vell® + [l
of all solutions of problem (1) witld < E(ypg) = e < d 2n(p — 1)
there exists a vacuum region SmE(%’O) + [lgoll?, 0 <t < T,
Ue=Nss,= | Mo which givesT” = +oc.
01<6<52

B ~ B Corollary 2.1f in Theorem 6 the assumptiorE{ ) < d,

={p € HlIs(p) = 0,01 <5 < b2} I(po) > 0" is replaced by ‘0 < E(p) < d, I, (o) >

such thatp(t) ¢ U, for any solutiono(t) of problem (1) 0", where 6, < 4, are two roots of equationi(s) =

with 0 < E(pg) = e < d. E(p), then problem (1) admits a unique global solution

ot) € C([O,oo);fi) and(t) € W for 6 € [61,64],

. .. . 0<t<oo.

6. Global existence and finite time blow up of

solutions Corollary 3.Letp satisfy (A)ypo € H,a < 0y < %. As-
sume thatF(¢g) < d(do) andIs,(po) > 0. Then problem

In this section we prove thg global existence, fin!te time(l) admits a unique global solutiap(t) € C ([07 0); ﬁ)

blow up of solutions and give some sharp conditions for

global existence, finite time blow up of solutions for prob- @1d@(t) € W, for0 < < co.

lem (1) which are completely different from those given in thagrem 7Letp satisfy (A)ipo € H. Assume thalf (o) <
[29] - [31], [32], [33], [34]. dandI(po) < 0. Then the solution of problem (1.1) blows

Theorem 6Letp satisfy (A)yo € H.Assume thatp,|| =  UP in finite time.
0 or E(po) < d, I(pg) > 0. Then problem (1) admits a

i k ~ proof First Proposition 1 gives the existence of unique
unique global solutionp(t) € C ([O, 00); H) such that

local solutiony € C ([O,T);EI), whereT is the exis-

@)[le(®)]l = llpoll = 0for 0 < ¢ < coif ||| = 0. tence time ofp. Let us provel’ < co. Arguing by contra-
Or diction, supposé’ = oc. Let
(i) o(t) € W for 0 < £ < ooif E(po) < d, I(y) > 0.

proof Firstly from Proposition 1, it follows that Cauchy F(t) = / [V ()%l
problem (1) admits a unique local solutigit) € C ([0,T); H)
satisfying (7), (8), wher@ is the maximal existence time Then by Proposition 2 we have
of p(t). Next we provel’ = +oo.

. -1
()IF o]l = 0, then by (7) we havép(®)]| = lleoll = F'(t) =8 / Vel? = V(@) el - Z(p 1) Pl
0,0 < t < T, which gives|||V(z)|¢(t)| = 0 and (p+1)
IVe(t)|| =0,i.e.]jeo(t)]|g =0for0 <t <T.Hence 2 nlp—1), ., 8
by Proposition 1 we gef = +oo0. <8 [ |Vel - 2+ 1) [l =~ La(p)-
(iNIf E(po) < d, I(pg) >0, then (31)
E(po) :1 IV ()]0l + M In order to finish this proof we consider the following two
2 2n(p—1) cases:
1 .
IV @oll? + ——I(pp) > 0. M0 < E(po) < d.
p+1 In this case from Theorem 5 we hayes Vs for §; <
Hence from Theorem 5 we hays(t) € W for 0 < d < 09 and0 < ¢ < oo, whered; < J, are two roots of

equationd(d) = E(pp). Clearly we havely > a > 1.

t < T.Hence from
Hence we havéds(¢) < 0 and||Vy|| > r(0) for a <

1 n(p—1)—4 1 §<8,0<t And <0, Vel > (s
Loy 2 Vo2 I < 02,0 <t < oo.And Is,(¢) <0, [Vl = r(d2)
2 IV @lel” + 2n(p —1) IVell™ + p+1 (¥) for 0 < ¢ < co. Thus from (31) we get
1
=_|||V 2+ J(p) = E(po), 0 <t < T, 8 8
IVl 6) = Blwo), 0.2 (1) < 214(0) = = ((a = 62)|Vel* + 15, (¢)
we get 8 5 8 9
In(p 1) < J(a=0)Vel” < —(a = d2)r"(d2)
2 2 —
[V (@)]ell” + [[Vel* < WE(%% = —C(d2) <0,
0<t<T F'(t) < — — C(8)t + F'(0), 0 < t < o0.
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Hence there existstg > 0 such that” (t) < F'(to) <
Oforty <t < ocand

F(t) < F'(to)(t — to) + F(to), to <t < oo. (32)

Sincel(yg) < 0 implies F(0) > 0 from (32) it fol-
lows that there exists & > 0 such thatF'(¢) > 0 for
0<t<Tand

lim F(t) =0,

t—T

which together with

2 1
loll® = llell® < Vel E= (),

gives
lim sup ||Vy|| = +
t1m1 sup ||V 00,

which contradicts witll" = +oco.

(i) E(0) < 0.
Let p(t) be any solution of problem (1) witE () <
0 or E(po) = 0, ||po|| # 0, T be the existence time
of ¢(t). SinceE(py) < 0 implies ||¢q] # 0. Hence
for two cases we always haye(t)|| = ||¢ol|| # 0 and
IVe(t)|l # 0for0 <t < T. Thus from

16 , 1
(5 - m) IVeoll” + P 115(%0)
=J(p)
=B(g0) — 3 lIv@el?

1
O<6<}%,0§t<T,

we can getl;(¢) < 0 andJ(y) < 0 < d(6) for
5 € (0,281), ¢ € (0,7), which givesy(t) € Vs
for 6 € (0,2),t € [0,T), we havey € Vj for
0 <6< 28 0<t < co.Ifinthe proof of part (i),
is replaced by, then we also obtaiff’ < cc.

Finally from Proposition 1 we get
lin [l = +oo.
Theorem 7 is proved.

Corollary 4.Letp satisfy (A)po € H anda < § < pT“
Assume thaf(yg) < d(§) and Is(¢p) < 0. Then the
solution of problem (1.1) blows up in finite time.

Corollary 5.Letp satisfy (A)¢o € H. Assume thaE (yg) <
0 or E(po) = 0, o # 0. Then the solution of problem
(1.1) blows up in finite time.

7. Conclusions

We mainly discuss a class of nonlinear Satinger equa-
tion with combined power-type nonlinearities and harmonic
potential, and derive a sharp condition for blow up and
global existence of the solution. Compared with previous
work, the nonlinear Scidinger equation of this paper is
more general. Especially the corresponding results of this
paper try to explain the effects of the different nonlinear
source terms to the global well-posedness of the problem.
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