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Abstract: The generalized harmonic oscillator with time-dependent coefficients is considered. With two 
simplifying assumptions on the time-dependent coefficients, the explicit examples of the conserved quantities 

constituting the constituting the SO(2,1)-generators are given. The uncertainties “q and “p are briefly discussed  
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1 Introduction 

The harmonic oscillator is one of the most 

important objects in many branches of physics [1, 

2]. In its simple versions, both classical and quantal 

harmonic oscillators are exactly solvable. In this 

paper, we consider the quantal generalized harmonic 

oscillator defined by the Hamiltonian                                      

2 21
[ ( ) ],

2
H Xq Y qp pq Zp= + + +                            (1.1) 

where ,X Y  and Z  are time( t )-dependent  

coefficients  satisfying 2
0XZ Y− > and p and q  

denote canonical variables at t  in the Heisenberg 

picture.  

Up to now, this system was investigated by 

many authors. It was shown that, although the 

Hamiltonian H  is not invariant because of the time-

dependence of ,X Y , Z , there exists an invariant I  

in this system[3, 4, 5]. It is constructed as  

                                      

221
( )

22

q Y q dx
I x p q

Z Z dtx

  
= + + −     

,                    (1.2) 

Where x  is a solution of the equation?  

                                      
2

1 1 12
( ) [ ( )] - 0

2 3

d XZ Y d Y
x x

Z dt Z dt ZZ x

−
+ − = .              (1.3) 

Furthermore, it was pointed out [6] that there exist 

three invariants ( 1, 2,3)J i
i

=  satisfying the (2,1)SO  

algebra 

                                

[ , ] , [ , ] , [ , ]
1 2 3 2 3 1 3 1 2

J J iJ J J iJ J J iJ= − = = ,    (1.4) 

And the constraint 

                                                   
32 2 2( ) ( ) ( ) .

3 1 2 16
J J J− − = −

                                    (1.5) 

Are obtained. They are constructed on the basis of 

the solutions of 

         

2
1 1 13

( ) 4[ ( )]( )
2

2
1 1

2{ [ ( )]} 0.
2

d XZ Y d Y d

Z dt Z dt Z Z dtZ

d XZ Y d Y

Z dt Z dt ZZ

ς ς

ς

−
+ −

−
+ − =

       (1.6) 

We find that the general discussion can be 

developed but it is rather obscure. In this paper, we 

seek the case in which everything becomes explicit 

and clear. We then obtain the explicit examples for 

( 1, 2,3)J i
i

=  and I .We also discuss the uncertainties 

q∇ and p∇ of these examples of the generalized 

harmonic oscillator. 

In Sec.2, we clarify our basic assumptions. In 

Sec.3, we obtain explicit examples of 

(2,1)SO generators. In Sec.4, we discuss  q∇  and p∇ . 

The final section is devoted to summary. 
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2 Two Simplifying Assumptions 
Our first assumption is 

                                     

2
1

( ) const.
2

XZ Y d Y

Z dt Z
Z

ω
−

= − =                        (2.1) 

With this assumption, the classical Newtonian 

equation corresponding to H  is given by 

                                           

2 1 2 2( ) 0.
2

d q dZ dq
Z q

Z dt dtdt
ω− + =                (2.2) 

Defining Q by 1/ 2
Q Z q

−=  , we have 

                                

2 21 32 2 2[ ( ) ] 0.
2 2 22 4

d Q d Z dZ
Z Q

Z dtdt dt Z
ω+ + − =   (2.3) 

This equation becomes most tractable if we have 

                           

21 32 2 2( ) const.
2 22 4

d Z dZ
Z

Z dtdt Z

ωΩ ≡ + − =   (2.4) 

To obtain examples in which we can develop 

explicit calculations, we hereafter assume (2.4) in 

addition to (2.1).It turns out that these assumptions 

are compatible if and only if Z satisfies 

                                      
2

3 2 2 3 2
( ) 2 2 0

2 2

d Z dZ
Z Z

Z dtdt
ω− + − Ω =        (2.5) 

If we define κ  by 
1

Z
κ

ω
= ,  the above equation 

is converted to 

                                                         
2

12
0.

2 3

d

dt

κ
κ

κ
+ Ω − =                                      (2.6) 

It is interesting that (1.3) to determine x  and (2.6) 

to determine κ are of the same form. Adjusting the 

origin of t , we obtain 

                                   
1

, ( 0) : const.
sinh cos(2 ) cosh

Z
t

γ
ω γ γ

Ω
= ≥

Ω +
           (2.7) 

To obtain the solution x  of (1.3), it is convenient to 

define the variable τ  defined by 

                  0
sinh cos(2 ) cosh

1
arctan[ tan( )]

t
dt

t

e t

τ
ω γ γ

γ
ω

′Ω
=

′Ω +

−
= Ω

∫
       (2.8) 

or                                                 

tan( ) tan( )e t
γτω −

= Ω                                      (2.9) 

We note that Eqs. (2.1) and (2.4) are realized when 

X , Y and Z  satisfy 
                                 

2 2
[ ] , ( ) ,

df
X f Z Y f Z

d
ω τ

τ
= + + =                     (2.10) 

where f  is an arbitrary function of τ  and Z   is 

given by (2.7).  

 

3  Time-independent generators of (2,1)SO  

Now we turn to the construction of the invariants 

associated with the generalized harmonic 
oscillators. The assumption (2.1) leads to simple 
solutions of (1.6) such as 

1,sin(2 ),cos(2 )ς ωτ ωτ= .According to the procedure of 

[6], we find that  ( 1, 2,3)J i
i

=  defined by 

                         

1 2 3
2 ( ) ( ) , ( 1, 2,3)

i i i i i i
J T T T iη ξ ς ξ ς= + − + + =         (3.1) 

        
sin(2 )

1

s(2 )
2

1
3

co

ς ωτ

ς ωτ

ς

 =



=


=

                                               (3.2) 

                                                 

sin(2 ) s(2 )
1

cos(2 ) sin(2 )
2

3

Y
co

Z

Y

Z

Y

Z

η ωτ ω ωτ

η ωτ ω ωτ

η


= −




= +



=


                  (3.3) 

                                           
2

22
( )sin(2 ) s(2 )

1 2

2
22

( ) cos 2 ) sin(2 )
2 2

2
2

3 2

Y Y
co

ZZ

Y Y
(

ZZ

Y

Z

ξ ω ωτ ω ωτ

ξ ω ωτ ω ωτ

ξ ω


 = − −




= − +


 = +



          (3.4) 

are time-independent.  Here ,
1 2

T T and
3

T   are defined 

by  
                                         

2 2 2 2
, ,

1 2 34 4 4

qp pq q p q p
T T T

h h h

+ − +
= = =           (3.5)          

and satisfy    
                                        

[ , ] , [ , ] , [ , ]
1 2 3 2 3 1 3 1 2

T T iT T T iT T T iT= − = = �,   (3.6) 

and the constraint   
                                           

32 2 2( ) ( ) ( )
3 1 2 16

T T T− − = − .(3.7) 
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On the other hand, in terms of τ and ω , (1.3) 

becomes 
2

12 0.
2 3

d x
x

d x

ω
τ

+ − =                                       (3.8) 

With the help of (2.2), we obtain the general 

solution x  explicitly  

1 2
4 cos(2 ) ,

2

( 2), :const.

x α ωτ ε α
ω

α ε

= − + +

≥

             (3.9) 

We then obtain various conserved quantities for 

various choices of α  and ε . For the cases 

{ 2}, { 2, 0},α α ε= > =  { 2, },
2

π
α ε> = x  becomes as 

follows: 
1

: { 2},

1 2 4 cos(2 ) : { 2, 0},
2

1 2 4 sin(2 ) : { 2, }.
22

x

x

x

α
ω

α ωτ α α ε
ω

π
α ωτ α α ε

ω

= =

= − + > =

= − − + > =

  (3.10) 

Then it is somewhat tedious but straightforward to 

obtain  
                              

2 : { 2},
3

2
( 4 : { 2, 0},

3 2

2( 4 :: { 2, }.
3 2 2

I J

I J J

I J J

α

α α α ε

π
α α α ε

= =

= + − > =

= − − > =

h

h

h

          (3.11) 

According to [6], the first formula 2
3

I J= h can be 

adopted in general. Thanks to the simplifying 

assumption (2.2), we here understand how 
1

J  and 

2
J  are related to I . Although we have found the 

latter two formulas in the special case const.ω = , it 

might be possible to find relations among , ,
1 2

I J J  in 

more general cases.  

 

4. Uncertainties  q∇  and p∇  

We finally comment on the uncertainties in the 

simplest case. The  quantal eigenvalue problem 

H EΨ = Ψ   is written down as 
2 2 2

( ) .
22 2 2

Z d d Xq Y
i Yq i E

dqdq

ψ ψ
− − + − Ψ = Ψ

h
h h

                 (4.1) 

Its  normalized solution with minimal E  is given by 

[5, 7]  

2
( ) ( ) exp[ ( ) ],

2

i
q aq bq

n n
ψ α χ= −       (4.2) 

1

2 4( )
,

1/ 2( )

XZ Y Y
a b

ZhZh

−
= =                            (4.3) 

2 ( )
2(2 1 ) ( ) 0.

2

d
n n

n
d

χ ξ
ξ χ ξ

ξ
+ + − =                (4.4) 

The solution in the 0n =  case is given by 

                                    

1 2 2 2
( ) exp[ ( ) ]

0 2

a
q a ib qψ

π
= − + .               (4.5) 

2 .
0 2

E XZ Y= −
h                       (4.6) 

The uncertainties 2 2 2( ) | ( ) |
0

q q q dqψ+∞∇ = ∫−∞  and 

2 * 2( ) ( )( ) ( )
0 0

d
p q q dq

i dq
ψ ψ+∞∇ = ∫−∞

h in this state are 

calculated to be  
12( ) ,
2 2 22

Z
q

a XZ Y

∇ = =

−

h                             (4.7) 

                                          
2 4 4

2( ) .
22 2 2

a b X
p

a XZ Y

+
∇ = =

−

h h                            (4.8) 

Under the assumption (2.2), they become  
12

( ) ,
2 2

( )

q
d Y

d Z
ω

τ

∇ =

+

h                              (4.9) 

2 2
( ) ( )

2( ) .
2 2 ( )

Y d Y

Z d Zp
d Y

d Z

ω
τ

ω
τ

+ +
∇ =

+

h                 (4.10) 

We find that q∇   and p∇  are determined solely by 

( )f τ . 

Although we have 
2

q p∇ ∇ >
h

  in general, it is 

interesting that, as in a squeezed state, 2
( )q∇  can be 

smaller than 
2ω

h
for positive ( )df

d

τ

τ
. On the other 

hand, 
0

E  involves Z  as well as ( )f τ : 

                                              

2 2 2 ,
df

f
d

ω λ
τ

+ =                            (4.11) 

where λ  is a positive constant. Then ( )f τ  is fixed 

as 

,
e Ae

f
e Ae

λωτ λωτω

λωτ λωτλ

−−
= −

−+
                          (4.12) 

Where A   is an arbitrary constant. This case 
corresponds to the Hamiltonian 

                                              

2 2 2 2[( ) ].
2

Z
H p fq f qλ= + +            (4.13) 

Note that Z  of (2.7) is simply described in terms of 

t , while f  of (4.12) by τ  with τ  and  t being 

related by (2.9). 
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Now 2 2,( ) , ( )
0

E q p∇ ∇ and  q p∇ ∇ become 

21
,

0 22 sinh cos(2 ) cosh

e A
E

t e A

λωτ

λωτγ γ

Ω −
=

Ω + +

h        (4.14) 

2
,

2
2

( )
2

e A

e
q

A

λωτ

λωτω
∇

+

−
=

h                      (4.15) 

12
( ) (1 )

22

2
,

2
q

e A

e A

λωτ

λω
ω

λ τ
−

∇ +
+

=
h                  (4.16) 

1
1

22
q p

λ
∇ ∇ = +

h                                 (4.17) 

5  Summary 
In order to obtain examples in which everything 

is explicit, we have explored some cases of the 

generalized harmonic oscillator with time-

dependent coefficients.  By assuming (2.1) and 
(2.4), we have obtained the explicit examples of the 

time-dependent set of the (2,1)SO -generators 

associated with the system. By assuming (4.11) in 
addition to (2.1) and (2.4), we have obtained 

examples where the time-dependence of 
0

E   and the 

uncertainties q∇  and p∇ is clear. 
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