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Abstract: This paper concerns the oscillation of solutions to second order non-linear dynamic equation with damping

(r(t)Ψ(x∆ (t))∆ + p(t)Ψ(x∆ (t))+q(t)xσ (t) = 0

on a time scale T which is unbounded above. r(t), p(t) and q(t) are positive rd-continuous functions. Ψ : T → R is rd-continuous
functions. Our results are new and different many known results for second order dynamic equations.
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1. Introduction

The theory of time scales, which has recently received a lot
of attention, was introduced by Stefan Hilger in his PhD
thesis in 1988 in order to unify continuous and discrete
analysis (see [1]). Since Stefan Hilger formed the defini-
tion of derivatives and integrals on time scales, several au-
thors have expounded on various aspects of the new theory,
see the paper by Agarwal, et al. ([2]) and the references
cited . A book on the subject of time scales by Bohner and
Peterson [3] summarizes and organizes much of time scale
calculus.

A time scale T is an arbitrary nonempty closed subset
of the real numbers R. Since we are interested in the oscil-
latory of solutions near infinity, we assume that supT= ∞,
and define the time scale interval [t0,∞)T by [t0,∞)T :=
[t0,∞)∩T. We assume that T has the topology that it in-
herits from the standard topology on the real numbers T.

In this paper we shall study the oscillations of the fol-
lowing non-linear second order dynamic equations with
damping

(r(t)Ψ(x∆ (t))∆ + p(t)Ψ(x∆ (t))+q(t)xσ (t) = 0, (1)
where p(t),q(t) and r(t) are positive rd-continuous func-
tions.

In the last few years, much interest has focused on ob-
taining sufficient conditions for the oscillation/nonoscillation
of solutions of different classes of dynamic equations on
time scales, and we refer the reader to the papers [4-21].

Agarwal et al. ([4]), have considered the second order
perturbed dynamic equation

(r(t)(x∆ (t))γ)∆ +F(t,x(t)) = G(t,x(t),x∆ (t)), (2)

where γ ∈ N is odd and they have interested in asymptotic
behavior of solutions of equation (2). In [5], Saker and et
al. considered the non-linear dynamic equation

(a(t)x∆ (t))∆ + p(t)x∆ σ
(t)+q(t) f (xσ (t)) = 0

when a(t), p(t),r(t) are positive rd-continuous functions.
They gave some sufficient conditions for oscillation.
The authors supposed that u f (u)> 0, f (u)/u ≥ K > 0 and
f ′(u)≥ k for u ̸= 0 .

In this paper, by employing the Riccati transformation
technique we will establish some sufficient conditions for
the oscillation of (1). The paper is organized as follows: In
Section 2, we develop the Riccati transformation technique
to give some sufficient conditions for the oscillation of all
solutions of (1). In Section 3, we establish some sufficient
conditions for oscillation of Eq. (1) with p(t) = 0.

We will use some of following assumptions:
(H1) r(t), p(t), and q(t) are positive real-valued rd-functions,
(H2)Ψ : T→ R, Ψ(u)

|u| ≥ κ for κ > 0, u ̸= 0,

(H3)
∫ ∞

t0 (
1

r(t)e− p
r
(t, t0))∆ t = ∞ .

Our attention is restricted to those solutions of (1) which
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exist on some half-line [tx,∞) and satisfy sup{|x(t)| : t >
T}> 0 for any T ≥ tx . We assume the standing hypothesis
that (1) does possess such solutions. A solution x(t) of (1)
is said to be oscillatory if it is neither eventually positive
nor eventually negative, otherwise it is nonoscillatory. The
equation itself is called oscillatory if all its solutions are
oscillatory.

2. Main results

Theorem 2.1. Assume that (H1)− (H3) holds. Further-
more, assume that there exist a positive real rd-functions
differentiable functions z(t) such that

limsup
t→∞

∫ t

t0

[
z(s)q(s)− κr(s)A2(s)

4z(s)

]
∆s = ∞, (3)

where

A(t) =
[

z∆ (t)− z(t)p(t)
r(t)

]
,

then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory
solution of (1). Without loss of generality, we may assume
that x(t) > 0 for t ≥ t1 > t0. We shall consider only this
case, since in view of (H2), the proof of the case when x(t)
is eventually negative is similar. Now, we claim that x∆ (t)
has a fixed sign on the interval [t2,∞) for some t2 ≥ t1.
From (1), since q(t)> 0 , we have

(r(t)Ψ(x∆ (t))∆ + p(t)Ψ(x∆ (t)) =−q(t)xσ (t)< 0,

i.e.,

(r(t)Ψ(x∆ (t))∆ + p(t)Ψ(x∆ (t))< 0.

By setting

y(t) = r(t)Ψ(x∆ (t)),

we immediately see that,

y∆ (t)+
p(t)y(t)

r(t)
< 0,

which implies that(
y(t)e− p

r

)∆
< 0.

Then y(t)e−
p
r is decreasing and thus y(t) is eventually of

one sing. Then x∆ (t) has a fixed sing for all sufficiently
large t and we have one of the following:
First, we consider x∆ (t) ≥ 0 on [t2,∞) for some t2 ≥ t1.
Then in view of (1) we have

x(t)> 0,x∆ (t)≥ 0,(r(t)Ψ(x∆ (t))∆ ≤ 0, t ≥ t2. (4)

Define the function w(t) by Riccati substitution

w(t) := z(t)
r(t)Ψ(x∆ (t))

x(t)
, t ≥ t2 (5)

Then w(t)> 0, and satisfies

w∆ (t)=
[
r(t)Ψ(x∆ (t))

]σ
[

z(t)
x(t)

]∆
+

z(t)
x(t)

[
r(t)Ψ(x∆ (t))

]∆

In view of (1) and (5), we see that for t ≥ t3

w∆ (t) =
z∆ (t)− z(t)x∆ (t)

x(t)xσ (t)

[
r(t)Ψ(x∆ (t))

]σ

+
z(t)
x(t)

[
−p(t)Ψ(x∆ (t))−q(t)xσ (t)

]
(6)

However from (4),

r(t)Ψ(x∆ (t))≥ (r(t)Ψ(x∆ (t)))σ , xσ (t)≥ x(t). (7)

Using (7) and (H2) in (6), we have

w∆ (t)≤ z∆ (t)
wσ (t)
zσ (t)

− z(t)
xσ (t)

p(t)Ψ(x∆ (t))− z(t)
q(t)xσ (t)

xσ (t)

− z(t)
x∆ (t)

(xσ (t))2 [r(t)Ψ(x∆ (t))]σ

w∆ (t)≤ z∆ (t)
wσ (t)
zσ (t)

− z(t)p(t)
r(t)

wσ (t)
zσ (t)

− z(t)q(t)

− z(t)
(wσ (t))2

κ(zσ (t))2r(t)

w∆ (t)≤−z(t)q(t) +
[

z∆ (t)− z(t)p(t)
r(t)

]
wσ (t)
zσ (t)

− z(t)
(wσ (t))2

κ(zσ (t))2r(t)
, (8)

w∆ (t)≤−z(t)q(t)+A(t)
wσ (t)
zσ (t)

− z(t)
(wσ (t))2

κ(zσ (t))2r(t)
, (9)

where

A(t) =
[

z∆ (t)− z(t)p(t)
r(t)

]
.

Then

w∆ (t)≤ − z(t)q(t)+
κr(t)A2(t)

4z(t)

−

[√
z(t)

κr(t)
wσ (t)
zσ (t)

− 1
2

√
κr(t)
z(t)

A(t)

]2

,

w∆ (t)≤ z(t)q(t)− κr(t)A2(t)
4z(t)

.

Integration from t3 to t, we obtain

w(t)−w(t3)≤−
∫ t

t3

[
z(s)q(s)− κr(s)A2(s)

4z(s)

]
∆s

which yields∫ t

t3

[
z(s)q(s)− κr(s)A2(s)

4z(s)

]
∆s ≤ w(t3)−w(t)< w(t3), t ≥ t3
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for all large t. This is contrary to (3).
Next, we consider x∆ (t)< 0 for t ≥ t2 ≥ t1 .
Define the function u(t) = −r(t)Ψ(x∆ (t)). The from (1)
and (H3), we have

u∆ (t)+
p(t)
r(t)

u(t)≥ 0 ⇒ u(t)≥ u(t2)e− p
r
(t, t2),

Thus

−r(t)Ψ(x∆ (t))≥ u(t2)e− p
r
(t, t2).

Ψ(x∆ (t))≤−u(t2)
(

1
r(t)

e− p
r
(t, t2)

)
.

from (H3) there is a κ > 0, so that

κx∆ (t)≤−u(t2)
(

1
r(t)

e− p
r
(t, t2)

)
. (10)

Integrating (10) from t2 to t, we have

x(t)− x(t2)≤
r(t2)Ψ(x(t2))

κ

∫ t

t2

(
1

r(t)
e− p

r
(t, t2)

)
∆s.

x(t)≤ x(t2)+
r(t2)Ψ(x(t2))

κ

∫ t

t2

(
1

r(t)
e− p

r
(t, t2)

)
∆s.

so condition (H3) implies that x(t) is eventually negative,
which is a contradiction. The proof is complete.

Corollary 2.2. Assume that (H1)− (H3) hold. If

limsup
t→∞

∫ t

t0

[
q(s)− κ p2(s)

4r(s)

]
∆s = ∞ (11)

then every solution (1) is oscillatory.
Example 2.3. Consider the dynamic equation(

tΨ(x∆ (t))
)∆

+
(

Ψ(x∆ (t))
)
+

1
t

xσ (t) = 0, t > 0

where r(t) = t, p(t) = 1, q(t) = 1
t ,

Ψ(x∆ (t)) = (x∆ (t))2k+1, k ∈ N. All conditions of Corol-
lary 2.2 and (H1)− (H3) are satisfied. Hence it is oscilla-
tory.

Corollary 2.4. Assume that (H1)− (H3) hold. If

limsup
t→∞

∫ t

t0

[
sγ q(s)− κ(r(s)(sγ)∆ − sγ p(s))2

4r(s)
κs−γ

]
∆s=∞

(12)
then every solution (1) is oscillatory.

Corollary 2.5. Assume that (H1)− (H3) hold. If

limsup
t→∞

∫ t

t0

[
Z(s, t0)q(s)−

κr(s)
4Z(s, t0)

(
(Z(s, t0))∆

−Z(s, t0)p(s)
r(s)

)2]
∆s = ∞,

where Z(t, t0) =
∫ t

t0
1

r(s)∆s, then every solution (1) is oscil-
latory.
Now, let us introduce the class of functions R which will
be extensively used in the sequel. Let D0 ≡ {(t,s) ∈ T2 :
t > s ≥ t0} and D≡ {(t,s) ∈ T2 : t ≥ s ≥ t0}. The function
H ∈Crd(D,R) is said belongs to the class R if
(i) H(t, t) = 0, t ≥ t0, H(t,s)> 0, on D0,
(ii) H has a continuous ∆ -partial derivative H∆

s (t,s) on
D0 with respect to the second variable.(H is rd-continuous
function if H is rd-continuous function in t and s.)

Theorem 2.6. Assume that (H1)− (H3) hold.Let z(t) be

positive real rd-functions differentiable function and let
H : D→ R be rd-continuous function such that H belongs
to the class R and where

limsup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t,s)z(s)q(s)

−κr(s)(φ(t,s))2

4z(s)H(t,s)

]
∆s = ∞, (13)

φ(t,s) = zσ (s)H∆
s (t,s)+H(t,s)A(s).

Then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory

solution of (1) and let t1 ≥ t0 be such that x(t) ̸= 0 for all
t ≥ t1 , so without loss of generality, we may assume that
x(t) is an eventually positive solution of (1) with x(t) > 0
for all t ≥ t1 sufficiently large. In view of Theorem 2.1 we
see that x∆ (t) is eventually negative or eventually positive.
If x∆ (t) is eventually negative, we are then back to sec-
ond case of Theorem 2.1 and we obtain a contradiction.
If x∆ (t) is eventually positive, we assume that there exists
t2 ≥ t1 such that x∆ (t)≥ 0 for t2 ≥ t1 and proceed as in the
proof of first of Theorem 2 . From (9), it follows that

w∆ (t)≤−z(t)q(t)+A(t)
wσ (t)
zσ (t)

− z(t)
(wσ (t))2

κ(zσ (t))2r(t)
, (14)

we multiply to (14) to H(t,s) then

H(t,s)w∆ (t)≤−H(t,s)z(t)q(t) + H(t,s)A(t)
wσ (t)
zσ (t)

− H(t,s)z(t)
(wσ (t))2

κ(zσ (t))2r(t)
,

H(t,s)z(t)q(t)≤−H(t,s)w∆ (t) + H(t,s)A(t)
wσ (t)
zσ (t)

− H(t,s)z(t)
(wσ (t))2

κ(zσ (t))2r(t)
,
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Using the integration by parts formula, we have∫ t

t2
H(t,s)z(s)q(s)∆s ≤ −H(t, t)w(t)+H(t, t2)w(t2)

+
∫ t

t2
H∆

s (t,s)wσ (s)∆s

+
∫ t

t2
H(t,s)A(s)

wσ (s)
zσ (s)

∆s

−
∫ t

t2
H(t,s)z(s)

((wσ (s))2

κ(zσ (s))2r(s)
∆s,

where H(t, t) = 0, we obtain∫ t

t2
H(t,s)z(s)q(s)∆s ≤ H(t, t2)w(t2)+

∫ t

t2

[
zσ (s)H∆

s (t,s)

+ H(t,s)A(s)
]

wσ (s)
zσ (s)

∆s

−
∫ t

t2
H(t,s)z(s)

((wσ (s))2

κ(zσ (s))2r(s)
∆s,

∫ t

t2
H(t,s)z(s)q(s)∆s ≤ H(t, t2)w(t2)+

∫ t

t2
φ(t,s)

wσ (s)
zσ (s)

∆s

−
∫ t

t2
H(t,s)z(s)

((wσ (s))2

κ(zσ (s))2r(s)
∆s.

Therefore, by completing the square as in Theorem 2.1, we
obtain∫ t

t2
H(t,s)z(s)q(s)∆s ≤ H(t, t2)w(t2)

+
∫ t

t2

κr(s)
4z(s)H(t,s)

φ2(t,s)∆s

−
∫ t

t2

[√
H(t,s)z(s)

κr(s)
wσ (s)
zσ (s)

− 1
2

√
κr(s)

z(s)H(t,s)
φ(t,s)

]2

∆s.

Hence, we obtain∫ t

t2
H(t,s)z(s)q(s)∆s ≤ H(t, t2)w(t2)

+
∫ t

t2

κr(s)
4z(s)H(t,s)

φ2(t,s)∆s.

Then for all t ≥ t2, we have∫ t

t2

[
H(t,s)z(s)q(s)− κr(s)

4z(s)H(t,s)
φ2(t,s)

]
∆ ≤ H(t, t2)w(t2)

and this implies that

limsup
t→∞

1
H(t, t2)

∫ t

t2

[
H(t,s)z(s)q(s)− κr(s)

4z(s)H(t,s)
φ2(t,s)

]
∆s

≤ w(t2),

which contradicts (13). The proof is complete.
The consequences of Theorem 2.6, we get the following.

Corollary 2.7. Suppose that the assumptions of Theorem
2.6 hold. If

limsup
t→∞

1
H(t, t2)

∫ t

t2
H(t,s)

[
q(s) − κr(s)

4z(s)

(
H∆

s (t,s)
H(t,s)

− p(s)
r(s)

)2]
∆s = ∞,

then every solution of (1) is oscillatory.

Corollary 2.8. Let the assumption (13) in Theorem 2.6
be replaced by

limsup
t→∞

1
H(t, t0)

∫ t

t0
H(t,s)z(s)q(s) = ∞,

limsup
t→∞

1
H(t, t0)

∫ t

t0

[
κr(s)

4z(s)H(t,s)

(
H(t,s)A(s)

+ zσ (s)H∆
s (t,s)

)2]
∆s < ∞,

then every solution of (1) is oscillatory.

Remarks 2.9. [3, Remarks 2.3] Let H(t,s) = (t − s)n ,
(t,s) ∈ D with n > 1, we see that H belongs to the class
R. Hence

((t − s)n)∆ ≤−n(t −σ(s))n−1.

Corollary 2.10. Assume that (H1)− (H3) hold.Let z(t) be
positive real rd-functions differentiable function . If

limsup
t→∞

1
tn

∫ t

t0

[
(t − s)nz(s)q(s)− κr(s)ϕ 2(t,s)

4z(s)(t − s)n

]
∆s = ∞,

where

ϕ(t,s) = (t − s)nA(s)+nzσ (t)(t −σ(s))n−1, t ≥ s ≥ t0, n > 1,

then equation (1) is oscillatory on [t0,∞).

3. Equation (1) with p(t) = 0.

We establish some sufficient conditions for oscillation of
Eq. (1) with p(t) = 0.

Theorem 3.1 Assume that (H1)−(H3) hold. Furthermore,
assume that there exists a positive real rd-continuous func-
tion z(t) such that

limsup
t→∞

∫ t

t0

[
z(s)q(s)− κr(s)

4z(s)
A2(s)

]
∆s = ∞ (15)

then every solution of Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscilla-

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett. 1, No. 1, 29-34 (2013) / www.naturalspublishing.com/Journals.asp 33

tory solution of (1) and let t1 ≥ t0 be such that x(t) ̸= 0 for
all t ≥ t1, so without loss of generality, we may assume that
x(t) is an eventually positive solution of (1) with x(t) > 0
for all t ≥ t1 sufficiently large. In view of Theorem 2.1 we
see that x∆ (t) is eventually negative or eventually positive.
If x∆ (t) is eventually negative, we are then back to sec-
ond case of Theorem 2.1 and we obtain a contradiction.
If x∆ (t) is eventually positive, we assume that there exists
t2 ≥ t1 such that x∆ (t)≥ 0 for t2 ≥ t1 and proceed as in the
proof of first case of Theorem 2.1. From (9), we have

w∆ (t)≤ − z(t)q(t)+A(t)
wσ (t)
zσ (t)

− z(t)
1

κ(zσ (t))2r(t)
(wσ (t))2, (16)

where

A(t) = z∆ (t)− z(t)
r(t)

.

The proof is similar to that of Theorem 2.1 and hence is
omitted.

Corollary 3.2. Assume that (H1)− (H3) hold. If

limsup
t→∞

∫ t

t0

[
q(s)− κ

4r(s)

]
∆s = ∞ (17)

then equation (1) is oscillatory.

Theorem 3.3. Assume that (H1)− (H3) hold.Let z(t) be
positive real rd-functions differentiable function and let
H : D→ R be rd-continuous function such that H belongs
to the class R . If

limsup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t,s)z(s)q(s)

− κr(s)C2(t,s)
4z(s)H(t,s)

(
z∆ (s)− z(s)

r(s)

)2]
∆s = ∞,

where

C(t,s) = z∆ (s)H∆
s (t,s)+H(t,s),

then equation (1) is oscillatory.

Corollary 2.4. Assume that (H1)−(H3) hold. Let z(t)= 1.
If

limsup
t→∞

1
H(t, t0)

∫ t

t0
H(t,s)

(
q(s)− κ

4r(s)

)
∆s = ∞,

then every solution of (1) is oscillatory.

Acknowledgement

This work was supported by Research Fund of the Erciyes
University. Project Number: FBA-11-3391.

References
[1] S. Hilger, Analysis on measure chains a unified approach to

continuous and discrete calculus, Results Math. 18 , 18-56,
(1990).

[2] R.P. Agarwal, M. Bohner, D. O’Regan, A. Peterson, Dynamic
equations on time scales: A survey, in: R.P. Agarwal, M.
Bohner, D. O’Regan (Eds.), Special Issue on Dynamic Equa-
tions on Time Scales , J. Comput. Appl. Math. 141 (12) , 1-26,
(2002).

[3] M. Bohner, A. Peterson, Dynamic Equations on Time Scales:
An Introduction with Applications, Birkhäuser, Boston, 2001.
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