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Abstract: The initial value problems for autonomous systems of diffial equations are the subject of this paper. In the phasses

of such system is defined the so-called reachable set and@oiuof reachability is introduced. For each starting pai there is a
corresponding function value which is equal to the time ssagy to pass fromy to the reachable set. Some properties of the function
of reachability: continuity, boundedness and more areetlid\ generalized model of interaction (competition) obtspecies, located

in the same nutrient medium is considered.
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1 Introduction reachability and @ is a set of reachability. Some
topological properties of the set of all starting points of
Many dynamic processes change sharply (abruptly) theireachability are studied irLlp] and [23]. These studies are
state as a result of brief (instantaneous) externabeveloped here. For each starting point, a function of
influences. Such processes are modeled using impulsiveeachability is defined. The functions value is equal to the
differential equations (se€l]3,8,9,12,16,21,22,24,25, time necessary to reach the spf starting fromxg. The
27,29,31] and [32]). The determination of the impulsive paper analyses some qualitative properties, such as
moments (the exact moments at which the short termcontinuity, boundedness, etc. of the function of
external influences take place) is a key element of thisreachability. The main limitation of the studied
type of equations. autonomous systems is to have uniformly Lipschitz
The subject is examined in a number of articles andsolutions (seed], [4], [11], [13] and [18]).
monographs, such as,p,7,14,19,26,28] and [30]. The
equations with fixed impulsive moments are studied most o
completely. The equations with non-fixed moments are2 Statement of the problem and preliminary
divided into several classes. In one of the major classesemarks
the impulsive moments coincide with the moments when
the trajectory of the corresponding initial value problem Denote the Euclidean norm and dot producRhby ||.
reaches a pre-defined set which is located in the phas@nd(.,.), respectively. For the pointas, az,...,an) and
space. An important question is to determine theb(bi.bz,...,bn)in R", we have

conditions which ensure that the trajectories of the (a,b) = ayby + @by + -+ + anbn;
considered equation cross the reachable set. Our paper is ’ .
devoted to this problem. lal| = (a,a)Z = (B +a3+---+ad)2.

Let G be a phase space of an autonomous system . .
differential equations. Let a sét C G. If the trajectory of O{-he Euclidean distance between nonempty getand

e
the system considered starts from poigt € G and B, ABCRY, is denoted by

crosses the se®, thenxp is named a starting point of p(AB)=inf{|a—b|; acA beB}.
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An open ball with centexg € R" and radiu® = congt > 0
is denoted by

Bs(%0) = {x€ R, [[x—xo| < &}.

For a neighborhood of the radidsaround the seA is used
the notation:

Bs(A) = {xeR p(x,A) < d}.

3. Itis fulfilled
(Ixo € G) : (36 = 8(x0) > 0) : (¥x & Bs(x0) N G)
= [1(x) — T (x0)| < g(min{f(x), f(x0)})[x—Xol-
Then:

1. The functionf is continuous ing.
2. The functionf is bounded irBs(xp) N G.

Proof. Let € = congt > 0. We choose the constadt so

A anddA are notations for the closure and boundary of thethat

setA.
The length of the curvgis denoted by[y]. The closed
segment with endpointsandb is denoted by

[a,b]={cy €R" cy =(1-A)a+Ab,0< A <1}.

Definition 2.1. The curvey is said to bep-linear, if

(390,01,---,9p €R") :
Y =190,01] U[01,02] U---U[gp-1,0p)]-

That is to say,p-linear curve is composed by
sequentially connected line segments.

Definition 2.2.[15 The domainG is said to bep-convex,
wherep is a natural number, if

(Vg',9" € G) <3v= Ul lgi-1.0] G) :

G=0,gp=0"
In other words, any two points @ can be connected

by p-linear curve fromG. It is clear that each 1-convex
domain is convex.

Definition 2.3.[15] The domainG is said to be bounded-
connected, if

(Flp=cong > 0)(Vg',g" € G)(Fyc G; d,g" €y):
1yl <lo.

Further, we shall use the following theorem, which

proof is elementary.
Theorem 2.1.Assume that:

1. The setA andB are normed spaces. The sequences

{an} C Aand{b,} C B.
2.(3C=congt > 0) : (Yn,me N)
= [lbn — bm[| < [|an — aml.
3. The sequencan} is fundamental.
Then:

1. The sequencfh,} is fundamental.
2. If B is a full space, then the sequenéb,} is
convergent.

Theorem 2.2.Assume that:

1. The setGC R", G# 0 andG is a domain. The
functionf : G — R*.

2. The functiong € C|[R",R*] and g is monotonically
increasing irkR™.

. &
0< 61<m|n{6,m}.
Then
(Vx € Bs(x0)) NG =
700 = x0)] < g(min{F(x), (x0)} )X

&
9(f(x0))

N

< min{g(f(x)),g(f(XO))}

Hence, the functiorf is continuous axg.
Let x be an arbitrary point iBs(xp) N G. Then

700 = F(x0)| < g(min{(x), f(x0)} ) Ix—xa]

< g(f(x0))[Ix— ol < g(f(x0))3.
From the last inequality, it follows that

f(x) < f(x0) +9(f(x0))d = congt,

i.e. f is bounded.
The theorem is proved.

Corollary 2.1. Assume that:

1. The setG C R", G # 0 andG is a domain. The
functionf : G — R".

2. The functiong € C[R",R*] and g is monotonically
decreasing ifR*.

3. It is fulfilled

(Ixo € G) : (38 = 8(x0) > 0) : (VX € Bs(X0) NG)
= 109 T (x0)| < g(max{ f(x), f(x0) }) X~ ol -
Then:

1. The functionf is continuous irxg.
2. The functionf is bounded irBs(Xp) N G.

Consider the following initial value problem

dx
Fri f(x), X(0)=Xo, Q)
where:

- The functionf : G — R";

- The setG ¢ R", G # 0 andG is a domain (an open and

connected set);
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- X € G. Definition 2.5.[13]. We say that the solutions of system
The solution of problem (1) is denoted byt;xp). Let (1) are uniformly Lipschitz stable, if
y(6,%p) be the trajectory of (1), locked between the points B B i
X(0:%0) = Xo andx(8; xo), wheref € R. It is satisfied (3L = const > 0)(34. = const > 0) :
(Vxo1,%02 € G, ||Xo1— %02 < &)

V(0,%0) — {x:x(t;Xo); 0<t<o,if 6>0; = HX(t:Xm) _X(t;XOZ)H < L[xo1 — Xo2||, t > 0.

=X(t;x0); 6 <t <0,if 6 <0. . . . . . :
X=X(t:o0) ! The uniform Lipschitz stability was introduced in 1986
by F. Dannan and S. Elaydi in]].

In particular
We introduce the following conditions:
y(e0,%0) = {X=X(t;X0); 0 <t < 0} H1. There exists a consta@ip > 0 such that
and (VX’,X”GG):>Hf(X’)—f(X”)H < Cip||X' = X"||.
y(—,%X0) = {X=X(t;X); —o0 <t <0}. H2. There exists a consta@t > 0 such that

Definition 2.4.[23] Assume that: (¥x€G) = [|f([| < Cr.

1. The setXy, @ C G, X5 # 0 and® # 0. H3. For each poinkg € G, the solution of initial value

2. For each poinko € X, , the solutionx(t;xo) of the ~ Problem (1) exists and is uniqueR =
initial value problem (1) is defined and unique in the H4. The function¢ € C[D,R] and ¢ € C*[®,R], where
the domairD C G. The reachable set

interval[0, o).
3. Itis valid ® = {xcD; $(x) =0} #0.
(V%0 € X0+)(36 — B(x0) > O) :X(8:0) € P. There exists a constaBlgaq¢, 1) > 0 such that
Then, we say that: (Vx € @) = (gradg(x), (X)) > Cigradg.f)-

1. @ is a positive reachable set fro)«&jr via system (1); H5. The sei® is connected.
H6. The inclusion®\ ® C JG is satisfied.
2. If X0+ = G, then® is a totally positive reachable set H7. There exists a consta@j such that
via system (1);
: A (VxeD) = [$(x)| < Cpp(x, P).

3.Xy is a positive initial set for system (1);

The following theorem contains the main results
4. Each pointxy € X is a positive starting point (of obtained in 5] and [23]. The results of these articles are

reachability) for system (1). the fundament on which the current paper is based.
Theorem 2.3.[15,23]. Assume that:
Likewise we define the concepts of: 1. The conditions H1, H3 and H4 hold.
1. Negative reachable set from the Xgtvia system (1);  2- The se® is reachable from the seXg andXy .
2. Totally negative reachable set via system (1); Then:

3. Negative initial set for system (1);

4. Negative starting point of reachability for system (1). 1. If Xo € X5, then the trajectory(6,Xo) C X, , where
the negative constan® is determined such that

. ' . : X(0;%0) € @ andx(t;Xp) ¢ @ for 6 <t <O0.
Note that various configurations are possible for the 2.1f o € X, then the trajectory(6,xo) C X, where

+ - it i~ A X+ —
setsXy andXol - For e.xample, Itis pOSSIb%_ﬁXO L 0. the positive constargt is chosen such that6;xp) € @
Itis also possible to find a system for whisj = X; . andx(t;xo) ¢ ® for 0<t < 6.
from now on we vill nama & reachabi set for sysiem 1170 € Xg. hen the trajectory(e20) < X,

. . 4. 1f xp € X5, then the trajectory(—o,xg) C X.
(1). Furthermore, in the next research, the terminology 5 Th 0 andX: 20
introduced above will be applied to system (1) and this - e setsg ;A_an Xy # -
detail will be omitted. For convenience, the sets of all 6. Itisvalid® C X; and® C X; .
starting points of positive reachability and all starting 7. The set; andX; are open.
points of negative reachability will be denotedhy and 8. The setXp = X; U xOJr U @ is open.
Xy , respectively. FinallyXo = X; UXs U @ is named a 9. Ifin addition condition H5 is satisfied, then the gt
starting set. is connected.
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10. For each pointy € X, we havey(—,Xg) C Xo.

11. For each pointy € X5, we havey(w,Xg) C Xo.

12. For each pointg € (0Xo\®) NG, it is satisfied
y(0,%0) C (0%\P)NG.

13. If in addition the conditions H5 and H6 are satisfied,

then®\ ® C 9X,.

Definition 2.6. The function®™ : X — R", which relates
a positive constar! = ©(xo) to each poinkg € X5 such
thatx(0;xg) € ® andx(t;xg) ¢ ® for0<t < 6, is called
a function of reachability, i.e.

(VX0 € X3) (360 =07 (%) € RY) :
-X(8;%0) € P;

- (W, 0<t < 8=0"(x0)) = X(t;x0) ¢ ®.
The function®~ : X, — R is defined similarly.

3 Main results

Theorem 3.1.Assume that the conditions H1-H7 hold.
Then®~ € C[X;, ,R" ] and®* € C[X; ,R"].

Proof. We shall prove the second statement of the

theorem. Let the constam satisfies the inequalities
0 <A <1 and the points,xg € X0+. Consider the
positive constants9* = @7 (x;) and 8 = O(x), i.e.
X(8%;x5) € @ and Xx(8;%) € @ . In other words,
¢ (x(67;%5)) = 0 and ¢ (x(6;%)) = O is valid. For
convenience, assume tha 0*. Fort > 0, we have

t
=XE‘)+/ f(x(1;%5))dt
0
t
=Xo+/ f(x
0

from which by condition H1, we obtain

[|x(t;3%5) —x(t; Xo0) |

t
< o—xall+ | Cuip|x(1:3) = x(1:30) .

Using Gronwalls inequality, we get the estimate

[[X(t;%5) — X(t; X0)|| < 1% — Xol| €xp(Cript).

From the above inequality far= 6 we find
[X(8:%5) —X(8;%0) | < %0 —Xo[| exp(CLipB).  (2)

We extend the functionsand¢ continuously over the
points of set®\®. According to condition H4, for each
pointx € @\ @, the following inequality is fulfilled

(grad (x), f(x))
=liMyusx, o (grade (x*), F(x*)) > Cigradg.f)-

As @ is a compact set (closed and bounded) from the last
inequality, it follows that

(VA, 0< A <1)(385 = 55(A) >0) :
(Vx € Bs (®)ND)

= (grad¢(x), f (X)) > A Cigradg. ) (3
Futher, we assume that
X0 — %ol < &p-exp(—CLipb),

from which, according to (2) it follows that
[X(8:%) —x(8: %) | < 55

Since the pointx(0;%) € @ then from the above
inequality, we have

P (x(6:%), @) <

o

Therefore, the poin(8;x;) € 855(5) ND. From (4), we
find that

(oradd (x(6:%5)). f (x(6:%)) ) = A Cigrag.r) ()
By condition H7, we conclude that
[0(x(8:%6)| < Cp.p(x(8:), @) (5)

Using that the pointx(6;Xo),
estimates (4) and (5), we find

X(8%;x5) € @ and the
1x(6:36) —x(6:0)|
X(8;%0),X(6:%0))
X(6;%), @)

1 *
> @-)\-C(gradcp,f)(e - 0),

where point’ satisfies the inequalitied< 6’ < 6*. From
the above estimate and (2), it follows that

0" -0 < Ciﬂx 0%;%5) —

0,
A C(gradd) f) X( XO)H

(%0 — ol €xp(Ciip6) (6)

A C(gradcpf
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Using the definition of functio® ", we can rewrite (6) as Consider the points:
follows 1 1
m_

|07 (%) — @ (%) (7 Xo1 =——=Xo0+ X
=07 (%) ~0(x) M2 o+ 2
—0*—0 XOZZTXOO'FE]Xa

C(P * ; + [ o* +
< 55— 1% — ol exp(Cupmin {©7 (), 0 (o)} ) |

“~(gradg,f) 1 m—1
< g(min{0" (4,0 (%)} )% — ol Xo(m-1) =00 T
Xom =X

In the previous inequality, the functiop: R™ — R is

given analytically Al of these points belong to the closed interyajo, x| =

C [X00, Xom)- Sincexo+ is a convex domain, then
— % exp(CLipt), t e R.

t =
W= Cgradg.f)

X00,X01; - - - » Xom € [X00, Xom] C Xg - (10)

It is clear thatg is continuous and monotonically

increasing. From the inequality (7), applying Theorem Fori=1,2,...,m, we have

2.2, it follows that®©™ is continuous axo, from where we P (Xo(i—1),%0i)
deduce tha®* € C[X; ,R"]. Mol i1 m_i .
The theorem is proved. - H 0t xom— T o0 — L xom
Theorem 3.2.Assume that: 1 m m m m
1. The conditions H1-H7 hold. = — l[¥00 —Xom|
2. The solutions of system (1) are uniformly Lipschitz 1
stable. = P (¥00. Xom)
3. The domairX;" is convex and bounded. 1
Then the functior®™ is bounded inx;". < < (11)

Proof. For convenience, we divide the proof into several From (9) and (11), it follows that

parts.
Part 1. Letxgo be a fixed point fronX;. SinceXy is
bounded then

(38+ =congt > 0): X5 C Bg;x0+ (X00)-
Itis clear that
(Vx € Xg') = p(X00.X) < . (8)
Part 2. As in the previous theorem, we obtain
(Vx € Bs, ND) = (grade (x), f(x)) > Cigradg.1)-
From condition 2 of the theorem it follows that
<Ha_:const, 0<d < %‘7) :

(Vx5,%5" € G, p(xg,%5") < o)
= p(X(t;%5), X(t:x5")) = [|x(t:x5) — x(t:x57) |
<Llxy—xp*l|L.oL < 05, t>0. (9)

Part 3. Letx be an arbitrary point frorX; . Denote
L.Oy -+

m_ [2%

=

where[X] is the largest integer not exceedixg

]+1e N,

P (X(t; X0 1)), X(t: Xo0i))
<85, t>0i=12....m (12)

Part 4. Consider the poinig;_1) andxoi. From (11),
asin (7), we obtain

|07 (Xg(i-1)) — O (x0i)|

2Cy

< ———||X( min{e* o ’@-&- Vo1 ) —
= C(grad¢7f) ( { (XO(I 1)) (X0|)} Xo(i l))

X(min{9+(X0(i—1)),9+(X0i)}:X0i) H,
from which, using estimate (12), we find

2405
‘OJF(XO(i—l))_OJr(XOi)‘ < ﬁ i—1,2....m
gradg,

Part 5. Through the above estimate, we find that
|07 (x00) — O™ (x)]|
< |0 (x00) — O (x01)| + [0 (X01) — O (%02)| + -+
+|07 (Xo(m-1)) — @ (Xom)|
< 290
Clgradg.f)
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Therefore, The following conditions are standard.
2MCh S H8. The functions; € C'[R*,R*],
0" (X) < O (Xo0) + =22 = condt, X € Xg -
Clgrads. )

The theorem is proved.
Corollary 3.1. Assume that:
1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz

stable.
3. The domairk;" is k-convex and bounded.

Then the functior®* is bounded inx".
Corollary 3.2. Assume that:
1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz
stable.
3. The domairX;" is bounded-connected.
Then the functior®™ is bounded inX;'.
Corollary 3.3. Assume that:
1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz
stable.
3. The domairX; is k-convex and bounded.
Then the functior®~ is bounded inX; .
Corollary 3.4. Assume that:
1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz

stable.
3. The domairX;, is bounded-connected.

Then the functior®™ is bounded inX; .

4 Application

Consider the generalized model of

%a;(m) >0formeR" andg(0) =0, i=1,2.

H9. The functiong; € C'[R* x R",R*],

17}
——bi(my,mp) >0,

0
—bl(mlamZ) > Oa amz

0m1

for
(mg,mp) € R" < R*

and
b1(0,mp) =0 form, € R*.

H10. There exist two positive constantg andm; such
that
a1(mp) — by (my,0) = 0 anday(m;) — by(0,m;) = 0.
H11. Itis valid
(Vmp € RY) (3mi* = mi*(mp) > 0) :
ar(my") —bg(mi",mp) <O;
(Vmy € R") (3m5" = m5*(my) > 0) :
ap(my") — bp(mg,m5*) < 0.
H12. There exist two positive constamt§ andmj such

that
ag(my) —by(mi,m3) =0

ap(m3) — bp(mi,m3) = 0.

Note that the conditions above have their explanation in
terms of population dynamics. The details are presented
in section 3.3 of 17]. The following system is a specific
realization of the generalized model (13), (14):

and

interaction ¢

(competition) of two species, located in the same nutrient g M.(t) = re.mu(t) - ag1.ME(t) — ago.my(t).my(t); (16)

environment. The model was taken from R. Mill&([
and K. Gopalsamyl[7]. We have

M) _ gy (1)) — ba (1) mo1)); (13

AT2) _ g (mp(t)) — ba (1) molt)); (14)

My (0) = Moz, Mp(0) = Moy, (15)
where:

-mg = my(t) > 0 andm, = mp(t) > 0 are biomasses of two
species at the moment 0, respectively;

- ar,ap : R™ — RT are two growth rates, respectively;

- the functionsby, b, : Rt x R™ — R™ express the intra-
species and inter-species competition;

- mpy > 0 andmg, > 0 are two species biomasses at the

initial momentt = 0.

S (1) = r2.mp(t) — 2pumy (1) mp(t) — 202 (D) (17)

where the constants anda;; are positivej = 1,2, j =
1,2.
The system (16), (17) satisfies conditions H8 and H9,
which is easily verifiable. According to condition H10, we

have

0= al*(mj) - bl(n];, 0) = ry.m; —agg(my)?
=mj(ry —ai.my),

from where we find thatm; = r1/a;1. In the same way

my = rp/ag. It is easy to show that for eaah, € R",
there exists a constant* = m;*(mp) > 0 such that

2
ri.m;* —ag1(mi*)* —ago.m;*.mp.

(@© 2015 NSP
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dm

Similarly, there exists a constamg™ = m*(my) > 0 such & o —AY M, (20)
that
F2.M5" — ag(my*)% — apy.M5".my. where:
Condition H11 is met. We determine the positive constants M — M(t) AS allmSI apom
mil andmd as the solutions of the next system [ Ma(t) an azzmé
ri.mg —ag (m)? —ago. mgz 0; The matrix eigenvalues of system above are the solutions
ro. m§ a1 mSt m§ aga(ms of equation
a1y a2 det aum £ amj =0
a1 a> axmy  agmy +A

o Ami_r as € A2+ (1M +agom)A + (ag1822 — ag28p1) MRS =0

& A24+BA+C=0,
r1azz —roaio

& h=—, where

a11822 — 12821
g — 21— ann (19) B=a,mi +azm >0
ayjapy — agzap’ and
where: C = (an182 — a1z821)M M3 > 0.
For the discriminant of the last equation, we get
_ |an & H H ri
ap1 az2 fTé 2 B2 4C—= (allmS‘ — a22m§ 2 + 4alza21m$m§ > 0.

Without loss of generality, we assume that the inequalityThe eigenvalued; and A, are real and negative. More
ayjap2 —ai2d21 > 0 holds. From (19), keeping in mind that precisely, we have:

mi' > 0 andm§ > 0, we obtain the inequalities
1
A= > < —aygm; — agmy

(agamy — azmy) +4a12a21m$m§)

a2 I an
— < =< —.
2 axn

NI

)

and from (16) and (17), we obtain AL <Az <0.
d We denote the corresponding linearly independent
—My(t) = ramil + 1My (t) — aga(m§)? — 2a3;mi My (t) eigenvectors as follows:

dt

—a1(Ma(t))% — agamimd — agmiMy(t) s
g —a1oMs (t)m§ — a1oMa (t)Ma(t); wy= |
—Ma(t) = r2m§ +raMz(t) azlmfm% — a21mf Ma(t)

d
MM aM V() — (s
— 28, My (t) — apa(Ma (1)), W) = H wi1exp(Art) wizexp(Ast) H .

We assume that the above inequalities are fulfilled a-priori (

The asymptotic properties of the solutions of system 1
(16), (17) are successfully explored by the correspondingz = 5( aumi — amp
linearized system. For this purpose we define

NI

me(t) =My +Ma(t), mp(t) = mg +My(t) +( (auami —agmy) +4a12a21m$m§‘)

W22

_ HW12

Then the fundamental matrix of system (20) has the form:

Wao1exp(At) Wapexp(Agt)
Using the inequalities (18) and that second order terms are

negligible, we obtain the system The solutionM(t; Mp) of system (20) with initial condition
d M1 (0 M
< Ma(t) = —anmiMy (1) - asamd Ma(1); 0) = H 1 >H :‘ oL | o
a2t = —aME My (t) — azam Me (1) can be expressed in the form
d || My(t) allmg alzms‘ Mo | M1(t; Moz, Mo) || _ 1
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Then
[M(t;M*) — M(t; Mo) |
< W)W (0 [[IMg — Mo
< exp(Ast) exp(Azt) (W ()W (0) . [Mg — Mo
< [[Mg — Moll.

are convex.

From Theorem 3.1, it follows that the functio®™
and O (defined for the model considered above) are
continuous in the domaing;” andX", respectively. One
possible interpretation of this fact: Let the initial
biomasses in a community of two competing species be
close to the corresponding initial values for the biomasses

The above estimation shows that the solutions of systen?f another pair of species in a similar community. Let the

(20) are uniformly stable with Lipschitz constdnt= 1.

two communities develop under the same conditions and

It is easy to demonstrate that system (20) satisfiegheir dynamics are modeled by system (20). Then the

conditions H1, H2, H3. The constal¥ is defined as
follows:

[T (M1, M)
= H ((a11M1 + a1oMo) Mg, (821M1 + azoMp)m3 ) H
< max{a11m§ + azlmiI ) alsz + azzrn%}

Consider the functiong(My,Mz) = p — My — My,
where

(Ml,Mz) eD
=G={(M,Mz); My >0, Mz >0. My +M; < q}

and the constantp which satisfies the inequalities
0 < p < g. Geometrically the setb coincides with the
open segment with endpointp, 0) and (0, p). Condition
H5 is verified immediately. Moreover, the function
¢ € CYD,R and
(V(Ml,Mz) S CD)

= (gradg (M1, My), f (M1, M2))

= ((-1,-1),(—aym{ My — a;om My,

—ap1m; My — axom3 M) )

(211 + @21)Mi' My + (g2 + az2)ms My
min{(ag1+ ax1)My , (a12+ az2)ms } p
= C<grad¢’f> > 0.

Therefore, condition H4 is valid.
We have

E\CD = {(p,O),(O, p)}
€ {(M1,0); 0<M; <q}U{(0,Mp); 0< M2 <q}
U{(M1,M) € R" xR"; M1+ M, =q}
= 0G,

V

i.e. condition H6 holds. Finally, it is easy to demonstrate
that the following equality holds

|6 (M1,Mp)| = p((M1,My), @),

which means that condition H7 is met with the constant

Cy = 1. Obviously the domains

XO_ = {(M]_,Mz), l\/|]_>07 '\/|2>07 M1+M2< p}’
XO+: {(MLMZ); M1 >0, Mz >0, p< |\/|1_|_|\/|2<q}

biomasses in these two communities will reach a pre-set
ratio almost simultaneously.

In brief, from Theorem 3.2 and Corollary 4.4, it
follows that under certain conditions, the functio®s
ando* , defined in the domaing;” andX", respectively,
are bounded. The results applied to the modeled system
under consideration, we could interpret as follows: Let us
consider all communities consisting of two competing
species, which differ by the initial species biomasses, and
the dynamics of which are described by system (20).
Then the set of moments in which the biomasses of each
of these communities reach a pre-set ratio, is bounded.

Finally, note that for sufficiently small values t;
and Mp, i.e. for sufficiently small values ofg, the
trajectory of system (16), (17) is similar? to the trajegtor
of the corresponding linearized system (20). In this case,
the conclusions obtained above are also transferable to
system (16), (17).
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