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Abstract: The initial value problems for autonomous systems of differential equations are the subject of this paper. In the phase space
of such system is defined the so-called reachable set and a function of reachability is introduced. For each starting point x0, there is a
corresponding function value which is equal to the time necessary to pass fromx0 to the reachable set. Some properties of the function
of reachability: continuity, boundedness and more are studied. A generalized model of interaction (competition) of two species, located
in the same nutrient medium is considered.
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1 Introduction

Many dynamic processes change sharply (abruptly) their
state as a result of brief (instantaneous) external
influences. Such processes are modeled using impulsive
differential equations (see [1,3,8,9,12,16,21,22,24,25,
27,29,31] and [32]). The determination of the impulsive
moments (the exact moments at which the short term
external influences take place) is a key element of this
type of equations.

The subject is examined in a number of articles and
monographs, such as: [5,6,7,14,19,26,28] and [30]. The
equations with fixed impulsive moments are studied most
completely. The equations with non-fixed moments are
divided into several classes. In one of the major classes,
the impulsive moments coincide with the moments when
the trajectory of the corresponding initial value problem
reaches a pre-defined set which is located in the phase
space. An important question is to determine the
conditions which ensure that the trajectories of the
considered equation cross the reachable set. Our paper is
devoted to this problem.

Let G be a phase space of an autonomous system of
differential equations. Let a setΦ ⊂ G. If the trajectory of
the system considered starts from pointx0 ∈ G and
crosses the setΦ, then x0 is named a starting point of

reachability and Φ is a set of reachability. Some
topological properties of the set of all starting points of
reachability are studied in [15] and [23]. These studies are
developed here. For each starting point, a function of
reachability is defined. The functions value is equal to the
time necessary to reach the setΦ, starting fromx0. The
paper analyses some qualitative properties, such as
continuity, boundedness, etc. of the function of
reachability. The main limitation of the studied
autonomous systems is to have uniformly Lipschitz
solutions (see [2], [4], [11], [13] and [18]).

2 Statement of the problem and preliminary
remarks

Denote the Euclidean norm and dot product inRn by ‖.‖
and〈., .〉, respectively. For the pointsa(a1,a2, . . . ,an) and
b(b1,b2, . . . ,bn) in Rn, we have

〈a,b〉= a1b1+ a2b2+ · · ·+ anbn;

‖a‖= 〈a,a〉
1
2 =

(

a2
1+ a2

2+ · · ·+ a2
n

) 1
2 .

The Euclidean distance between nonempty setsA and
B, A,B ⊂ Rn, is denoted by

ρ(A,B) = in f
{

‖a− b‖; a ∈ A, b ∈ B
}

.
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An open ball with centerx0 ∈ Rn and radiusδ = const > 0
is denoted by

Bδ (x0) =
{

x ∈ Rn; ‖x− x0‖< δ
}

.

For a neighborhood of the radiusδ around the setA is used
the notation:

Bδ (A) =
{

x ∈ R; ρ(x,A)< δ
}

.

A and∂A are notations for the closure and boundary of the
setA.

The length of the curveγ is denoted byl[γ]. The closed
segment with endpointsa andb is denoted by

[a,b] = {cλ ∈ Rn; cλ = (1−λ )a+λ b, 0≤ λ ≤ 1} .

Definition 2.1.The curveγ is said to bep-linear, if

(∃g0,g1, . . . ,gp ∈ Rn) :

γ = [g0,g1]∪ [g1,g2]∪·· ·∪ [gp−1,gp].

That is to say,p-linear curve is composed byp
sequentially connected line segments.

Definition 2.2. [15] The domainG is said to bep-convex,
wherep is a natural number, if

(∀g′,g′′ ∈ G)

(

∃γ =
⋃p

i=1 [gi−1,gi]⊂ G

)

:

g0 = g′, gp = g′′.

In other words, any two points ofG can be connected
by p-linear curve fromG. It is clear that each 1-convex
domain is convex.

Definition 2.3. [15] The domainG is said to be bounded-
connected, if

(∃l0 = const > 0)(∀g′,g′′ ∈ G)(∃γ ⊂ G ; g′,g′′ ∈ γ) :

l[γ]≤ l0.

Further, we shall use the following theorem, which
proof is elementary.

Theorem 2.1.Assume that:

1. The setsA andB are normed spaces. The sequences
{an} ⊂ A and{bn} ⊂ B.

2. (∃C = const > 0) : (∀n,m ∈ N)
⇒ ‖bn − bm‖ ≤ ‖an − am‖.

3. The sequence{an} is fundamental.

Then:

1. The sequence{bn} is fundamental.
2. If B is a full space, then the sequence{bn} is

convergent.

Theorem 2.2.Assume that:

1. The setG ⊂ Rn, G 6= /0 and G is a domain. The
function f : G → R+.

2. The functiong ∈ C[R+,R+] and g is monotonically
increasing inR+.

3. It is fulfilled

(∃x0 ∈ G) : (∃δ = δ (x0)> 0) :
(

∀x ∈ Bδ (x0)∩G
)

⇒
∣

∣ f (x)− f (x0)
∣

∣≤ g
(

min
{

f (x), f (x0)
})

‖x− x0‖.

Then:

1. The functionf is continuous inx0.
2. The functionf is bounded inBδ (x0)∩G.

Proof. Let ε = const > 0. We choose the constantδ1 so
that

0< δ1 < min

{

δ ,
ε

g
(

f (x0)
)

}

.

Then
(

∀x ∈ Bδ (x0)
)

∩G ⇒
∣

∣ f (x)− f (x0)
∣

∣ ≤ g
(

min
{

f (x), f (x0)
}

)

‖x− x0‖

≤ min
{

g
(

f (x)
)

,g
(

f (x0)
)

} ε
g
(

f (x0)
)

≤ g
(

f (x0)
) ε

g
(

f (x0)
) = ε.

Hence, the functionf is continuous atx0.
Let x be an arbitrary point inBδ (x0)∩G. Then

∣

∣ f (x)− f (x0)
∣

∣ ≤ g
(

min
{

f (x), f (x0)
}

)

‖x− x0‖

≤ g
(

f (x0)
)

‖x− x0‖ ≤ g
(

f (x0)
)

δ .

From the last inequality, it follows that

f (x)≤ f (x0)+ g
(

f (x0)
)

δ = const,

i.e. f is bounded.
The theorem is proved.

Corollary 2.1. Assume that:

1. The setG ⊂ Rn, G 6= /0 and G is a domain. The
function f : G → R+.

2. The functiong ∈ C[R+,R+] and g is monotonically
decreasing inR+.

3. It is fulfilled

(∃x0 ∈ G) : (∃δ = δ (x0)> 0) :
(

∀x ∈ Bδ (x0)∩G
)

⇒
∣

∣ f (x)− f (x0)
∣

∣≤ g
(

max
{

f (x), f (x0)
})

‖x− x0‖.

Then:

1. The functionf is continuous inx0.
2. The functionf is bounded inBδ (x0)∩G.

Consider the following initial value problem

dx
dt

= f (x), x(0) = x0, (1)

where:
- The functionf : G → Rn;
- The setG ⊂ Rn, G 6= /0 andG is a domain (an open and
connected set);
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- x0 ∈ G.
The solution of problem (1) is denoted byx(t;x0). Let
γ(θ ,x0) be the trajectory of (1), locked between the points
x(0;x0) = x0 andx(θ ;x0), whereθ ∈ R. It is satisfied

γ(θ ,x0) =

{

x = x(t;x0); 0≤ t ≤ θ , if θ > 0;
x = x(t;x0); θ < t ≤ 0, if θ < 0.

In particular

γ(∞,x0) =
{

x = x(t;x0); 0≤ t < ∞
}

and

γ(−∞,x0) =
{

x = x(t;x0); −∞ < t ≤ 0
}

.

Definition 2.4. [23] Assume that:

1. The setsX+
0 ,Φ ⊂ G, X+

0 6= /0 andΦ 6= /0.
2. For each pointx0 ∈ X+

0 , the solutionx(t;x0) of the
initial value problem (1) is defined and unique in the
interval[0,∞).

3. It is valid

(∀x0 ∈ X+
0 )

(

∃θ = θ (x0)> 0
)

: x(θ ;x0) ∈ Φ.

Then, we say that:

1. Φ is a positive reachable set fromX+
0 via system (1);

2. If X+
0 = G, thenΦ is a totally positive reachable set

via system (1);

3. X+
0 is a positive initial set for system (1);

4. Each pointx0 ∈ X+
0 is a positive starting point (of

reachability) for system (1).

Likewise we define the concepts of:

1. Negative reachable set from the setX−
0 via system (1);

2. Totally negative reachable set via system (1);
3. Negative initial set for system (1);
4. Negative starting point of reachability for system (1).

Note that various configurations are possible for the
setsX+

0 andX−
0 . For example, it is possibleX−

0 ∩X+
0 = /0.

It is also possible to find a system for whichX−
0 = X+

0 .
Since the setΦ is a positive and negative reachable,

from now on we will nameΦ a reachable set for system
(1). Furthermore, in the next research, the terminology
introduced above will be applied to system (1) and this
detail will be omitted. For convenience, the sets of all
starting points of positive reachability and all starting
points of negative reachability will be denoted byX+

0 and
X−

0 , respectively. Finally,X0 = X−
0 ∪X+

0 ∪Φ is named a
starting set.

Definition 2.5. [13]. We say that the solutions of system
(1) are uniformly Lipschitz stable, if

(∃L = const > 0)(∃δL = const > 0) :
(

∀x01,x02 ∈ G, ‖x01− x02‖< δL
)

⇒
∥

∥x(t;x01)− x(t;x02)
∥

∥< L‖x01− x02‖, t > 0.

The uniform Lipschitz stability was introduced in 1986
by F. Dannan and S. Elaydi in [11].

We introduce the following conditions:
H1. There exists a constantCLip > 0 such that

(∀x′,x′′ ∈ G)⇒
∥

∥ f (x′)− f (x′′)
∥

∥≤CLip‖x′− x′′‖.

H2. There exists a constantC f > 0 such that

(∀x ∈ G)⇒
∥

∥ f (x)
∥

∥≤C f .

H3. For each pointx0 ∈ G, the solution of initial value
problem (1) exists and is unique inR.
H4. The functionϕ ∈ C[D,R] and ϕ ∈ C1[Φ,R], where
the domainD ⊂ G. The reachable set

Φ =
{

x ∈ D; ϕ(x) = 0
}

6= /0.

There exists a constantC〈gradϕ, f 〉 > 0 such that

(∀x ∈ Φ)⇒
〈

gradϕ(x), f (x)
〉

≥C〈gradϕ, f 〉.

H5. The setΦ is connected.
H6. The inclusionΦ\Φ ⊂ ∂G is satisfied.
H7. There exists a constantCϕ such that

(∀x ∈ D)⇒
∣

∣ϕ(x)
∣

∣ ≤Cϕρ(x,Φ).

The following theorem contains the main results
obtained in [15] and [23]. The results of these articles are
the fundament on which the current paper is based.

Theorem 2.3.[15,23]. Assume that:

1. The conditions H1, H3 and H4 hold.
2. The setΦ is reachable from the setsX−

0 andX+
0 .

Then:

1. If x0 ∈ X−
0 , then the trajectoryγ(θ ,x0) ⊂ X−

0 , where
the negative constantθ is determined such that
x(θ ;x0) ∈ Φ andx(t;x0) /∈ Φ for θ < t ≤ 0.

2. If x0 ∈ X+
0 , then the trajectoryγ(θ ,x0) ⊂ X+

0 , where
the positive constantθ is chosen such thatx(θ ;x0)∈Φ
andx(t;x0) /∈ Φ for 0≤ t < θ .

3. If x0 ∈ X−
0 , then the trajectoryγ(∞,x0)⊂ X−

0 .
4. If x0 ∈ X+

0 , then the trajectoryγ(−∞,x0)⊂ X+
0 .

5. The setsX−
0 6= /0 andX+

0 6= /0.

6. It is validΦ ⊂ X−
0 andΦ ⊂ X+

0 .
7. The setsX−

0 andX+
0 are open.

8. The setX0 = X−
0 ∪X+

0 ∪Φ is open.
9. If in addition condition H5 is satisfied, then the setX0

is connected.
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10. For each pointx0 ∈ X−
0 , we haveγ(−∞,x0)⊂ X0.

11. For each pointx0 ∈ X+
0 , we haveγ(∞,x0)⊂ X0.

12. For each pointx0 ∈ (∂X0\Φ) ∩ G, it is satisfied
γ(∞,x0)⊂ (∂X0\Φ)∩G.

13. If in addition the conditions H5 and H6 are satisfied,
thenΦ\Φ ⊂ ∂X0.

Definition 2.6.The functionΘ+ : X+
0 →R+, which relates

a positive constantθ =Θ(x0) to each pointx0 ∈ X+
0 such

thatx(θ ;x0) ∈ Φ andx(t;x0) /∈ Φ for 0≤ t < θ , is called
a function of reachability, i.e.

(∀x0 ∈ X+
0 )

(

∃θ =Θ+(x0) ∈ R+
)

:

- x(θ ;x0) ∈ Φ;
-
(

∀t, 0≤ t < θ =Θ+(x0)
)

⇒ x(t;x0) /∈ Φ.

The functionΘ− : X−
0 → R− is defined similarly.

3 Main results

Theorem 3.1.Assume that the conditions H1-H7 hold.
ThenΘ− ∈C[X−

0 ,R−] andΘ+ ∈C[X+
0 ,R+].

Proof. We shall prove the second statement of the
theorem. Let the constantλ satisfies the inequalities
0 < λ < 1 and the pointsx∗0,x0 ∈ X+

0 . Consider the
positive constantsθ ∗ = Θ+(x∗0) and θ = Θ(x0), i.e.
x(θ ∗;x∗0) ∈ Φ and x(θ ;x0) ∈ Φ . In other words,
ϕ
(

x(θ ∗;x∗0)
)

= 0 and ϕ
(

x(θ ;x0)
)

= 0 is valid. For
convenience, assume thatθ ≤ θ ∗. Fort ≥ 0, we have

x(t;x∗0) =x∗0+
∫ t

0
f
(

x(τ;x∗0)
)

dτ;

x(t;x0) =x0+

∫ t

0
f
(

x(τ;x0)
)

dτ,

from which by condition H1, we obtain
∥

∥x(t;x∗0)−x(t;x0)
∥

∥

≤ ‖x∗0−x0‖+

∫ t

0
CLip

∥

∥x(τ;x∗0)− x(τ;x0)
∥

∥dτ,

Using Gronwalls inequality, we get the estimate
∥

∥x(t;x∗0)− x(t;x0)
∥

∥≤ ‖x∗0− x0‖exp(CLipt).

From the above inequality fort = θ we find
∥

∥x(θ ;x∗0)− x(θ ;x0)
∥

∥≤ ‖x0− x∗0‖exp(CLipθ ). (2)

We extend the functionsf andϕ continuously over the
points of setΦ\Φ. According to condition H4, for each
pointx ∈ Φ\Φ, the following inequality is fulfilled

〈

gradϕ(x), f (x)
〉

= limx∗→x, x∗∈Φ
〈

gradϕ(x∗), f (x∗)
〉

≥C〈gradϕ, f 〉.

As Φ is a compact set (closed and bounded) from the last
inequality, it follows that

(∀λ , 0< λ < 1)
(

∃δΦ = δΦ (λ )> 0
)

:
(

∀x ∈ BδΦ
(Φ)∩D

)

⇒
〈

gradϕ(x), f (x)
〉

≥ λ .C〈gradϕ, f 〉. (3)

Futher, we assume that

‖x∗0− x0‖< δΦ .exp(−CLipθ ),

from which, according to (2) it follows that

∥

∥x(θ ;x∗0)− x(θ ;x0)
∥

∥≤ δΦ .

Since the pointx(θ ;x0) ∈ Φ then from the above
inequality, we have

ρ
(

x(θ ;x∗0),Φ
)

≤ δΦ .

Therefore, the pointx(θ ;x∗0) ∈ BδΦ
(Φ)∩D. From (4), we

find that
〈

gradϕ
(

x(θ ;x∗0)
)

, f
(

x(θ ;x∗0)
)

〉

≥ λ .C〈gradϕ, f 〉. (4)

By condition H7, we conclude that
∣

∣

∣
ϕ
(

x(θ ;x∗0)
)

∣

∣

∣
≤Cϕ .ρ

(

x(θ ;x∗0),Φ
)

. (5)

Using that the pointsx(θ ;x0), x(θ ∗;x∗0) ∈ Φ and the
estimates (4) and (5), we find

∥

∥x(θ ;x∗0)− x(θ ;x0)
∥

∥

= ρ
(

x(θ ;x∗0),x(θ ;x0)
)

≥ ρ
(

x(θ ;x∗0),Φ
)

≥
1

Cϕ

∣

∣

∣
ϕ
(

x(θ ;x∗0)
)

∣

∣

∣

=
1

Cϕ

∣

∣

∣
ϕ
(

x(θ ∗;x∗0)
)

−ϕ
(

x(θ ;x∗0)
)

∣

∣

∣

=
1

Cϕ
.

d
dt

(

ϕ
(

x(θ ′;x∗0)
)

(θ ∗−θ )

=
1

Cϕ
.
〈

gradϕ
(

x(θ ′;x∗0)
)

, f
(

ϕ
(

x(θ ′;x∗0)
)

)〉

(θ ∗−θ )

≥
1

Cϕ
.λ .C〈gradϕ, f 〉(θ ∗−θ ),

where pointθ ′ satisfies the inequalitiesθ < θ ′ < θ ∗. From
the above estimate and (2), it follows that

θ ∗−θ ≤
Cφ

λ .C〈gradϕ, f 〉

∥

∥x(θ ∗;x∗0)− x(θ ;x0)
∥

∥

≤
Cφ

λ .C〈gradϕ, f 〉
‖x∗0− x0‖exp(CLipθ ) (6)
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Using the definition of functionΘ+, we can rewrite (6) as
follows

∣

∣Θ+(x∗0)−Θ(x0)
∣

∣ (7)

= Θ+(x∗0)−Θ(x0)

= θ ∗−θ

≤
Cφ

λ .C〈gradϕ, f 〉
‖x∗0− x0‖exp

(

CLip min
{

Θ+(x∗0),Θ
+(x0)

}

)

≤ g
(

min
{

Θ+(x∗0),Θ
+(x0)

}

)

‖x∗0− x0‖.

In the previous inequality, the functiong : R+ → R+ is
given analytically

g(t) =
Cφ

λ .C〈gradϕ, f 〉
exp(CLipt), t ∈ R+.

It is clear that g is continuous and monotonically
increasing. From the inequality (7), applying Theorem
2.2, it follows thatΘ+ is continuous atx0, from where we
deduce thatΘ+ ∈C[X+

0 ,R+].
The theorem is proved.

Theorem 3.2.Assume that:

1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz

stable.
3. The domainX+

0 is convex and bounded.

Then the functionΘ+ is bounded inX+
0 .

Proof. For convenience, we divide the proof into several
parts.

Part 1. Letx00 be a fixed point fromX+
0 . SinceX+

0 is
bounded then

(∃δX+
0
= const > 0) : X+

0 ⊂ Bδ
X+

0

(x00).

It is clear that

(∀x ∈ X+
0 )⇒ ρ(x00,x)< δG. (8)

Part 2. As in the previous theorem, we obtain
(

∀x ∈ BδΦ
∩D

)

⇒
〈

gradϕ(x), f (x)
〉

≥C〈gradϕ, f 〉.

From condition 2 of the theorem it follows that
(

∃δL = const, 0< δL <
δΦ
L

)

:
(

∀x∗0,x
∗∗
0 ∈ G, ρ(x∗0,x∗∗0 )< δL

)

⇒ ρ
(

x(t;x∗0),x(t;x∗∗0 )
)

=
∥

∥x(t;x∗0)− x(t;x∗∗0 )
∥

∥

≤ L‖x∗0− x∗∗0 ‖L.δL < δΦ , t ≥ 0. (9)

Part 3. Letx be an arbitrary point fromX+
0 . Denote

m =

[L.δX+
0

δΦ

]

+1∈ N,

where[x] is the largest integer not exceedingx.

Consider the points:

x01 =
m−1

m
x00+

1
m

x,

x02 =
m−2

m
x00+

2
m

x,

...

x0(m−1) =
1
m

x00+
m−1

m
x,

x0m =x.

All of these points belong to the closed interval[x00,x] =
[x00,x0m]. SinceX+

0 is a convex domain, then

x00,x01, . . . ,x0m ∈ [x00,x0m]⊂ X+
0 . (10)

For i = 1,2, . . . ,m, we have

ρ(x0(i−1),x0i)

=

∥

∥

∥

∥

m− i+1
m

x00+
i−1

m
x0m −

m− i
m

x00−
i
m

x0m

∥

∥

∥

∥

=
1
m
‖x00− x0m‖

=
1
m

ρ(x00,x0m)

<
1
m

δX+
0
< δL. (11)

From (9) and (11), it follows that

ρ
(

x(t;x0(i−1)),x(t;x0i)
)

< δΦ , t ≥ 0, i = 1,2, . . . ,m. (12)

Part 4. Consider the pointsx0(i−1) andx0i. From (11),
as in (7), we obtain

∣

∣Θ+(x0(i−1))−Θ+(x0i)
∣

∣

≤
2Cϕ

C〈gradϕ, f 〉

∥

∥

∥

∥

x
(

min
{

Θ+(x0(i−1)),Θ+(x0i)
}

;x0(i−1)

)

−

x
(

min
{

Θ+(x0(i−1)),Θ+(x0i)
}

;x0i

)

∥

∥

∥

∥

,

from which, using estimate (12), we find

∣

∣

∣
Θ+(x0(i−1))−Θ+(x0i)

∣

∣

∣
≤

2CϕδΦ
C〈gradϕ, f 〉

, i = 1,2, . . . ,m.

Part 5. Through the above estimate, we find that
∣

∣Θ+(x00)−Θ+(x)
∣

∣

≤
∣

∣Θ+(x00)−Θ+(x01)
∣

∣+
∣

∣Θ+(x01)−Θ+(x02)
∣

∣+ · · ·

+
∣

∣Θ+(x0(m−1))−Θ+(x0m)
∣

∣

≤
2mCϕδΦ
C〈gradϕ, f 〉

.
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Therefore,

Θ+(x)≤Θ+(x00)+
2mCϕδΦ
C〈gradϕ, f 〉

= const, x ∈ X+
0 .

The theorem is proved.

Corollary 3.1. Assume that:

1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz

stable.
3. The domainX+

0 is k-convex and bounded.

Then the functionΘ+ is bounded inX+
0 .

Corollary 3.2. Assume that:

1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz

stable.
3. The domainX+

0 is bounded-connected.

Then the functionΘ+ is bounded inX+
0 .

Corollary 3.3. Assume that:

1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz

stable.
3. The domainX−

0 is k-convex and bounded.

Then the functionΘ− is bounded inX−
0 .

Corollary 3.4. Assume that:

1. The conditions H1-H7 hold.
2. The solutions of system (1) are uniformly Lipschitz

stable.
3. The domainX−

0 is bounded-connected.

Then the functionΘ− is bounded inX−
0 .

4 Application

Consider the generalized model of interaction
(competition) of two species, located in the same nutrient
environment. The model was taken from R. Miller [20]
and K. Gopalsamy [17]. We have

dm1(t)
dt

= a1
(

m1(t)
)

− b1
(

m1(t),m2(t)
)

; (13)

dm2(t)
dt

= a2
(

m2(t)
)

− b2
(

m1(t),m2(t)
)

; (14)

m1(0) = m01, m2(0) = m02, (15)

where:
- m1 =m1(t)> 0 andm2 =m2(t)> 0 are biomasses of two
species at the momentt ≥ 0, respectively;
- a1,a2 : R+ → R+ are two growth rates, respectively;
- the functionsb1,b2 : R+ × R+ → R+ express the intra-
species and inter-species competition;
- m01 > 0 andm02 > 0 are two species biomasses at the
initial momentt = 0.

The following conditions are standard.

H8. The functionsai ∈C1[R+,R+],

d
dt

ai(m)> 0 for m ∈ R+ andai(0) = 0, i = 1,2.

H9. The functionsbi ∈C1[R+×R+,R+],

∂
∂m1

b1(m1,m2)> 0,
∂

∂m2
b1(m1,m2)> 0,

for
(m1,m2) ∈ R+×R+

and
b1(0,m2) = 0 for m2 ∈ R+.

H10. There exist two positive constantsm∗
1 andm∗

2 such
that

a1(m
∗
1)− b1(m

∗
1,0) = 0 anda2(m

∗
2)− b2(0,m

∗
2) = 0.

H11. It is valid

(∀m2 ∈ R+)
(

∃m∗∗
1 = m∗∗

1 (m2)> 0
)

:

a1(m
∗∗
1 )− b1(m

∗∗
1 ,m2)< 0;

(∀m1 ∈ R+)
(

∃m∗∗
2 = m∗∗

2 (m1)> 0
)

:

a2(m
∗∗
2 )− b2(m1,m

∗∗
2 )< 0.

H12. There exist two positive constantsmst
1 andmst

2 such
that

a1(m
st
1 )− b1(m

st
1 ,m

st
2 ) = 0

and
a2(m

st
2 )− b2(m

st
1 ,m

st
2 ) = 0.

Note that the conditions above have their explanation in
terms of population dynamics. The details are presented
in section 3.3 of [17]. The following system is a specific
realization of the generalized model (13), (14):

d
dt

m1(t) = r1.m1(t)− a11.m
2
1(t)− a12.m1(t).m2(t); (16)

d
dt

m2(t) = r2.m2(t)− a21.m1(t).m2(t)− a22.m
2
2(t), (17)

where the constantsri andai j are positive,i = 1,2, j =
1,2.

The system (16), (17) satisfies conditions H8 and H9,
which is easily verifiable. According to condition H10, we
have

0= a1(m∗
1)− b1(m∗

1,0) = r1.m∗
1− a11(m∗

1)
2

= m∗
1(r1− a11.m∗

1),

from where we find thatm∗
1 = r1/a11. In the same way

m∗
2 = r2/a22. It is easy to show that for eachm2 ∈ R+,

there exists a constantm∗∗
1 = m∗∗

1 (m2)> 0 such that

r1.m
∗∗
1 − a11(m

∗∗
1 )2− a12.m

∗∗
1 .m2.

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 2, 91-99 (2015) /www.naturalspublishing.com/Journals.asp 97

Similarly, there exists a constantm∗∗
2 = m∗∗

2 (m1)> 0 such
that

r2.m
∗∗
2 − a22(m

∗∗
2 )2− a21.m

∗∗
2 .m1.

Condition H11 is met. We determine the positive constants
mst

1 andmst
2 as the solutions of the next system
∣

∣

∣

∣

r1.mst
1 − a11(mst

1 )
2− a12.mst

1 .m
st
2 = 0;

r2.mst
2 − a21.mst

1 .m
st
2 − a22(mst

2 )
2 = 0

⇔

∥

∥

∥

∥

a11 a12
a21 a22

∥

∥

∥

∥

.

∥

∥

∥

∥

mst
1

mst
2

∥

∥

∥

∥

=

∥

∥

∥

∥

r1
r2

∥

∥

∥

∥

⇔ A.mst = r (18)

⇔ mst
1 =

r1a22− r2a12

a11a22− a12a21
,

mst
2 =

r2a11− r1a21

a11a22− a12a21
, (19)

where:

A =

∣

∣

∣

∣

a11 a12
a21 a22

∥

∥

∥

∥

, mst =

∥

∥

∥

∥

mst
1

mst
2

∥

∥

∥

∥

, r =

∥

∥

∥

∥

r1
r2

∥

∥

∥

∥

.

Without loss of generality, we assume that the inequality
a11a22−a12a21> 0 holds. From (19), keeping in mind that
mst

1 > 0 andmst
2 > 0, we obtain the inequalities

a12

a22
<

r1

r2
<

a11

a21
.

We assume that the above inequalities are fulfilled a-priori.
The asymptotic properties of the solutions of system

(16), (17) are successfully explored by the corresponding
linearized system. For this purpose we define

m1(t) = mst
1 +M1(t), m2(t) = mst

2 +M2(t)

and from (16) and (17), we obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
dt

M1(t) = r1mst
1 + r1M1(t)− a11(mst

1 )
2−2a11mst

1 M1(t)

−a11
(

M1(t)
)2

− a12mst
1 mst

2 − a12mst
1 M2(t)

−a12M1(t)mst
2 − a12M1(t)M2(t);

d
dt

M2(t) = r2mst
2 + r2M2(t)− a21mst

1 mst
2 − a21mst

1 M2(t)

−a21M1(t)mst
2 − a21M1(t)M2(t)− a22(mst

2 )
2

−2a22mst
2 M2(t)− a22

(

M2(t)
)2
.

Using the inequalities (18) and that second order terms are
negligible, we obtain the system

∣

∣

∣

∣

∣

∣

∣

d
dt

M1(t) =−a11mst
1 M1(t)− a12mst

1 M2(t);

d
dt

M2(t) =−a21mst
2 M1(t)− a22mst

2 M2(t)

⇔
d
dt

∥

∥

∥

∥

M1(t)
M2(t)

∥

∥

∥

∥

=−

∥

∥

∥

∥

a11mst
1 a12mst

1
a21mst

2 a22mst
2

∥

∥

∥

∥

.

∥

∥

∥

∥

M1(t)
M2(t)

∥

∥

∥

∥

⇔
dM
dt

=−Ast .M, (20)

where:

M =

∥

∥

∥

∥

M1(t)
M2(t)

∥

∥

∥

∥

, Ast =

∥

∥

∥

∥

a11mst
1 a12mst

1
a21mst

2 a22mst
2

∥

∥

∥

∥

.

The matrix eigenvalues of system above are the solutions
of equation

det

∥

∥

∥

∥

a11mst
1 +λ a12mst

1
a21mst

2 a22mst
2 +λ

∥

∥

∥

∥

= 0

⇔ λ 2+(a11mst
1 +a22mst

2 )λ +(a11a22−a12a21)m
st
1 mst

2 = 0

⇔ λ 2+Bλ +C = 0,

where
B = a11mst

1 + a22m
st
2 > 0

and
C = (a11a22− a12a21)m

st
1 mst

2 > 0.

For the discriminant of the last equation, we get

B2−4C = (a11mst
1 − a22m

st
2 )

2+4a12a21mst
1 mst

2 > 0.

The eigenvaluesλ1 and λ2 are real and negative. More
precisely, we have:

λ1 =
1
2

(

− a11m
st
1 − a22m

st
2

−
(

(a11mst
1 − a22m

st
2 )

2+4a12a21mst
1 mst

2

)
1
2
)

;

λ2 =
1
2

(

− a11m
st
1 − a22m

st
2

+
(

(a11mst
1 − a22m

st
2 )

2+4a12a21mst
1 mst

2

)
1
2
)

,

λ1 < λ2 < 0.

We denote the corresponding linearly independent
eigenvectors as follows:

w1 =

∥

∥

∥

∥

w11
w21

∥

∥

∥

∥

, w2 =

∥

∥

∥

∥

w12
w22

∥

∥

∥

∥

.

Then the fundamental matrix of system (20) has the form:

W (t) =

∥

∥

∥

∥

w11exp(λ1t) w12exp(λ2t)
w21exp(λ1t) w22exp(λ2t)

∥

∥

∥

∥

.

The solutionM(t;M0) of system (20) with initial condition

M(0) =

∥

∥

∥

∥

M1(0)
M2(0)

∥

∥

∥

∥

=

∥

∥

∥

∥

M01
M02

∥

∥

∥

∥

= M0

can be expressed in the form

M(t;M0) =

∥

∥

∥

∥

M1(t;M01,M02)
M2(t;M01,M02)

∥

∥

∥

∥

=W (t)W−1(0)M0.
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Then
∥

∥M(t;M∗)−M(t;M0)
∥

∥

≤ ‖W (t)‖.‖W−1(0‖‖M∗
0 −M0‖

≤ exp(λ1t)exp(λ2t)‖W (0)‖.‖W−1(0)‖.‖M∗
0 −M0‖

≤ ‖M∗
0 −M0‖.

The above estimation shows that the solutions of system
(20) are uniformly stable with Lipschitz constantL = 1.

It is easy to demonstrate that system (20) satisfies
conditions H1, H2, H3. The constantC f is defined as
follows:
∥

∥ f (M1,M2)
∥

∥

=
∥

∥

∥

(

(a11M1+ a12M2)m
st
1 ,(a21M1+ a22M2)m

st
2

)

∥

∥

∥

≤ max
{

a11mst
1 + a21m

st
2 , a12mst

1 + a22m
st
2

}

=C f

Consider the functionϕ(M1,M2) = p − M1 − M2,
where

(M1,M2) ∈ D

= G =
{

(M1,M2); M1 > 0, M2 > 0. M1+M2 < q
}

and the constantp which satisfies the inequalities
0 < p < q. Geometrically the setΦ coincides with the
open segment with endpoints(p,0) and(0, p). Condition
H5 is verified immediately. Moreover, the function
ϕ ∈C1[D,R] and
(

∀(M1,M2) ∈ Φ
)

⇒
〈

gradϕ(M1,M2), f (M1,M2)
〉

=
〈

(−1,−1),(−a11m
st
1 M1− a12mst

2 M2 ,

−a21mst
1 M1− a22m

st
2 M2)

〉

= (a11+ a21)m
st
1 M1+(a12+ a22)m

st
2 M2

≥ min
{

(a11+ a21)m
st
1 ,(a12+ a22)m

st
2

}

p

= C〈gradϕ, f 〉 > 0.

Therefore, condition H4 is valid.
We have

Φ\Φ =
{

(p,0),(0, p)
}

∈
{

(M1,0); 0≤ M1 ≤ q
}

∪
{

(0,M2); 0≤ M2 ≤ q
}

∪
{

(M1,M2) ∈ R+×R+; M1+M2 = q
}

= ∂G,

i.e. condition H6 holds. Finally, it is easy to demonstrate
that the following equality holds

∣

∣ϕ(M1,M2)
∣

∣= ρ
(

(M1,M2),Φ
)

,

which means that condition H7 is met with the constant
Cϕ = 1. Obviously the domains

X−
0 =

{

(M1,M2); M1 > 0, M2 > 0, M1+M2 < p
}

;

X+
0 =

{

(M1,M2); M1 > 0, M2 > 0, p < M1+M2 < q
}

are convex.
From Theorem 3.1, it follows that the functionsΘ−

and Θ+ (defined for the model considered above) are
continuous in the domainsX−

0 andX+
0 , respectively. One

possible interpretation of this fact: Let the initial
biomasses in a community of two competing species be
close to the corresponding initial values for the biomasses
of another pair of species in a similar community. Let the
two communities develop under the same conditions and
their dynamics are modeled by system (20). Then the
biomasses in these two communities will reach a pre-set
ratio almost simultaneously.

In brief, from Theorem 3.2 and Corollary 4.4, it
follows that under certain conditions, the functionsΘ−

andΘ+ , defined in the domainsX−
0 andX+

0 , respectively,
are bounded. The results applied to the modeled system
under consideration, we could interpret as follows: Let us
consider all communities consisting of two competing
species, which differ by the initial species biomasses, and
the dynamics of which are described by system (20).
Then the set of moments in which the biomasses of each
of these communities reach a pre-set ratio, is bounded.

Finally, note that for sufficiently small values ofM1
and M2, i.e. for sufficiently small values ofq, the
trajectory of system (16), (17) is similar? to the trajectory
of the corresponding linearized system (20). In this case,
the conclusions obtained above are also transferable to
system (16), (17).
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