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Abstract: This paper presents a multi-level linear programming probivith random rough coefficients in objective functions. At
the first phase of the solution approach and to avoid the aaxitplof this problem, we begin by converting the rough natof this
problem into equivalent crisp problem. At the second phageuse the concept of tolerance membership function at esveh o
solve a Tchebcheff problem till an optimal solution is ob&d. Finally, an illustrative example is given to show thplaation of the
proposed model.
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1 Introduction in a position to specify the objective and/or the feasible
set precisely but rather can specify them in a rough sense
Multi-level programming techniques are developed to[5].
solve decentralized planning problems with multiple  Rough set theory, introduced by Pawlak in the early
decision makers in a hierarchical organization where eac1980s, is a new mathematical tool to deal with vagueness
unit or department seeks its own interests. and uncertainty. This approach seems to be of
Three level programming (TLP) problem, whether fundamental importance to artificial intelligence and
from the stand point of the three planner Stackelbergcognitive sciences, especially in the areas of machine
behavior or from the interactive organizational behavior,learning, knowledge acquisition, decision analysis,
is a very practical problem and encountered frequently inknowledge discovery from databases, expert systems,
actual practice. Osman et al] [proposed a three-planner decision support systems, inductive reasoning, and
multi-objective decision-making model and solution pattern recognitiond].
method for solving this problem. Osman et al.§] presented a framework to hybridize
Emam presented a bi-level integer non-linearthe rough set theory with the bi-level programming
programming problem with linear or non-linear problem. They designed a genetic algorithm for solving
constraints 2] and proposed an interactive approach tothe problem by constructing the fitness function of the
solve a bi-level integer multi-objective fractional upper level programming problems based on the
programming problem in3]. Baky [4] introduced two  definition of the rough feasible degree.
new algorithms to solve multi-level multi-objective lirea Xu et al. [7] discussed a class of multi-objective
programming problems through the fuzzy goal programming problems with random rough coefficients.
programming approach. The membership functions forThey showed how to turn a constrained model with
the defined fuzzy goals of all objective functions at all random rough variables into crisp equivalent models.
levels were developed. Then the fuzzy goal programmingrhen they introduced an interactive algorithm to obtain
approach was used to obtain the satisfactory solution fothe decision maker’s satisfying solution.
all decision makers. This paper is organized as follows: Sect®presents
Mathematical programming problems (MPPs) in the a problem formulation and solution concept of multi-level
crisp form aim to maximize or minimize an objective linear programming (MLLP) problem with random rough
function over a certain set of feasible solutions. But in coefficients. In Sectio, a fuzzy decision model for the
many practical situations, the decision maker may not besquivalent crisp problem is suggested. In Sectoran
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illustrative example is given to show the application of the [1*" level]

proposed model. Sectidawill be for the conclusion and max f1 , (2)
some open points are stated for future research work in .
the field of multi-level linear optimization. [2t" level]
Hia.X f2 )
2

2 Problem Formulation and Solution

Concept
P [mt" level]
2.1 Model Formulation max fm
. . Subject to
In fact, sometimes a decision needs be made based on
uncertain data. In this case, a multi-level linear Ch{fi (z,6) > f;} (vi) > bsi=1,2, ...,m,
programming problem with random rough coefficients
can be described as: Ch{g, (z) <0} (n,) >0,,r=1,2, ...,p,
[1%" level] zeq.
H}C?Xfl (, &), @) where v, 0, - and @, are predetermined confidence
levels,i =1,2,....,m,r=1,2,...,p.
[2t" level]
max fo (v, £), The multi-level linear programming problem with
vz random rough coefficients is presented as:
[1*" level]
T
max &y x , 3
[mt" level] s ®)
max f (2, £) , [2!" level]
m T
Subject to e L,
z €QG.
where x is an n-dimensional decision vector{ =
(&1, &,...,&,) is a random rough vectorf;(z, &) are  [m" level]
objective functionsj = 1, 2,...,m, which are not well max &Lz
defined and the concept of maximizirfg(x, ¢),i =1, _ o
2,...,mis not obvious due to the presence of the randomSubject to .
rough vectok. G is a linear convex constraint set. e,x <b,r=1,2...p,
x>0,
Definition 1([7]). Let & = (&1, &2,...,&,) is a random req.
rough vector on the rough spacel,( A, A, w), and
f; : A" — A be continuous functions,= 1,2,...,m. Where& = (&1, &, &m)T, & = (er1, €2, .-,

Then the primitive chance of random rough evente.,)” and b, are random rough vectors,
characterized byf; (¢€) < 0,i=1,2,...,m,isafunction (r=1,2,...,p).
from [0, 1] to [0, 1] and defined as

Then
T
CL{fi(€)<0,i=1,2,..., m}(x) Ch{efz <be}(n) > 6r
STrdA | Prie,(N) 2 <b, (N >0, >n ),
ol o [ ape { FEOD <0 e s 020 2
P i=1,2,....m r=1,2,...,p
> For given confidence levels., 6,., using the primitive
>pp >y ; , _
chance measure the chance constraints will be as follows:

Based on the definition of primitive chance, the
random rough chance constrained multi-level Ty {)\ | Pr{er Nz <b, (/\)} > GT} > 1y,
programming (RRCCMLP) model will be expressed as (4)
T =

follows: 1,2,...,p.
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Thus a pointz:(> 0) is called feasible for problen8) b < d) is a rough variable and characterized by the
if and only if the trust measures of the rough eventsfollowing trust measure function:

| Prie N2z <b, (N} > 6,) are at least

nr,'f’zl,2,...,p. Tr{&(/\)Tth}
Since 0 fd<t,
Ch{¢fz> fi} (v) > 6 - L ifh<t<d,
5
T
= Tr{)\ | Pf{fz()‘) x> fz} > 5z} > Vi ={1 (g:z i bb:at)) ifa<t<b,
The RRCCMLP model for problen8) which is called 1 (dft 4 1) ife<t<a,
tr-pr constrained multi-level programming model can be 2 \d=e T
formulated as follows: 1 ift<ec.
[1%" level] Then,Tr{)\|Pr{§i Nz > fl-} > §;} > ~; if and
max f1, (6)  onlyif
h
[2™" level b+R<fi<d—2y(d—c)+R ifb<M<d,
max fo,
i a+R< f;
< d(b—a)+b(ddicc);b2;y;(d—c)(b—a) +R ifa<M < b,
+R< fi
[m" level] ¢ </
max fo, <d—(d—c)(2vi—1)+R ifc< M <a,
. ’ fi<c+R if M <e.
Subject to

where h; = fi — &1 (1 —6&;)\/aTVex, & is the
Te{APr{&N) 2> fi} >0} >y, i=1,2,...,m, standardized normal distribution andl, v; € [0, 1] are
predetermined confidence levels.
Tr{\Pr{e,(N) 2 < b, N} >0} >n,., r=1,2,....p,
APr{e, W) e <b ()} 20} 2 n b For the Proof of Theorent, the reader is referred to
x>0, [7].
The crisp equivalent model of the MLLP problem with
random rough coefficients with trust more than or equal

wheres;, v;, 6., 1, are predetermined confidence levels, Tr{} will be as follows:
i=1,2,...,m,r=1,2,...,p. Tr{-} indicates the

r € G.

th

trust measure of the event {n}, andPr{-} indicates the [17 level] A 7
probability of the event ir{-}. maxfa (), (7)

[2!" level]

max hs (),
2.2 Crisp Equivalent Model -
In order to solve a tr-pr constrained multi-level [m" level]
programming model, a conversion into its crisp equivalent max hn, (2)
model is required. However, this procedure may be T
difficult in some cases. Subject to
x eG.

Theorem 1([7]). Assume that the random rough variable Definition 2. Assume that the random rough varialglg
&, is characterized byg;;(\) ~N (&;(\), Vi), where is characterized byg;(A\) ~ N (&;(A), Vi), where
G,y = (N, &N, ..., &Ga(N) isarough  (§i5(AN)), = (Gir(A), &2(A),-- ., &in(A)) is a rough
variable andV® is a positive definite covariance matrix, variable andTr{¢;(A\)"z > ¢} = (w1, ..., win). Thenw
it follows thatgi()\)Ta: = ([a, b], [¢, d]) (Wherec< a< is the minimum ofw;1, . . ., wip).
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Definition 3. If x* is a feasible solution of a three level Then the solution of the FLDM problem can be
programming problem with random rough coefficients in reached by solving the following Tchebycheff problem
the objective functions; no other feasible solutiore G [1]:

exists, such thaf(z*) < f(z), then X is the optimal

solution of the problem with trust value more than or max A, (11)
equalw.
Subject to
r € G,
3 Fuzzy Decision Models for The Equivalent
Crisp Problem fihy [P ()] = A,
Ae o, 1].

To solve an equivalent crisp problem of the multi-level
linear programming problem with rough parameters in its
objective functions based on fuzzy decision modég| it

is needed to obtain the satisfactory solution that is3.2 Second Level Decision Maker Problem
acceptable to the first level decision maker (FLDM), and

provide the second level decision maker (SLDM) with the Second, the SLDM solves the following problem:
FLDM decision variables and goals with some leeway to
look for the satisfactory solution. After that, the SLDM

should provide the third level decision maker (TLDM) max  ha(z), (12)
with the decision variables and goals with some leeway toSubject to
look for the satisfactory solution, and to reach the sotutio
that is nearest to the satisfactory solution of the FLDM. v € G,
where

3.1 First Level Decision Maker Problem T = (@), 2, 3).

First, the FLDM solves the following problem: s . oo
gp The individual best solutiof}) and individual worst

solution (h; ) will be found for the objective function

max  ha(2), ) ha(X), where:
Subject to
x e, h3=max ho(z), hy = min hy(z). (13)
where
x = (v, 22,23). The membership function will be constructed as
follows:
The individual best solutiofh}) and individual worst
solution (h;) will be found for the objective function 1 if ho (z) > R
h1 (z), where: ha(®) — by op oy 2
Bhy [h2 (2)] = | == i hy < ha(2) < B3,
hi=max hy (z), h;=minhi(x). 9) 0 if hg > ho(x).

(14)

Then goals and tolerances will be determined for
individual solutions and the differences between the bes],ea
solution and the worst solution, respectively. This can be
formulated as the following membership function of

Then the solution of the SLDM problem can be
ched by solving the following Tchebycheff problem:

fuzzy set theory: max 3, (15)
Subject to
1 it by (2) > R, x € G,
hl xr) — h; . — *
puny [h ()] = ,1(1),7,11— if hy < by (2) <3, finy [ha (2)] > B,
0 it By > hy(x)
(10) B €0, 1].
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3.3 Third Level Decision Maker Problem wherez! is the best solutionaf” — ¢) and ¢ +t) are
) ) the worst satisfactory solutions. In addition, this
Third, the TLDM solves the following problem: satisfaction rises linearly with the intervat] — ¢,, z/]
and diminishes linearly with the intervat{, 2} + 1],
max  hg(z), (16) and thus other solutions are unacceptable.
Subject to
zeq, The membership function that describes can be

where formulated as

x = (x,x2,23).

L . L 22 — (25 —t2) S S
The individual best solutio(®}) and individual worst fi, (2) = % x5 —ty < x9 < 3, 21)
solution (k3 ) will be found for the objective function : M 25 <@y < a5+ b,

hs(x), where: 2

hi= max h3 (z), hs = min hz(x). (17)  wherex§ is the best solution6 —t2) and @5 +t,) are the
worst acceptable solutions. To guide the TLDM towards

. . . the solution through the correct path:
The membership function will be constructed as g P

follows: First, the FLDM goals consider; > Al is certainly
acceptable antl; < b} = hy (27, 25, 23) is unacceptable,
1 if hs (z) > h3, and that the preference withn![, Y] is linearly
_ ) hs(@) =g e N increasing. This because the SLDM got the optimum at
ping [hs (2)] = ny —hy o iths <hs () < hg, (z9, 25, 23), that offers the FLDM the objective function
0 it hy > hs(x). valuesh], makes any:; < h practically undesirable.
(18)

The membership functions of the FLDM can be

Then the solution of the TLDM problem can be formulatedas

reached by solving the following Tchebycheff problem:

max 7, (19) 1 if hy (z) > hY,
Subject to by [ (2)] = § =it Y < by (@) < A,
xe G 0 it hy (2) < B
tng [hs (2)] > 7, (22)
~ € [0, 1].

Second, the SLDM goals consideh";F ZT i}rg is

: certainly acceptable anth, < h} = ho(x],x5,23) i
3.4 Three Level Programming Problem unacceptable, and that the preference with, [h%] i
The FLDM, SLDM, and TLDM solutions are now linearly increasing. This because the TLDM got the
discovered. Nevertheless, they are not usually similag, du©ptimum at ¢1,z3,z3), that offers the SLDM the
to the identity of the objective function of each level. It is Objective function valuesh;, makes anyh, < hj
not reasonable for the FLDM and SLDM to provide the Practically undesirable.
TLDM with the optimal decisionsx!’, x5 as control _ ,
factors. They should offer some tolerance, so that TLDM ~ The membership functions of the SLDM can be
can have an extent feasible region to seek his/her optimdPrmulated as
solution, and minimize the time of searching as well.

S
S

That way, the maximum tolerancés andt, will be

provided, so that the decision variablesandx, range 1 if o () > D3,
will be aroundz! and x5 respectively and the following ) [he (2)] = hale) — Ry i hy < hy (2) < hS,
membership function describe§ as : hz(@) —hs \

0 if ha (z) < hy.

(23)

ty
B —
B =n G <y <af +1, Third, the TLDM needs to construct a membership

(20)  function for his/her objective function in order to evaleat

— F —
noot) gy <o <af,
Hay (xl)
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the fulfillment of each possible solution which will be as 4 Numerical Example

follows:
A three level linear programming problem with random
rough coefficients can be written as:
1 if hg (x) > hi, ,
\ hao(z) — ) i( ) > hs " [First level]
fp, [P ()] = ETm—Y if hy < hg(z) < hg,
0 if R (2) < h; max Tr{\Pr{ki& 121 + koboxa + k3&sxs > fi1} > 01}

(24) Z Y1,

\ wherez,, x4 solve

wherehy = hs(25, 25, 25).

. , ] ) [Second level]
Finally, to get the satisfactory solution, that is also a

Pareto optimal solution with overall satisfaction for all max Tr{\|Pr{ks€sx1 + ks&s22 + ke&sxs > fo} > 02}
DMs, the following Tchebycheff probleml] will be 2
solved: > Y2,

max 6, (25) wherezs solves

. [Third level]
Subject to

max Tr{A[Pr{¢ra1 + €22 + &ors 2 f3} 2 03} = 73,

> 01, .
131 Subject to
4x1 + S5x20 — x3 < 100,
F
[xl - ($1 - tl)] > 51 211 + x9 + 23 < 35,
t — b)
' 1 + z2 + 23 < 20,
[(xg + t?) B x2] > 57 T1,,2,T3 > 0.
t2 where @1, ks, ks, ka, ks, k¢) = (1.3,0.5, 1.0, 0.8, 1.6, 2.0),
s _ the predetermined levels are respectivly= v; = 0.4,
7y — (fz — b)) o1, j=1,2,3and
2
&1 ~N (plv 1), with p; = ([L 2]7 [17 4])7
W [h > 41,
i a2 €~ N (p2. 2), with po — ([3, 4, [2, 5))
,u,\u[hg(x)] > 41, & ~N(ps, 1), with p3 = ([2, 3], [0, 3]),
54 NN (p47 4)7 with P4 = ([47 5]7 [27 5])7
Mi\ls [h3(x)] > o, & ~N(ps, 3), with ps = ([3, 4], [1, 4]),
. 0.1 0 56 NN (pﬁv 1)7 with P6 = ([17 2]7 [07 3])7
120tz >0, £7NN(p77 1)7 with pPr = ([07 1]7 [07 3])7
o€ [O, 1], 58 NN (p87 2); with P8 = ([2a 3]7 [17 4])7
59 NN (p97 1); with P9 = ([2a 3]7 [27 5])7
zeQqG.

) ) , ) pi (i =1,2,... 9) are rough variables. By setting =
where¢ is the overall satisfaction anfithe unit column ~; = 0.4; thend=1(1 — 6,) = 0.26,j = 1,2, 3.

vector.

) o ) . And its solution will be as follows:
A satisfactory solution is found if the FLDM is

satisfied with this solution. Otherwise, he/she needs to(&1, &a, &3, €4, &5, &6, €7, Es, Eo)

provide the SLDM with new membership function for the = (1.8,3.64,0.86,3.9,2.1,0.73,0.86,2.12, 2.86).
control variables and objectives, and accordingly the

SLDM needs to provide the TLDM with new membership (Tr{& )}, Tr{&}, Tr{gs}, Tr{c}, Triés), Tri{ts),
function for the control variables and objectives. This Tr{e:), Tr{ts), Tr{to})

process will continue until a satisfactory solution is
found. = (0.46,0.41,0.85,0.68,0.82,0.88,0.43,0.75, 0.43).
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The equivalent crisp problem with trust more than or equalWhose solution is

0.41 can be written as:

[First level]

max 2.08z71 + 1.3z2 + 0.6x3 + 0.26/2% + 223 + 22,
T

wherex;, Xa solve

[Second level]

max 2.0871 + 2.56x2 + 1.223 4 0.261/42% 4 323 + 23,
x2

wherexs solves

[Third level]
max 0.6z1 + 1.6z2 + 2.623 + 0.264/2? 4 223 + 23,
z3
Subject to

41 + o — x3 < 100,
2x1 + xo + x3 < 35,
1 + 22 + 23 < 20,

x1, w2, 73 > 0.

First, the FLDM solves the following problem:

max 2.08z1 + 1.3z2 + 0.6x3 + 0.26/23 + 223 + 23,

Subject to
4x1 + dre — x3 < 100,

2x1 + xo0 + x3 < 35,
1 + 22 + 23 < 20,

x1, %2, 73 > 0.

The best and worst solution of FLDM will be found:

hi =42, hy =0.

The membership functiom,, () will be constructed using
(10) and (1) will be solved as follows:

max A,

Subject to
(xlv T2, 333) S G7

2.0821+1.329+0.623+0.26 /22 + 222 + 22—42X > 0,

A€ 0,1].

(zf, x5, x5) = (0.1,0.92,0.63),
Y =22 \=0.052.

Second, the SLDM solves the following problem:

max 2.08z; + 2.56z9 + 1.223 4 0.261/42? + 323 + 22,

Subject to
41 + dxo — x3 < 100,

2x1 + x20 + x3 < 35,
1+ 22 + 23 < 20,

x1,x2,r3 > 0.

The best and worst solution of SLDM will be found:
h3 =60.2, h, =0.
The membership functiom,, ., will be constructed using
(14) and @5) will be solved as follows:
max f3,

Subject to
(xlv T2, 333) S G7

2.0821 + 2.5629 + 1.223 + 0.261/42? + 323 + 23

—60.28 >0,

B €10,1].
Whose solution is
(x, 235, 25) = (0.3,0.1,0.31),
hS =1.433, [ =0.024.

Third, the TLDM solves the following problem:

max 0.6z1 + 1.6z2 + 2.623 + 0.264/2% + 223 + 23,

Subject to
4x1 + dre — x3 < 100,

2x1 4+ 19 + x3 < 35,
1 + 22 + 23 < 20,

x1, T2, 73 > 0.

The best and worst solution of TLDM wiill be found:

hy =572, hy =0.
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The membership functiop,,, () will be constructed
using @8) and @19) will be solved as follows:

max -y,
Subject to

(x1,29,23) € G,

0.6z1+ 1.6z94 2.6x3 + 0.26 a:% + 23:% + a:%
— 572y > 0,

v € [0, 1].

Whose solution is

(x], 23, 23) = (0.132, 0.166, 0.1),
hY =0.679, ~=0.012.

Assuming that both the FLDM control decisiefi and the

SLDM control decisionz§ are around 0.1 with tolerance

1, the TLDM solves the following problem:

max 9,
Subject to
(x1,29,23) € G,
r1+6 > 1.1,
—x1+0>0.9,
ro+6 > 1.1,
— 29 +0>0.9,
2.08x1 + 1.3x2 + 0.6x3 + 0.26\/37% + 23:% + a%
—1.146 > 1.06,
2.0871 + 2.5625 + 1.223 + 0.261/42? + 323 + 22
—1.336 > 0.105,
0.621 + 1.622 + 2.6x3 + 0.264 /27 + 223 + 23
+0.526 > 1.2,

1 ZoaxQ 20,£C3 207

4 €10,1].

5 Conclusion

This paper presented a multi-level linear programming
problem with random rough coefficients in objective
functions. At the first phase of the solution approach and
to avoid the complexity of this problem, we began by
converting the rough nature of this problem into
equivalent crisp problem. At the second phase, we used
the concept of tolerance membership function at each
level to solve a Tchebcheff problem till an optimal
solution is obtained.

There are however several open points for future
research in the area of rough multi-level linear
optimization, in our opinion, to be studied. Some of these
points of interest are stated in the following:

1. An algorithm for solving multi-level integer linear
multi-objective decision-making problems with rough
parameters in the objective functions, in the
constraints and in both using Taylor series.

2. An algorithm for solving multi-level mixed-integer
linear multi-objective decision-making problems with
rough parameters in the objective functions, in the
constraints and in both using Taylor series.

References

[1] M.S. Osman, M.A. Abo-Sinna, A.H. Amer and O.E. Emam,
A multi-level nonlinear multi-objective decision making
under fuzziness, Applied Mathematics and Computation,
153 (2004) 239-252.

[2]O.E. Emam, A fuzzy approach for bi-level integer
nonlinear programming problem, Applied Mathematics and
Computation, 172 (2006) 62—71.

[3]O0.E. Emam, Interactive approach to bi-level integer
multi-objective fractional programming problem, Applied
Mathematics and Computation, 233 (2013) 17-24.

[4]LA. Baky, Solving multi-level multi-objective linear
programming problems through fuzzy goal programming
approach, Applied Mathematical Modelling, 34(9) (2010)
2377-2387.

[5] M.S. Osman, W.F. Abd EI-Wahed, M. M. K. El Shafei and
H. B. Abd El Wahab, A proposed approach for solving
rough bi-level programming problems by genetic algorithm,
Int. J. Contemp. Math. Sciences, 6 (2011) 29-32.

[6] Z. Pawlak, J. Grzymala-Busse, R. Slowinski, W. Ziarko,
Rough sets, Communications of the ACM, 38(11) (1995)
88-95.

[713. Xu and L. Yao, A class of multiobjective linear
programming models with random rough coefficients,
Mathematical and Computer Modelling, 49 (2009) 189—
206.

Whose compromise solution with trust more than or equal

0.41isX° = (0.385, 0.192, 1.234) antl= 0.94 (overall
satisfaction for all DMs).

f=(213), f)=(3.16), fJ=(4.09).

(@© 2015 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.4, No. 1, 41-49 (2015) www.naturalspublishing.com/Journals.asp %Ng =) 49

—_—

O. E. Emam is Associate M. A. Belal obtained
professor of information system his PhD from Cairo
at the Faculty of Computers University in 1998. He
and Information, Helwan was an Assistant Professor
University. He received the of  Computer  Science
Ph.D. degree in operations in the Faculty of Computers
research at Helwan University. and Information, Helwan
His research interests are in University, Egypt. In 2003,
the multi-level optimization field. he joined the Department

of Electrical and Computer Engineering, George
Washington University in USA as a Visiting Professor. In

M. El-Araby is 2004, he joined Al-Zaytoonah University in Jordan as an
a Senior Software Engineer Associate Professor. In 2008, he returned back to
at ITWorx, Cairo, Egypt. He the Faculty of Computers and Information, Helwan
has an extensive experience University, EQypt and now, he is the Dean of the faculty.
in  developing  software
applications/systems  using
Microsoft technologies. He
holds a B.Sc. in Computer
Science  from Helwan
University, 2009 and a
Software Development Diploma from Information
Technology Institute (ITI), 2010. Currently, he studies
for a master degree in computer science at Helwan
University.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Problem Formulation and Solution Concept
	Fuzzy Decision Models for The Equivalent Crisp Problem
	Numerical Example
	Conclusion

