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Abstract: This paper presents a multi-level linear programming problem with random rough coefficients in objective functions. At
the first phase of the solution approach and to avoid the complexity of this problem, we begin by converting the rough nature of this
problem into equivalent crisp problem. At the second phase,we use the concept of tolerance membership function at each level to
solve a Tchebcheff problem till an optimal solution is obtained. Finally, an illustrative example is given to show the application of the
proposed model.
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1 Introduction

Multi-level programming techniques are developed to
solve decentralized planning problems with multiple
decision makers in a hierarchical organization where each
unit or department seeks its own interests.

Three level programming (TLP) problem, whether
from the stand point of the three planner Stackelberg
behavior or from the interactive organizational behavior,
is a very practical problem and encountered frequently in
actual practice. Osman et al. [1] proposed a three-planner
multi-objective decision-making model and solution
method for solving this problem.

Emam presented a bi-level integer non-linear
programming problem with linear or non-linear
constraints [2] and proposed an interactive approach to
solve a bi-level integer multi-objective fractional
programming problem in [3]. Baky [4] introduced two
new algorithms to solve multi-level multi-objective linear
programming problems through the fuzzy goal
programming approach. The membership functions for
the defined fuzzy goals of all objective functions at all
levels were developed. Then the fuzzy goal programming
approach was used to obtain the satisfactory solution for
all decision makers.

Mathematical programming problems (MPPs) in the
crisp form aim to maximize or minimize an objective
function over a certain set of feasible solutions. But in
many practical situations, the decision maker may not be

in a position to specify the objective and/or the feasible
set precisely but rather can specify them in a rough sense
[5].

Rough set theory, introduced by Pawlak in the early
1980s, is a new mathematical tool to deal with vagueness
and uncertainty. This approach seems to be of
fundamental importance to artificial intelligence and
cognitive sciences, especially in the areas of machine
learning, knowledge acquisition, decision analysis,
knowledge discovery from databases, expert systems,
decision support systems, inductive reasoning, and
pattern recognition [6].

Osman et al. [5] presented a framework to hybridize
the rough set theory with the bi-level programming
problem. They designed a genetic algorithm for solving
the problem by constructing the fitness function of the
upper level programming problems based on the
definition of the rough feasible degree.

Xu et al. [7] discussed a class of multi-objective
programming problems with random rough coefficients.
They showed how to turn a constrained model with
random rough variables into crisp equivalent models.
Then they introduced an interactive algorithm to obtain
the decision maker’s satisfying solution.

This paper is organized as follows: Section2 presents
a problem formulation and solution concept of multi-level
linear programming (MLLP) problem with random rough
coefficients. In Section3, a fuzzy decision model for the
equivalent crisp problem is suggested. In Section4, an
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illustrative example is given to show the application of the
proposed model. Section5 will be for the conclusion and
some open points are stated for future research work in
the field of multi-level linear optimization.

2 Problem Formulation and Solution
Concept

2.1 Model Formulation

In fact, sometimes a decision needs be made based on
uncertain data. In this case, a multi-level linear
programming problem with random rough coefficients
can be described as:

[1th level]
max
x1

f1 (x, ξ) , (1)

[2th level]
max
x2

f2 (x, ξ) ,

...

[mth level]
max
xm

fm (x, ξ) ,

Subject to
x ∈ G.

where x is an n-dimensional decision vector,ξ =
(ξ1, ξ2, . . . , ξn) is a random rough vector,fi(x, ξ) are
objective functions,i = 1, 2,. . . ,m, which are not well
defined and the concept of maximizingfi(x, ξ), i = 1,
2,. . . ,m is not obvious due to the presence of the random
rough vectorξ. G is a linear convex constraint set.

Definition 1([7]). Let ξ = (ξ1, ξ2, . . . , ξn) is a random
rough vector on the rough space (Λ, △, A, π), and
fi : An → A be continuous functions,i = 1, 2, . . . ,m.
Then the primitive chance of random rough event
characterized byfi (ξ) ≤ 0, i = 1, 2, . . . ,m, is a function
from [0, 1] to [0, 1] and defined as

Ch {fi (ξ) ≤ 0, i = 1, 2, . . . , m} (∝)

= sup

{

β|Tr

{

λ ∈ Λ |Pr

{

fi (ξ (λ)) ≤ 0
i = 1, 2, . . . ,m

}

≥ β

}

≥∝

}

.

Based on the definition of primitive chance, the
random rough chance constrained multi-level
programming (RRCCMLP) model will be expressed as
follows:

[1th level]
max
x1

f1 , (2)

[2th level]
max
x2

f2 ,

...

[mth level]
max
xm

fm ,

Subject to

Ch {fi (x, ξ) ≥ fi} (γi) ≥ δi, i = 1, 2, . . . ,m,

Ch {gr (x) ≤ 0} (ηr) ≥ θr, r = 1, 2, . . . , p,

x ∈ G.

where γi, δi, ηr and θr are predetermined confidence
levels,i = 1, 2, . . . ,m, r = 1, 2, . . . , p.

The multi-level linear programming problem with
random rough coefficients is presented as:

[1th level]
max
x1

ξT1 x , (3)

[2th level]
max
x2

ξT2 x ,

...

[mth level]
max
xm

ξTmx ,

Subject to
eTr x ≤ br, r= 1, 2,. . ., p,

x ≥ 0,

x ∈ G.

where ξi = (ξi1, ξi2, . . . , ξim)T , er = (er1, er2, . . . ,
erm)T and br are random rough vectors,
(r = 1, 2, . . . , p).

Then

Ch
{

eTr x ≤ br
}

(ηr) ≥ θr

⇔ Tr
{

λ | Pr
{

er(λ)
T
x ≤ br (λ)

}

≥ θr

}

≥ ηr},

r = 1, 2, . . . , p.

For given confidence levelsηr, θr, using the primitive
chance measure the chance constraints will be as follows:

Tr
{

λ | Pr
{

er (λ)
T
x ≤ br (λ)

}

≥ θr

}

≥ ηr,

r = 1, 2, . . . , p.
(4)
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Thus a pointx(≥ 0) is called feasible for problem (3)
if and only if the trust measures of the rough events
{λ | Pr{er(λ)

T
x ≤ br(λ)} ≥ θr} are at least

ηr, r = 1, 2, . . . , p.

Since

Ch
{

ξTi x ≥ fi
}

(γ) ≥ δi

⇔ Tr
{

λ | Pr
{

ξi(λ)
T
x ≥ fi

}

≥ δi

}

≥ γi.
(5)

The RRCCMLP model for problem (3) which is called
tr-pr constrained multi-level programming model can be
formulated as follows:

[1th level]
max
x1

f1, (6)

[2th level]
max
x2

f2,

...

[mth level]
max
xm

fm,

Subject to

Tr{λ|Pr{ξi(λ)
T
x ≥ fi} ≥ δi} ≥ γi, i = 1, 2, . . . ,m,

Tr{λ|Pr{er(λ)
T
x ≤ br(λ)} ≥ θr} ≥ ηr, r = 1, 2, . . . , p,

x ≥ 0,

x ∈ G.

whereδi, γi, θr, ηr are predetermined confidence levels,
i= 1, 2, . . . , m, r= 1, 2, . . . , p. Tr{·} indicates the
trust measure of the event in{·}, andPr{·} indicates the
probability of the event in{·}.

2.2 Crisp Equivalent Model

In order to solve a tr-pr constrained multi-level
programming model, a conversion into its crisp equivalent
model is required. However, this procedure may be
difficult in some cases.

Theorem 1([7]). Assume that the random rough variable
ξij is characterized byξij(λ) ∼ jN (ξij(λ), V

c
i ), where

(ξij(λ))n×1 = (ξi1(λ), ξi2(λ), . . . , ξin(λ)) is a rough
variable andV c

i is a positive definite covariance matrix,
it follows thatξi(λ)

T
x = ([a, b], [c, d]) (where c≤ a ≤

b ≤ d) is a rough variable and characterized by the
following trust measure function:

Tr
{

ξi (λ)
T
x ≥ t

}

=











































0 if d ≤ t,

d−t
2(d−c) if b ≤ t ≤ d,

1
2

(

d−t
d−c

+ b−t
b−a)

)

if a ≤ t ≤ b,

1
2

(

d−t
d−c

+ 1
)

if c ≤ t ≤ a,

1 if t ≤ c.

Then,Tr{λ|Pr
{

ξi (λ)
T
x ≥ fi

}

≥ δi} ≥ γi if and

only if



















































b+R ≤ fi ≤ d− 2γi (d− c) +R ifb ≤ M ≤ d,

a+R ≤ fi

≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a

+R if a ≤ M ≤ b,

c+R ≤ fi

≤ d− (d− c) (2γi − 1) +R if c ≤ M ≤ a,

fi ≤ c+R if M ≤ c.

where hi = fi − Φ−1 (1 − δi)
√

xTV c
i x, Φ is the

standardized normal distribution andδi, γi ∈ [0, 1] are
predetermined confidence levels.

For the Proof of Theorem1, the reader is referred to
[7].

The crisp equivalent model of the MLLP problem with
random rough coefficients with trust more than or equal
Tr{ξ} will be as follows:

[1th level]
max
x1

h1 (x), (7)

[2th level]
max
x2

h2 (x),

...

[mth level]
max
xm

hm (x),

Subject to
x ∈ G.

Definition 2. Assume that the random rough variableξij
is characterized byξij(λ) ∼ jN (ξij(λ), V

c
i ), where

(ξij(λ))n×1 = (ξi1(λ), ξi2(λ), . . . , ξin(λ)) is a rough

variable andTr{ξi(λ)
T
x ≥ t} = (ωi1, . . . , ωin). Thenω

is the minimum of(ωi1, . . . , ωin).
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Definition 3. If x∗ is a feasible solution of a three level
programming problem with random rough coefficients in
the objective functions; no other feasible solutionx ∈ G
exists, such thatf(x∗) ≤ f(x), then x∗ is the optimal
solution of the problem with trust value more than or
equalω.

3 Fuzzy Decision Models for The Equivalent
Crisp Problem

To solve an equivalent crisp problem of the multi-level
linear programming problem with rough parameters in its
objective functions based on fuzzy decision model [1], it
is needed to obtain the satisfactory solution that is
acceptable to the first level decision maker (FLDM), and
provide the second level decision maker (SLDM) with the
FLDM decision variables and goals with some leeway to
look for the satisfactory solution. After that, the SLDM
should provide the third level decision maker (TLDM)
with the decision variables and goals with some leeway to
look for the satisfactory solution, and to reach the solution
that is nearest to the satisfactory solution of the FLDM.

3.1 First Level Decision Maker Problem

First, the FLDM solves the following problem:

max h1(x), (8)

Subject to
x ∈ G,

where
x = (x1, x2, x3).

The individual best solution(h∗
1) and individual worst

solution (h−
1 ) will be found for the objective function

h1 (x), where:

h∗
1= max h1 (x) , h−

1 = min h1(x). (9)

Then goals and tolerances will be determined for
individual solutions and the differences between the best
solution and the worst solution, respectively. This can be
formulated as the following membership function of
fuzzy set theory:

µh1
[h1 (x)] =











1 if h1 (x) > h∗
1,

h1(x) − h
−
1

h∗
1
− h

−
1

if h−
1 ≤ h1 (x) ≤ h∗

1,

0 if h−
1 ≥ h1(x).

(10)

Then the solution of the FLDM problem can be
reached by solving the following Tchebycheff problem
[1]:

max λ, (11)

Subject to
x ∈ G,

µh1
[h1 (x)] ≥ λ,

λ ∈ [0, 1].

3.2 Second Level Decision Maker Problem

Second, the SLDM solves the following problem:

max h2(x), (12)

Subject to
x ∈ G,

where
x = (x1, x2, x3).

The individual best solution(h∗
2) and individual worst

solution (h−
2 ) will be found for the objective function

h2(x), where:

h∗
2= max h2(x), h−

2 = min h2(x). (13)

The membership function will be constructed as
follows:

µh2
[h2 (x)] =











1 if h2 (x) > h∗
2,

h2(x) − h
−
2

h∗
2
− h

−
2

if h−
2 ≤ h2 (x) ≤ h∗

2,

0 if h−
2 ≥ h2(x).

(14)

Then the solution of the SLDM problem can be
reached by solving the following Tchebycheff problem:

max β, (15)

Subject to
x ∈ G,

µh2
[h2 (x)] ≥ β,

β ∈ [0, 1].
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3.3 Third Level Decision Maker Problem

Third, the TLDM solves the following problem:

max h3(x), (16)

Subject to
x ∈ G,

where
x = (x1, x2, x3).

The individual best solution(h∗
3) and individual worst

solution (h−
3 ) will be found for the objective function

h3(x), where:

h∗
3= max h3 (x) , h−

3 = min h3(x). (17)

The membership function will be constructed as
follows:

µh3
[h3 (x)] =











1 if h3 (x) > h∗
3,

h3(x) − h
−
3

h∗
3
− h

−
3

if h−
3 ≤ h3 (x) ≤ h∗

3,

0 if h−
3 ≥ h3(x).

(18)

Then the solution of the TLDM problem can be
reached by solving the following Tchebycheff problem:

max γ, (19)

Subject to
x ∈ G,

µh3
[h3 (x)] ≥ γ,

γ ∈ [0, 1].

3.4 Three Level Programming Problem

The FLDM, SLDM, and TLDM solutions are now
discovered. Nevertheless, they are not usually similar, due
to the identity of the objective function of each level. It is
not reasonable for the FLDM and SLDM to provide the
TLDM with the optimal decisionsxF1 , xS2 as control
factors. They should offer some tolerance, so that TLDM
can have an extent feasible region to seek his/her optimal
solution, and minimize the time of searching as well.

That way, the maximum tolerancest1 and t2 will be
provided, so that the decision variablesx1 and x2 range
will be aroundxF

1 andxS
2 respectively and the following

membership function describesxF
1 as

µx1
(x1) =

{

x1 − (xF

1
− t1)

t1
xF
1 − t1 ≤ x1 ≤ xF

1 ,
(xF

1
+ t1) − x1

t1
xF
1 ≤ x1 ≤ xF

1 + t1,

(20)

wherexF
1 is the best solution; (xF

1 − t1) and (xF
1 + t1) are

the worst satisfactory solutions. In addition, this
satisfaction rises linearly with the interval [xF

1 − t1, x1]
and diminishes linearly with the interval [x1, x

F
1 + t1],

and thus other solutions are unacceptable.

The membership function that describesx2 can be
formulated as

µx2
(x2) =

{

x2 − (xS

2
− t2)

t2
xS
2 − t2 ≤ x2 ≤ xS

2 ,
(xS

2
+ t2) − x2

t2
xS
2 ≤ x2 ≤ xS

2 + t2,
(21)

wherexS
2 is the best solution; (xS

2−t2) and (xS
2+t2) are the

worst acceptable solutions. To guide the TLDM towards
the solution through the correct path:

First, the FLDM goals considerh1 ≥ hF
1 is certainly

acceptable andh1 < h′
1 = h1(x

S
1 , xS

2 , xS
3) is unacceptable,

and that the preference with [h′
1, hF

1 ] is linearly
increasing. This because the SLDM got the optimum at
(xS

1 , x
S
2 , x

S
3), that offers the FLDM the objective function

valuesh′
1, makes anyh1 < h′

1 practically undesirable.

The membership functions of the FLDM can be
formulated as

µ′
h1

[h1 (x)] =











1 if h1 (x) > hF
1 ,

h1(x) − h′
1

hF

1
(x) − h′

1

if h′
1 ≤ h1 (x) ≤ hF

1 ,

0 if h1 (x) ≤ h′
1.

(22)

Second, the SLDM goals considerh2 ≥ hS
2 is

certainly acceptable andh2 < h′
2 = h2(x

T
1 , x

T
2 , x

T
3 ) is

unacceptable, and that the preference with [h′
2, hS

1 ] is
linearly increasing. This because the TLDM got the
optimum at (xT

1 , x
T
2 , x

T
3 ), that offers the SLDM the

objective function valuesh′
2, makes anyh2 < h′

2

practically undesirable.

The membership functions of the SLDM can be
formulated as

µ
\
h2

[h2 (x)] =















1 if h2 (x) > hS
2 ,

h2(x) − h
\
2

hS

2
(x) − h

\
2

if h
\
2 ≤ h2 (x) ≤ hS

2 ,

0 if h2 (x) ≤ h
\
2.

(23)

Third, the TLDM needs to construct a membership
function for his/her objective function in order to evaluate
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the fulfillment of each possible solution which will be as
follows:

µ
\
h3

[h3 (x)] =















1 if h3 (x) > hT
3 ,

h3(x) − h
\
3

hT

3
(x) − h

\
3

if h
\
3 ≤ h3 (x) ≤ hT

3 ,

0 if h3 (x) ≤ h
\
3.

(24)

whereh\
3 = h3(xS

1 , x
S
2 , x

S
3).

Finally, to get the satisfactory solution, that is also a
Pareto optimal solution with overall satisfaction for all
DMs, the following Tchebycheff problem [1] will be
solved:

max δ, (25)

Subject to

[(x
F
1 + t1) − x1]

t1
≥ δI,

[x1 − (x
F
1 − t1)]

t1
≥ δI,

[(x
S
2 + t2) − x2]

t2
≥ δI,

[x2 − (x
S
2 − t2)]

t2
≥ δI,

µ′
h1
[h1(x)] ≥ δI,

µ
\
h2
[h2(x)] ≥ δI,

µ
\
h3
[h3(x)] ≥ δI,

t1 > 0, t2 > 0,

δ ∈ [0, 1],

x ∈ G.

whereδ is the overall satisfaction andI the unit column
vector.

A satisfactory solution is found if the FLDM is
satisfied with this solution. Otherwise, he/she needs to
provide the SLDM with new membership function for the
control variables and objectives, and accordingly the
SLDM needs to provide the TLDM with new membership
function for the control variables and objectives. This
process will continue until a satisfactory solution is
found.

4 Numerical Example

A three level linear programming problem with random
rough coefficients can be written as:

[First level]

max
x1

Tr{λ|Pr{k1ξ1x1 + k2ξ2x2 + k3ξ3x3 ≥ f1} ≥ δ1}

≥ γ1,

wherex1, x2 solve

[Second level]

max
x2

Tr{λ|Pr{k4ξ4x1 + k5ξ5x2 + k6ξ6x3 ≥ f2} ≥ δ2}

≥ γ2,

wherex3 solves

[Third level]

max
x3

Tr{λ|Pr{ξ7x1 + ξ8x2 + ξ9x3 ≥ f3} ≥ δ3} ≥ γ3,

Subject to
4x1 + 5x2 − x3 ≤ 100,

2x1 + x2 + x3 ≤ 35,

x1 + x2 + x3 ≤ 20,

x1, x2, x3 ≥ 0.

where (k1, k2, k3, k4, k5, k6) = (1.3, 0.5, 1.0, 0.8, 1.6, 2.0),
the predetermined levels are respectivelyδj = γj = 0.4,
j = 1, 2, 3, and

ξ1 ∼ jN (ρ1, 1), with ρ1 = ([1, 2], [1, 4]),

ξ2 ∼ jN (ρ2, 2), with ρ2 = ([3, 4], [2, 5]),

ξ3 ∼ jN (ρ3, 1), with ρ3 = ([2, 3], [0, 3]),

ξ4 ∼ jN (ρ4, 4), with ρ4 = ([4, 5], [2, 5]),

ξ5 ∼ jN (ρ5, 3), with ρ5 = ([3, 4], [1, 4]),

ξ6 ∼ jN (ρ6, 1), with ρ6 = ([1, 2], [0, 3]),

ξ7 ∼ jN(ρ7, 1), with ρ7 = ([0, 1], [0, 3]),

ξ8 ∼ jN (ρ8, 2), with ρ8 = ([2, 3], [1, 4]),

ξ9 ∼ jN (ρ9, 1), with ρ9 = ([2, 3], [2, 5]),

ρi (i = 1, 2, . . . , 9) are rough variables. By settingδj =
γj = 0.4; thenΦ−1(1− δj) = 0.26, j = 1, 2, 3.

And its solution will be as follows:

(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9)

= (1.8, 3.64, 0.86, 3.9, 2.1, 0.73, 0.86, 2.12, 2.86).

(Tr{ξ1}, T r{ξ2}, T r{ξ3}, T r{ξ4}, T r{ξ5}, T r{ξ6},

T r{ξ7}, T r{ξ8}, T r{ξ9})

= (0.46, 0.41, 0.85, 0.68, 0.82, 0.88, 0.43, 0.75, 0.43).
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The equivalent crisp problem with trust more than or equal
0.41 can be written as:

[First level]

max
x1

2.08x1 + 1.3x2 + 0.6x3 + 0.26
√

x2
1 + 2x2

2 + x2
3,

wherex1, x2 solve

[Second level]

max
x2

2.08x1 + 2.56x2 + 1.2x3 + 0.26
√

4x2
1 + 3x2

2 + x2
3,

wherex3 solves

[Third level]

max
x3

0.6x1 + 1.6x2 + 2.6x3 + 0.26
√

x2
1 + 2x2

2 + x2
3,

Subject to
4x1 + 5x2 − x3 ≤ 100,

2x1 + x2 + x3 ≤ 35,

x1 + x2 + x3 ≤ 20,

x1, x2, x3 ≥ 0.

First, the FLDM solves the following problem:

max 2.08x1 + 1.3x2 + 0.6x3 + 0.26
√

x2
1 + 2x2

2 + x2
3,

Subject to
4x1 + 5x2 − x3 ≤ 100,

2x1 + x2 + x3 ≤ 35,

x1 + x2 + x3 ≤ 20,

x1, x2, x3 ≥ 0.

The best and worst solution of FLDM will be found:

h∗
1 = 42, h−

1 = 0.

The membership functionµh1(.) will be constructed using
(10) and (11) will be solved as follows:

max λ,

Subject to
(x1, x2, x3) ∈ G,

2.08x1+1.3x2+0.6x3+0.26
√

x2
1 + 2x2

2 + x2
3−42λ ≥ 0,

λ ∈ [0, 1].

Whose solution is

(xF
1 , x

F
2 , x

F
3 ) = (0.1, 0.92, 0.63),

hF
1 = 2.2, λ = 0.052.

Second, the SLDM solves the following problem:

max 2.08x1 +2.56x2 +1.2x3 + 0.26
√

4x2
1 + 3x2

2 + x2
3,

Subject to
4x1 + 5x2 − x3 ≤ 100,

2x1 + x2 + x3 ≤ 35,

x1 + x2 + x3 ≤ 20,

x1, x2, x3 ≥ 0.

The best and worst solution of SLDM will be found:

h∗
2 = 60.2, h−

2 = 0.

The membership functionµh2(.) will be constructed using
(14) and (15) will be solved as follows:

max β,

Subject to
(x1, x2, x3) ∈ G,

2.08x1 + 2.56x2 + 1.2x3 + 0.26
√

4x2
1 + 3x2

2 + x2
3

− 60.2β ≥ 0,

β ∈ [0, 1].

Whose solution is

(xS
1 , x

S
2 , x

S
3) = (0.3, 0.1, 0.31),

hS
2 = 1.433, β = 0.024.

Third, the TLDM solves the following problem:

max 0.6x1 + 1.6x2 + 2.6x3 + 0.26
√

x2
1 + 2x2

2 + x2
3,

Subject to
4x1 + 5x2 − x3 ≤ 100,

2x1 + x2 + x3 ≤ 35,

x1 + x2 + x3 ≤ 20,

x1, x2, x3 ≥ 0.

The best and worst solution of TLDM will be found:

h∗
3 = 57.2, h−

3 = 0.
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The membership functionµh3(.) will be constructed
using (18) and (19) will be solved as follows:

max γ,

Subject to
(x1, x2, x3) ∈ G,

0.6x1+ 1.6x2+ 2.6x3 + 0.26
√

x2
1 + 2x2

2 + x2
3

− 57.2 γ ≥ 0,

γ ∈ [0, 1].

Whose solution is

(xT
1 , x

T
2 , x

T
3 ) = (0.132, 0.166, 0.1),

hT
3 = 0.679, γ = 0.012.

Assuming that both the FLDM control decisionxF
1 and the

SLDM control decisionxS
2 are around 0.1 with tolerance

1, the TLDM solves the following problem:

max δ,

Subject to
(x1, x2, x3) ∈ G,

x1 + δ ≥ 1.1,

− x1 + δ ≥ 0.9,

x2 + δ ≥ 1.1,

− x2 + δ ≥ 0.9,

2.08x1 + 1.3x2 + 0.6x3 + 0.26
√

x2
1 + 2x2

2 + x2
3

− 1.14δ ≥ 1.06,

2.08x1 + 2.56x2 + 1.2x3 + 0.26

√

4x2
1 + 3x2

2 + x2
3

− 1.33δ ≥ 0.105,

0.6x1 + 1.6x2 + 2.6x3 + 0.26
√

x2
1 + 2x2

2 + x2
3

+ 0.52δ ≥ 1.2,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

δ ∈ [0, 1].

Whose compromise solution with trust more than or equal
0.41 isX0 = (0.385, 0.192, 1.234) andδ = 0.94 (overall
satisfaction for all DMs).

f0
1 = (2.13), f0

2 = (3.16), f0
3 = (4.09).

5 Conclusion

This paper presented a multi-level linear programming
problem with random rough coefficients in objective
functions. At the first phase of the solution approach and
to avoid the complexity of this problem, we began by
converting the rough nature of this problem into
equivalent crisp problem. At the second phase, we used
the concept of tolerance membership function at each
level to solve a Tchebcheff problem till an optimal
solution is obtained.

There are however several open points for future
research in the area of rough multi-level linear
optimization, in our opinion, to be studied. Some of these
points of interest are stated in the following:

1. An algorithm for solving multi-level integer linear
multi-objective decision-making problems with rough
parameters in the objective functions, in the
constraints and in both using Taylor series.

2. An algorithm for solving multi-level mixed-integer
linear multi-objective decision-making problems with
rough parameters in the objective functions, in the
constraints and in both using Taylor series.

References

[1] M.S. Osman, M.A. Abo-Sinna, A.H. Amer and O.E. Emam,
A multi-level nonlinear multi-objective decision making
under fuzziness, Applied Mathematics and Computation,
153 (2004) 239–252.

[2] O.E. Emam, A fuzzy approach for bi-level integer
nonlinear programming problem, Applied Mathematics and
Computation, 172 (2006) 62–71.

[3] O.E. Emam, Interactive approach to bi-level integer
multi-objective fractional programming problem, Applied
Mathematics and Computation, 233 (2013) 17–24.

[4] I.A. Baky, Solving multi-level multi-objective linear
programming problems through fuzzy goal programming
approach, Applied Mathematical Modelling, 34(9) (2010)
2377–2387.

[5] M.S. Osman, W.F. Abd El-Wahed, M. M. K. El Shafei and
H. B. Abd El Wahab, A proposed approach for solving
rough bi-level programming problems by genetic algorithm,
Int. J. Contemp. Math. Sciences, 6 (2011) 29–32.

[6] Z. Pawlak, J. Grzymala-Busse, R. Slowinski, W. Ziarko,
Rough sets, Communications of the ACM, 38(11) (1995)
88–95.

[7] J. Xu and L. Yao, A class of multiobjective linear
programming models with random rough coefficients,
Mathematical and Computer Modelling, 49 (2009) 189–
206.

c© 2015 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.4, No. 1, 41-49 (2015) /www.naturalspublishing.com/Journals.asp 49

O. E. Emam is Associate
professor of information system
at the Faculty of Computers
and Information, Helwan
University. He received the
Ph.D. degree in operations
research at Helwan University.
His research interests are in
the multi-level optimization field.

M. El-Araby is
a Senior Software Engineer
at ITWorx, Cairo, Egypt. He
has an extensive experience
in developing software
applications/systems using
Microsoft technologies. He
holds a B.Sc. in Computer
Science from Helwan
University, 2009 and a

Software Development Diploma from Information
Technology Institute (ITI), 2010. Currently, he studies
for a master degree in computer science at Helwan
University.

M. A. Belal obtained
his PhD from Cairo
University in 1998. He
was an Assistant Professor
of Computer Science
in the Faculty of Computers
and Information, Helwan
University, Egypt. In 2003,
he joined the Department

of Electrical and Computer Engineering, George
Washington University in USA as a Visiting Professor. In
2004, he joined Al-Zaytoonah University in Jordan as an
Associate Professor. In 2008, he returned back to
the Faculty of Computers and Information, Helwan
University, Egypt and now, he is the Dean of the faculty.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Problem Formulation and Solution Concept
	Fuzzy Decision Models for The Equivalent Crisp Problem
	Numerical Example
	Conclusion

