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Abstract: In this paper, the nonlinear Schrödinger equation with power law nonlinearity is studied. The first 
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1. Introduction 

Recently, searching for exact traveling wave solutions of nonlinear partial differential equations has gained more 

and more popularity. Traveling wave solutions may be very helpful in understanding various phenomena in a number 

of fields, such as plasma physics, nonlinear optics, biology, among others. In recent decades, several powerful 

methods have been proposed to construct exact solutions for nonlinear partial differential equations, such as tanh 

method [13-14], multiple exp-function method [15], transformed rational function method [16], extended tanh-

function method [17-18], first integral method [7-12] and so on.                                                                              

In this paper, we will consider the nonlinear Schrödinger equation with power law nonlinearity [1] with following 

form                                             

2| | 0,n

t xxi A                                                                                                                                     (1) 

where A is a real parameter and ( , )x t  is a complex -valued function of two real variables , .x t Eq. (1) has 

important application in various fields, such as nonlinear optics, plasma physics, superconductivity and quantum 

mechanics. More details are presented [3-6] . 

In this paper, we would like to obtain the exact solutions of Eq. (1) by using the first integral method and the 

Riccati sub-ODE method. The first integral method is a powerful solution method for the computation of exact 

traveling  wave solutions. This method is one of most direct and effective algebraic method for finding exact 

solutions of nonlinear partial differential equations. The first integral method,       which is based on the ring theory of 

commutative algebra, was first proposed by Feng [7].                     

This method was further developed by the same    author in [8-11]. The aim of this paper is to construct exact 

solutions for the nonlinear Schrödinger equation with power law nonlinearity. 

2. The first integral method 

The main steps of the first integral method are summarized as follows.                                             

Step 1.  Consider a general nonlinear PDE in the form                                                                           

( , , , , ,...) 0,x t xx xtE u u u u u 
                                                                                                                                    

(2)             

where ( , )u u x t is a complex-valued          function of two real variables , .x t  

To find the travelling wave solutions to Eq. (2), we introduce the wave variable                                  
 

( ), ,k x ct x t                                                                                                                                    (3) 

so that                                                                    
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( , ) ( ),iu x t e u 
                                                                                                                                                   

(4) 

where , ,k c   and  are constants, all of them are to be determined.                                               

Based on this we use the following changes     

2 2
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 
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 
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 
 

 

  
   

  

  
    

   

                                                                                                             (5) 

and so on for the other derivatives. 

Using (5) changes the PDE (2) to an ODE           

2

2
( , , ,...) 0,

u u
H u

 

 


 
                                                        (6)                   

where ( )u u   is an unknown function, H  is a polynomial in the variable u  and its derivatives.                                                                 

Step 2.  Suppose the solution of ODE (6) can be written as follows:  

 )()(),(  Xutxu                                                                      (7)                                                     

 
and furthermore,  we introduce a new independent variable ( )Y Y 

 
such that 

  )(' XY                                                                                                                                                              (8)      

            

   

Step 3.Under the conditions of Step 2, Eq.  (6) can be converted to a system of nonlinear  ODEs as follows             

                                            

( )
( ),

( )
( ( ), ( )).

X
Y

Y
F X Y







 











       

                                                                                                                                  (9) 

If we can find the integrals to Eq. (9), then the general solutions to Eq. (9) can be solved directly.    However, in 

general, it is really difficult for us to realize this even for one first integral, because for a given plane autonomous 

system, there is neither a systematic theory that can tell us how to find its first integrals, nor a logical way for telling 

us what these first integrals are. We will apply the so-called Division Theorem to obtain one first integral to Eq. (9) 

which reduces Eq. (6) to a first order integrable ODE.  An exact solution to Eq. (2) is then obtained by solving this 

equation.      

                                       

Division Theorem.Suppose  that   ( , )P w z  and   ( , )Q w z  are  polynomials in [ , ],C w z  and ( , )P w z  is 

irreducible  in [ , ].C w z  If   ( , )Q w z vanishes at  all zero points of   ( , ),P w z  then there exists  a  polynomial  

( , )G w z  in [ , ]C w z  such that    

 ( , ) ( , ) ( , ).Q w z P w z G w z
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3. The Riccati sub-ODE method 

 

Step 1.Suppose that the solutions ( )u   for Eq. (6) satisfy                                                                 
 

0 1

( ) ,
N N

i i

i i

i i

u a b   

 

                                                                                                                                (10)
 

where ,i ia b  are constants to be determined later, N is a positive integer that can be determined by balancing the 

highest order linear term and the nonlinear terms in Eq. (6), ( )   satisfies the known  Riccati equation:                                            

2 ( 0).a b a                                                                                                                                      (11) 

Eq. (11) admits the following exact solutions [2]:                                                                            

When     0,b  

1

0

1
( ) ,

a
 

 
 


 

where
0  is an arbitrary constant.                       

When   0,ab  

0
2

ln
( ) tanh( ),

2

ab
ab

a

 
  


    0 0, ( 1).     

0
3

ln( )
( ) coth( ),

2

ab
ab

a

 
  

 
    0 0.   

When 0,ab  

4 0( ) tan( ),
ab

ab
b

      

where
0  is an arbitrary constant.                     

 

Step 2. Substituting Eq. (10) into Eq. (6), by use of Eq. (11), we can convert the left-hand side of Eq. (6) to a 

polynomial in . Equating each coefficient of 
i to zero, we obtain a set of algebraic equations.                                                                   

Step 3.Solving the equations in the last step, we can obtain the values of               

( 0,1,..., ), ( 1,..., ), , , .i ia i N b i N a b c 
 

Step 4.Combining the results in Step 3 with   the various solutions of Eq. (11), we can obtain a variety of exact 

solutions for Eq. (6). 

 

4. Nonlinear Schrödinger equation with power law nonlinearity    

We use the transformation                                     

( )( , ) ( ), ( 2 ),i x tx t e u k x t      
                                                                   

(12) 

where ,k   and  are constants, all of them are to be determined.                                               

Substituting (12) into (1), we obtain ordinary differential equation:                                                  

2 2 2 1( ) 0.nu k u Au      
                 

(13) 

4.1. The first integral method: 
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Due to the difficulty in obtaining the first integral of Eq. (13), we propose a transformation denoted by                                                                  

1

.nu v  

    Then Eq. (13) is converted to      

 

 
0"

')1(
)(

22

2

2
32 


 






n

k

n

nk
A                                                                                     (14)         

Rewrite this equation as follows                          

2 2
3

2 2

( ) 1 ( )
( 1) 0.

n nA v
v v v

k k n v

  
     

 

                                                                                                        (15) 

If we let , ,
dv

X v Y
d

 

 

the Eq. (15) is                                                                                  

equivalent to the two dimensional  autonomous system                                                                             

 

2 2
3

2 2

,

( ) 1
(1 ) .

X Y

n nA Y
Y X X

k k n X

 

 

 

    
                                                                                                           

(16) 

Making the following transformation   

,
d

d
X


                                                                                                                                                                 (17) 

then system (16) becomes  

2
2 4 2

2 2

,

( ) 1
(1 ) .

dX
XY

d

dY n nA
X X Y

d k k n



 









    


                                                                                                  (18) 

Now, we are applying the Division Theorem to seek the first integral to system (18). Suppose that 

( ), ( )X X Y Y   are the nontrivial solutions to (18), and                                                                 

0

( , ) ( ) 0,
m

i

i

i

q X Y a X Y


 
 

is an irreducible polynomial in [ , ],C X Y   such that                                                                              

0

( ( ), ( )) ( ( )) ( ) 0,
m

i

i

i

q X Y a X Y   


                                                                                                                (19) 

where ( )( 0,1,..., ),ia X i m are polynomials of  X and  ( ) 0.ma X  Eq.  (19)  is called the first integral  to 

system (18). We start our study by assuming 1m   in (19). Note that
dq

d
 is a polynomial in X and ,Y and

[ ( ), ( )] 0q X Y    implies 

(18)

0.
dq

d
  According to the Division Theorem, there exists a polynomial 

( ) ( )g X h X Y in [ , ]C X Y  such that                                                  
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d
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1
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                                                                                                               (20) 

where prime denotes differentiation with respect to the variable .X  By comparing with  the  coefficients of  

( 2,1,0)iY i  of  both sides of (20), we have                                         

1 1 1

1
( ) ( ) ( ) (1 ) ( ),Xa X h X a X a X

n
                                                                            (21) 

0 1 0( ) ( ) ( ) ( ) ( ),Xa X g X a X h X a X                         (22) 

2
2 4

1 02 2

( )
( )[ ] ( ) ( ).

n nA
a X X X g X a X

k k

 
                         (23) 

Since ( )( 0,1)ia X i   are  polynomials, then from (21) we deduce that  
1( )a X  is constant  and  

1
( ) 1 .h X

n
    For 

simplicity, take 
1( ) 1.a X   Balancing  the  degrees  of  ( )g X   and 

0( ),a X we conclude that 

0deg( ( )) deg( ( )) 2.g X a X   Suppose that   

2

0 1 2

2

0 0 1 2

2 2

( ) ,

( ) ,

( 0, 0),

g X A A X A X

a X B B X B X

A B

  

  

 

                      (24) 

where
0 1 2 0 1 2, , , , ,A A A B B B are all constants to be determined . Substituting (24) into Eq. (22), we obtain                                                           

2 1
2 0

1 1
( ) (( 1) ) ( ) ( 1) .

B
g X B X X B

n n n
    

 

Substituting 
0 1( ), ( )a X a X and ( )g X in (23), and setting all the coefficients of powers X to be zero, we obtain a 

system of nonlinear algebraic equations and by solving it, we obtain the following solutions                                      

0 1 2

2

0, ,
1

,

n A
B B B

k n

 

    


 

                             (25)

 

where k and   are arbitrary constants.  Using the conditions (25) in (19), we obtain        

2 0.
1

n A
Y X

k n
  


 

Combining this first integral with (18), the second order differential Eq. (14) can be reduced to                                

                            

2.
1

dv n A
v

d k n
 


                        (26) 
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Solving Eq. (26) and changing to the original variables, we obtain the complex rational function solutions to the 

nonlinear Schrödinger equation with power law nonlinearity in the following form  

n
txi

txkA

n

n

k
etx

1

0

)(

1
)2(

1
  .

1
),(

2













 


 

                                                                                      (27) 

where
0    is an arbitrary constant.           

Now we assume that 2m  in (19). By the Division Theorem, there exists a polynomial ( ) ( )g X h X Y in 

[ , ]C X Y  such that    
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
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
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
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


2
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)(h(X)Yg(X)                                                             

1
1
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.)(                                                              
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i
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i
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Y
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X
k

nA

k

n
YXia

XYYXa
d

dY

dY

dq

d

dX

dX

dq

d

dq





                   

                                                                                           (28) 

On equating the coefficients of ( 3,2,1,0)iY i  on both sides of (28), we have                                    

2 2 2

2
( ) ( ) ( ) (2 ) ( ),Xa X h X a X a X

n
                       (29)   

),()
1

1()()()()()(' 1121 Xa
n

XaXhXaXgXXa 

                                                                           

(30)

 

),()()()(
)(

)(2)(' 02

4

2

2

2

2

20 XaXhXaXgX
k

nA
X

k

n
XaXXa 















                               

   (31) 

).()(
)(

)( 0

4

2

2

2

2

1 XaXgX
k

nA
X

k

n
Xa 












                                                                                   

   (32)

 
Since ( )( 0,1,2)ia X i  are  polynomials, then from (29) we deduce that 

2 ( )a X  is constant and 
2

( ) 2 .h X
n

   For 

simplicity, take 
2( ) 1.a X   Balancing the degrees 

1( ), ( )g X a X  and 
0( ),a X  we conclude that                                                             

1 0deg( ( )) 2, deg( ( )) 2, deg( ( )) 4.g X a X a X    

 Suppose that                                                        

2

0 1 2

2

1 0 1 2

2 2

( ) ,

( ) ,

( 0, 0),

g X A A X A X

a X B B X B X

A B

  

  

 

                                                                                                                     (33) 

)0(   ,)( 4

4

4

3

3

2

2100  cXcXcXcXccXa

 where
0 1 2 0 1 2 0 1 3 4, , , , , , , , ,A A A B B B c c c c are all constants to be determined.                                      

Substituting (33) into Eqs. (30)- (32), and setting all the coefficients of powers X to be zero, we obtain a system 

of nonlinear algebraic equations and by solving it we obtain                                       



 

  N. Taghizadeh et al:  Exact solutions for the nonlinear Schrödinger equation ….   

 

13 

0 1 2

0 1 2

0 1 2 3

2
2

4 2

2
0, ( 1),

2
0, ,

1

0,

, ,
( 1)

A A A A n
k

n A
B B B

k n

c c c c

n A
c

k n
 

     

    


   

   


                                                                                                                   (34) 

where k and   are arbitrary constants. 

Now, taking the solution set (34) into account, Eq. (19) becomes                                                       

2
4 2 2

2

2
0,

( 1) 1

n A n A
X X Y Y

k n k n
    

 
 (35) 

which is a first integral of Eq. (18). Solving Eq. (35), we get                                

2.
1

n A
Y X

k n
  


                                                                                                                                       (36) 

Combining (36) with (18), we obtain the exact solution to Eq. (14) and then the complex rational function solutions to 

the nonlinear Schrödinger equation with power law nonlinearity can be written as 

n
txi

txkA

n

n

k
etx

1

0

)(

1
)2(

1
  .

1
),(

2













 


 

                                                                                      (37)

 
  

where
0    is an arbitrary constant. 

4.2. The Riccati sub-ODE method: 

 

Rewrite Eq. (14) as follows 

0")')(1()( 22242222   nknkAnn

  

 

Suppose that the solutions of Eq. (38) can be expressed by a polynomial in  as follows:             

0 1

( ) ,
N N

i i

i i

i i

u a b   

 

                                                                                                                   (39) 

where ( )   satisfies Riccati equation (11)  . 

 

Balancing the order of vv and
4v in Eq. (38), we have 1.N  Therefore; Eq. (39)     can              be  rewritten as   


 1

10)(
b

aa 

                                                                                                                                                (40)

 

where 0 1 1, ,a a b are constants to be determined late 

Substituting Eq. (40) into Eq. (38) we can obtain an equation with respect to , 0, 1, 2,...i i    collecting all 

the terms with the same power of  together and equating each coefficient to zero, yields a set of simultaneous 

algebraic equations as follows:   
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02)1( 2
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224
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22
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224  aankAanaank 

,024 10

223

10

3  aaankanAa 

(41) 

,042)(212 2

1

3

0

2

10

2

10

22

1

2

10

2  aAanaabankaanbaAan 

 

,0)()1(12

)(2)1(46)1(

2

0

224

0

22

1

22

11

2

0

2

11

22

11

22

1

2

1

22

1

220





anAanabnkbaAan

bAanbabankbAanbank




 

 

 

,042)(212 1

3

0

2

10

2

10

222

1

2

10

21  bAanbabankbanbaAan  

,0)1(2

26)1(22)(4

112

2

11

222

1

2

0

22

1

22

1

22

1

223

11

22




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With the aid of Maple, we shall find the special solution of the above system 

where 

0 1

1

2
2

2

1
0, ,

1
,

4
,

ak n
a a

n A

kb n
b

n A

k ab

n
 


   


 

  

 

, ,a b kand are arbitrary constants. 

From the conditions (42) we obtain 














)(
)(

1
)(




b
a

A

n

n

k
                                                                                                                    (42) 

  

 

Then combining with the solutions of Riccati equation (11) we can obtain the exact solutions as follows. When 

0,b   we obtain the complex rational function solutions to the nonlinear Schrödinger equation with power law 

nonlinearity in the following form                                                           

2

1

( )

1

0

1
( , ) ( ) .

( 2 )

n
i x tk n a

x t e
n A ak x t

 
 


  

  
   

 

When 0,ab   we obtain the complex trigonometric function solutions to the nonlinear Schrödinger equation with 

power law nonlinearity in the following form 
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  







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
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

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(

1
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2

0

2

2

2

2
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 )2(cot())2(tan(a .
1

),(


  

   When 0,ab   we obtain the complex hyperbolic function solutions to the nonlinear Schrödinger equation with 

power law nonlinearity in the following form  
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1
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2
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 )
2
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)2(cot()

2

ln
)2(tanh(a .

1
),(









 

 

5. Conclusion 
In this paper, some traveling wave solutions of the nonlinear Schrödinger equation with power law nonlinearity 

are successfully constructed by use of the first integral method and the Riccati sub-ODE method respectively. From 

the results we have obtained, it turns out that the Riccati sub-ODE method is more effective than the first integral 

method in handling the presented problem, and more general solutions are constructed by the Riccati sub-ODE 

method.  The methods proposed in this paper can also be extended to solve some nonlinear evolution equations in 

mathematical physics.                                                                   
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