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1 Introduction

In the last a few years we can see an increasing interest in the Bogolyubov-Born-Green-
Kirkwood-Yvon’s (BBGKY) hierarchy. This interest is quite natural, since this hierarchy is
related to the equation of Liouville, which is describing the evolution of a system interact-
ing many particles with the Boltzmann [1,7] and Vlasov equations. Last equations describe
the evolution of one particle and they are fundamental equations, describing the evolution
of particles in solids, semiconductors, in gas and in plasma. Unlike Liouville’s equation,
the structure of the BBGKY’s hierarchy permits the generalization of the physical results
for one particle to system of many particles.

Since the time, when it was formulated in 1946, the BBGKY’s hierarchy was the object
of investigation for physicists as well as mathematicians [2–8, 11–13, 16, 18–22, 24–28].

Well known, that charged particles interact via the coulomb potential. Until present,
there is no solution of the BBGKY’s hierarchy of quantum kinetic equations in the case
when the particles interact via a coulomb potential. This is an important problem for many
researchers. The present paper addresses the solution of this problem.
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2 Formulation of the Problem

We consider the hierarchy BBGKY of quantum kinetic equations, which describes the
evolution of a system of identical particles with mass m and charge q interacting via a
coulomb potential [10, 14, 15] φ(xi, xj) = q2/|xi − xj |, which depends on the distance
between particles

|xi − xj | =
(
(x1

i − x1
j )

2 + (x2
i − x2

j )
2 + (x3

i − x3
j )

2
)1/2

and charges q. We assume that the charge is a real constant.
The BBGKY’s hierarchy is given by [2–5]

i
∂ρs(t, x1, . . . , xs; x′1, . . . , x

′
s)

∂t
= [Hs, ρs](t, x1, . . . , xs; x′1, . . . , x

′
s)

+
N

V

(
1− s

N

)
Trxs+1

∑

1≤i≤s

(
φi,s+1(|xi − xs+1|)− φi,s+1(|x′i − xs+1|)

)

× ρs+1(t, x1, . . . , xs, xs+1; x′1, . . . , x
′
s, xs+1), (2.1)

with the initial condition

ρs(t, x1, . . . , xs; x′1, . . . , x
′
s)|t=0 = ρs(0, x1, . . . , xs; x′1, . . . , x

′
s). (2.2)

In the problem given by equation (2.1) and (2.2) the vector represented by xi gives
the position of ith particle in the 3-dimensional Euclidean space R3, xi = (x1

i , x
2
i , x

3
i ),

i = 1, 2, . . . ., s, and xα
i , α = 1, 2, 3 are coordinates of a vector xi. The length of the vector

xi is denoted by
|xi| =

(
(x1

i )
2 + (x2

i )
2 + (x3

i )
2
)1/2

.

The reduced statistical operator of s particles is ρs(x1, . . . , xs;x′1, . . . , x
′
s) related by posi-

tive symmetric density matrix of N particles by [2–5]

ρs(x1, . . . , xs; x′1, . . . , x
′
s)

= V sTrxs+1,...,xN
D(x1, . . . , xs, xs+1, . . . , xN ; x′1, . . . , x

′
s, xs+1, . . . , xN ),

where s ∈ N , N is the number of particles, V the volume of the system of particles. The
trace is defined in terms of the kernel ρ(x, x′) by the formula

Trxρ =
∫

ρ(x, x)dx.

In equation (2.1) ~ = 1 is the Planck constant and [ , ] denotes the Poisson bracket.
The Hamiltonian of system is defined as

Hs =
∑

1≤i≤s

Ti +
∑

1≤i<j≤s

φi,j ,
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where

Ti = −~
24i

2m
, φi,j =

q2

|xi − xj | ,

and 4i is the Laplacian

4i =
∂2

∂(x1
i )2

+
∂2

∂(x2
i )2

+
∂2

∂(x3
i )2

,

The operator given by

(Φρs)(x1, . . . , xs; x′1, . . . , x
′
s) =

∑

1≤i<j≤s

φi,j(|xi − xj |)ρs(x1, . . . , xs;x′1, . . . , x
′
s)

is symmetric.
In the present work, the Cauchy problem (2.1)-(2.2) is solved for a quantum system

finite number paricles contained in the finite bounded region (vessel) with volume V = |Λ|.
A state of this system is described by a density matrix ρΛ

s (t, x1, . . . , xs;x′1, . . . , x
′
s)

that satisfies the Cauchy problem

i
∂ρΛ

s (t, x1, . . . , xs; x′1, . . . , x
′
s)

∂t
= [HΛ

s , ρΛ
s ](t, x1, . . . , xs;x′1, . . . , x

′
s)

+
N

V

(
1− s

N

)
Trxs+1

∑

1≤i≤s

(
φi,s+1(|xi − xs+1|)− φi,s+1(|x′i − xs+1|)

)

× ρΛ
s+1(t, x1, . . . , xs, xs+1; x′1, . . . , x

′
s, xs+1), (2.3)

with the initial condition

ρΛ
s (t, x1, . . . , xs; x′1, . . . , x

′
s)|t=0 = ρΛ

s (0, x1, . . . , xs; x′1, . . . , x
′
s). (2.4)

In (2.3) a Hamiltonian of a system is defined as

HΛ
s (x1, . . . , xs) =

∑

1≤i≤s

(
− 1

2m
4xi +uΛ(xi)

)
+

∑

1≤i<j≤s

φi,j(|xi − xj |),

where uΛ(x) is an external field which keeps the system in the region Λ (uΛ(x) = 0 if
x ∈ Λ and uΛ(x) = +∞ if x /∈ Λ).

The trace is defined in the region by the formula

Trxρ =
∫

Λ

ρ(x, x)dx.

Introducing the notation

(HΛρΛ
)
s
(t, x1, . . . , xs;x′1, . . . , x

′
s) =

[
HΛ

s , ρΛ
s

]
(t, x1, . . . , xs; x′1, . . . , x

′
s);(

DΛ
xs+1

ρΛ
)

s
(x1, . . . , xs;x′1, . . . , x

′
s) = ρΛ

s+1 (x1, · · ·xs, xs+1; x′1, · · · , x′s, xs+1) ;
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(AΛ
xs+1

ρΛ)s(t, x1, . . . , xs; x′1, . . . , x
′
s)

=
N

V

(
1− s

N

) ∑

1≤i≤s

(
φi,s+1(|xi − xs+1|)− φi,s+1(|x′i − xs+1|)

)

· ρΛ
s (t, x1, . . . , xs;x′1, . . . , x

′
s);

ρΛ(t) = {ρΛ
1 (t, x1; x′1), . . . , ρ

Λ
s (t, x1, · · · , xs : x′1, . . . , x

′
s), . . .}, s = 1, 2, . . . ,

we can cast (2.3) and (2.4) in the form

i
∂

∂t
ρΛ

s (t, x1, . . . , xs; x′1, . . . , x
′
s) =

(HΛρΛ
)
s
(t, x1, . . . , xs; x′1, . . . , x

′
s)

+
∫

Λ

(
AΛ

xx+1
DΛ

xx+1
ρΛ

)
s
(t, x1, . . . , xs, xs+1;x′1, . . . , x

′
s, xs+1)dxx+1, (2.5)

ρΛ
s (t,x1, . . . , xs;x′1, . . . , x

′
s)|t=0 = ρΛ

s (0, x1, . . . , xs;x′1, . . . , x
′
s)

≡ ρΛ
s (x1, . . . , xs;x′1, . . . , x

′
s). (2.6)

3 Solution of the Cauchy Problem for BBGKY Hierarchy of Quantum
Kinetic Equations with Coulomb Potential

To obtain the solution of the Cauchy problem defined by (2.3) and (2.4) or by the
reduced form in (2.5) and (2.6), we use a semigroup method [9, 17, 19–21].

Let Ls
2(Λ) be the Hilbert space of functions ψΛ

s (x1, . . . , xs), xi ∈ R3(Λ),
and BΛ

s be the Banach space of positive-definite, self-adjoint nuclear operators
ρΛ

s (x1, . . . , xs; x′1, . . . , x
′
s) on Ls

2(Λ)

(ρΛ
s ψΛ

s )(x1, . . . , xs) =
∫

Λ

ρΛ
s (x1, . . . , xs;x′1, . . . , x

′
s)ψ

Λ
s (x′1, . . . , x

′
s)dx′1 . . . , dx′s

with norm ∣∣ρΛ
s

∣∣
1

= sup
∑

1≤i≤∞

∣∣(ρΛ
s ψs

i , ϕ
s
i )

∣∣,

where the upper bound is taken over all orthonormalized systems of finite, twice differen-
tiable functions with compact support {ψs

i } and {ϕs
i} in Ls

2(Λ), s ≥ 1 and
∣∣ρΛ

0

∣∣
1

=
∣∣ρΛ

0

∣∣.
We’ll suppose that the operators ρΛ

s (t) and HΛ
s act in the space Ls

2(Λ) with zero bound-
ary conditions.

Let BΛ be the Banach space of sequences of nuclear operators

ρΛ = {ρΛ
0 , ρΛ

1 (x1;x′1), . . . , ρ
Λ
s (x1, . . . , xs; x′1, . . . , x

′
s), . . .},

where ρΛ
0 are complex numbers, ρΛ

s ⊂ BΛ
s ,

ρΛ
s (x1, . . . , xs; x′1, . . . , x

′
s) = 0, when s > s0,
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s0 is finite and the norm is
∣∣ρΛ

∣∣
1

=
∞∑

s=0

∣∣ρΛ
s

∣∣
1
.

The coulomb potential φi,j = q2/|ri,j | can be represented as

φi,j = φ1
i,j + φ2

i,j ,

where

φ1
i,j =

q2

|ri,j |
( 1

1 + |ri,j |
)
⊂ L2(R3), φ2

i,j =
q2

1 + |ri,j | ⊂ L∞(R3),

ri,j =
(
(x1

i − x1
j )

2 + (x2
i − x2

j )
2 + (x3

i − x3
j )

2
)1/2

.

Therefore the coulomb potential satisfies the conditions of Theorem X.15 in [23] and
the Hamiltonian with coulomb potential

HC
s (xi, xj) = −

∑

1≤i≤s

1
2
4xi +

∑

1≤i<j≤s

q2

|xi − xj |

is a self-adjoint operator on the set D(HC
s ) of finite, twice differentiable functions with

compact support [10].
Let B̃Λ

s be a dense set of “good” elements of BΛ
s of type BΛ

s ∩D(HC
s )⊗D(HC

s ), where
D(HC

s ) is the domain of the operator HC
s [10] and ⊗ denote the algebraic tensor product.

Consider the operators

(
ωΛ(t)ρΛ

)
s
(x1, . . . , xs; x′1, . . . , x

′
s) =

(
e−iHΛ

s tρΛeiHΛ
s t

)
s
(x1, . . . , xs; x′1, . . . , x

′
s),

on ρΛ
s (x1, . . . , xs; x′1, . . . , x

′
s) ⊂ BΛ

s .

Theorem 3.1. The operators ωΛ(t) define a strongly continuous group of isometries on
BΛ the generators of which coincides with −iHΛ on B̃Λ everywhere dense in BΛ.

Proof. The prove is summarized in the following four steps:
Step 1. The operator ωΛ(t) is an isometry in the nuclear norm on BΛ:

∣∣ωΛ(t)ρΛ
∣∣
1

=
∣∣exp(−iHΛt)ρΛ exp(iHΛt)

∣∣
1

= sup
∑

1≤i≤∞

∣∣∣(e−iHΛtρΛeiHΛtϕΛ
i , ψΛ

i )
∣∣∣

= sup
∑

1≤i≤∞

∣∣∣ρΛeiHΛtϕi, e
iHΛtψi

∣∣∣ = |ρΛ|1,

where the upper bound is taken over all orthonormalized systems of finite, twice differen-
tiable functions with compact support {ψs

i } and {ϕs
i} in Ls

2(Λ).
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Step 2. Operator ωΛ(t) is strongly continuous on t in the nuclear norm on BΛ:

The strong continuity of ωΛ(t) on BΛ follows from the relations
∣∣∣ exp(− iHΛt)ρΛ exp(iHΛt)− ρΛ

∣∣∣
1

=
∣∣∣ exp(−iHΛt)ρΛ exp(iHΛt)− ρΛ

+ exp(−iHΛt)ρΛ
n exp(iHΛt)− ρΛ

n − exp(−iHΛt)ρΛ
n exp(iHΛt) + ρΛ

n

∣∣∣
1

≤
(∣∣∣ exp(−iHΛt)(ρΛ − ρΛ

n) exp(iHΛt)
∣∣∣
1

+
∣∣∣ρΛ − ρΛ

n

∣∣∣
1

+
∣∣∣ exp(−iHΛt)ρΛ

nexp(iHΛt)− ρΛ
n

∣∣∣
1

)

= 2
∣∣∣ρΛ − ρΛ

n

∣∣∣
1

+
∣∣∣ exp(−iHΛt)ρΛ

n exp(iHΛt)− ρΛ
n

∣∣∣
1
. (3.1)

The term 2|ρΛ − ρΛ
n |1 in (3.1) can be made as small as desired because the ρΛ

n is dense in
the space of nuclear operators [19, 21]. Therefore

∣∣∣ exp(−iHΛt)ρΛ exp(iHΛt)− ρΛ
∣∣∣
1
≤

∣∣∣ exp(−iHΛt)ρΛ
n exp(iHΛt)− ρΛ

n

∣∣∣
1
. (3.2)

It follows from (3.2) that

lim
t→0

∣∣∣ωΛ(t)ρΛ − ρΛ
∣∣∣
1

= lim
t→0

∣∣∣ exp(−iHΛt)ρΛ exp(iHΛt)− ρΛ
∣∣∣
1

≤ lim
t→0

∣∣∣ exp(−iHΛt)ρΛ
n exp(iHΛt)− ρΛ

n

∣∣∣
1

≤ lim
t→0

∣∣∣ exp(−iHΛt)ρΛ
n(exp(iHΛt)− I)

∣∣∣
1

+ lim
t→0

∣∣∣(exp(−iHΛt)− I)ρΛ
n

∣∣∣
1

≤ lim
t→0

( ∑

1≤i≤n

λi‖ψi‖‖(exp(iHΛt)− I)ϕi‖

+
∑

1≤i≤n

λi‖(exp(−iHΛt)− I)ψi‖‖ϕi‖
)

= 0. (3.3)

It follows from the strong continuity of the group exp(∓iHΛt) that

lim
t→0

∥∥∥(exp(iHΛt)− I)ϕi

∥∥∥ = 0,

lim
t→0

∥∥∥(exp(−iHΛt)− I)ψi

∥∥∥ = 0.

In (3.3) we used
∣∣∣ρΛ

n

∣∣∣
1
≤

∑

1≤i≤n

λi‖ψi‖‖ϕi‖,
∣∣∣ exp(−iHΛt)ρΛ

n(exp(iHΛt)− I)
∣∣∣
1
≤

∑

1≤i≤n

λi‖ψi‖
∥∥∥
(

exp(iHΛt)− I
)
ϕi

∥∥∥,

∣∣∣(exp(−iHΛt)− I)ρΛ
n(t0)

∣∣∣
1
≤

∑

1≤i≤n

λi

∥∥∥
(

exp(−iHΛt)− I
)
ψi

∥∥∥‖ϕi‖,
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where {ϕi} and {ψi} from Ls
2(Λ) and i = 1, 2, . . . are systems of finite, twice differentiable

functions with compact support.
Step 3. The operator ωΛ(t) satisfies the group property:

ωΛ(t1)ωΛ(t2)ρΛ = ωΛ(t1)e−iHΛt2ρΛeiHΛt2 = eiHΛt1eiHΛt2ρΛeiHΛt2eiHΛt1

= e−iHΛ(t1+t2)ρΛeiHΛ(t1+t2) = ωΛ(t1 + t2)ρΛ.

Analogously,

ωΛ(t2)ωΛ(t1)ρΛ = ωΛ(t2 + t1)ρΛ.

Step 4. The generator of the group ωΛ(t) is defined on BΛ coincides with −iH on
B̃Λ:

lim
t→0

∣∣∣ω
Λ(t)ρΛ−ρΛ

t

∣∣∣
1

= lim
t→0

sup
∑

1≤i≤∞

∣∣∣
(
e−iHΛtρΛ eiHΛt−I

t
ϕi+

eiHΛt−I

t
ρΛeiHΛtϕi, ψi

)∣∣∣

= sup
∑

1≤i≤∞

∣∣∣
(
(ρΛiHΛ−iHΛρΛ)ϕi, ψi

)∣∣∣ =
∣∣∣− i[HΛ, ρΛ]

∣∣∣
1
,

where the upper bound is taken over all orthonormalized systems of finite, twice differen-
tiable functions with compact support {ψs

i } and {ϕs
i} in Ls

2(Λ).

We introduce the operator Ω(Λ) on the space BΛ by
(
Ω(Λ)ρΛ

)
s
(x1, . . . , xs;x′1, . . . , x

′
s)

=
N

V

(
1− s

N

) ∫

Λ

∑

i

ρΛ
s+1(x1, . . . , xs, xs+1; x′1, . . . , x

′
s, xs+1)g1

i (xs+1)g̃1
i (xs+1)dxs+1,

where g1
i (xs+1) is a complete orthonormal system of vectors in the one-particle space

L2(Λ).

We also introduce the operator UΛ(t) on BΛ
s by the formula

ρΛ
s (t, x1, . . . , xs;x′1, . . . , x

′
s) = (UΛ(t)ρΛ)s(x1, . . . , xs; x′1, . . . , x

′
s)

= (eΩ(Λ)e−iHΛte−Ω(Λ)ρΛeiHΛt)s(x1, . . . , xs; x′1, . . . , x
′
s). (3.4)

The history of derivation of this formula for the case of other bounded potentials is given
in [19].

Theorem 3.2. The operator UΛ(t) generates a strongly continuous group of bounded op-
erators on BΛ, the generators of which coincide with the operator H + TrxAxDx on B̃Λ

everywhere dense in BΛ.
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Proof. The proof is summarized in the following four steps:
Step 1. Let us show that the operator UΛ(t) is bounded on BΛ. We begin by evaluating

the operator ΩΛ [19, 21].

|Ω(Λ)ρΛ|1 =
1

|ρΛ|1
∞∑

s=1

∣∣∣(Ω(Λ)ρΛ)s

∣∣∣
1

=
1

|ρΛ|1
∞∑

s=1

sup
∑

i

∣∣∣(ψs
i , (Ω(Λ)ρΛ)sϕ

s
i )

∣∣∣
1

=
1

|ρΛ|1
∞∑

s=1

sup
∑

i

∣∣∣N
V

(
1− s

N

) ∣∣∣
∣∣∣(ψs+1

i , ρΛ
s+1ϕ

s+1
i )

∣∣∣
1

≤ maxs |NV
(
1 − s

N

) |
|ρΛ|1

s0∑
s=1

|ρΛ
s |1

= maxs

∣∣∣N
V

(
1− s

N

) ∣∣∣ |ρ
Λ|1

|ρΛ|1 = maxs

∣∣∣N
V

(
1− s

N

) ∣∣∣

=
1

v(Λ)
= constant, (3.5)

where the upper bound is taken over all orthonormal system of vectors {ψs
i } and {ϕs

i}
in the s-particle space Ls

2(Λ) and ψs+1
i = giψ

s
i , ϕs+1

i = giϕ
s
i , s ≥ 1 and is taken into

account that ρΛ
s (x1, . . . , xs; x′1, . . . , x

′
s) = 0, when s > s0, where s0 is finite.

From the boundedness of the operator Ω(Λ) (3.5), it follows that eΩ(Λ) is bounded
|e±Ω(Λ)|1 ≤ e1/v(Λ).

The operator UΛ(t), as a product of the bounded operators of e±Ω(Λ) and the unitary
operators e∓iHΛ

s t, is bounded and satisfies the estimate UΛ(t) ≤ e2/v(Λ) on BΛ.

Step 2. Strong continuity of the operator UΛ(t) on BΛ follows from boundedness of
the operator e±Ω(Λ) and the strong continuity of the operator ωΛ(t) on BΛ [19].

lim
t→0

∣∣∣eΩ(Λ) exp(−iHΛt)e−Ω(Λ)ρΛ(t0)exp(iHΛt)− ρΛ(t0)
∣∣∣
1

= 0.

Proof is analogously to (3.1)-(3.3).

Step 3. The operator UΛ(t) satisfies the group property on BΛ:

UΛ(t1)UΛ(t2)ρΛ = UΛ(t1)eΩ(Λ)e−iHΛt2
(
e−Ω(Λ)ρΛ

)
eiHΛt2

= eiHΛt1eΩ(Λ)eiHΛt2e−Ω(Λ)ρΛeiHΛt2eiHΛt1

= eΩ(Λ)
(
e−iHΛ(t1+t2)

(
e−Ω(Λ)ρΛ

)
eiHΛ(t1+t2)

)
= UΛ(t1 + t2)ρΛ.

Analogously,

UΛ(t2)UΛ(t1)ρΛ = UΛ(t1 + t2)ρΛ.
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Step 4. The generator of the operator UΛ(t) is defined on BΛ consides with −i(HΛ +
TrxAΛ

xDΛ
x ) on B̃Λ:

The infinitesimal generator of the group UΛ(t) is defined on the set of finite sequences
of nuclear operators

ρΛ = {ρΛ
0 , ρΛ

1 (x1, ; x′1), . . . , ρ
Λ
s (x1, . . . , xs;x′1, . . . , x

′
s), . . .},

ρΛ
s (x1, . . . , xs;x′1, . . . , x

′
s) = 0, s > s0,

with the property that the commutator [HΛ
s , ρΛ

s ] belongs to BΛ
s together with ρΛ

s . This set
is everywhere dence in BΛ and belongs to D(−i(HΛ + TrxAΛ

xDΛ
x )).

lim
t→0

∣∣∣U
Λ(t)ρΛ − ρΛ

t

∣∣∣
1

= lim
t→0

∣∣∣1
t
(ωΛ(t)ρΛ − ρΛ + Ω(Λ)ωΛ(t)ρΛ − ωΛ(t)Ω(Λ)ρΛ

+
N−s∑
n=2

n∑

k=0

(−1)k

k!(n− k)!
Ωn−k(Λ)ωΛ(t)Ωk(Λ)ρΛ)

∣∣∣
1

= lim
t→0

∣∣∣(1
t
(ωΛ(t)ρΛ − ρΛ + Ω(Λ)

(
ωΛ(t)ρΛ − ρΛ

)− (
ωΛ(t)ρΛ − ρΛ

)
Ω(Λ)ρΛ

+
N−s∑
n=2

n∑

k=0

(−1)k

k!(n− k)!
Ωn−k(Λ)

(
ωΛ(t)ρΛ − ρΛ

)
Ωk(Λ)ρΛ)

∣∣∣
1

=
∣∣∣− i

(HΛ + TrxAΛ
xDΛ

x

)
ρΛ +

N−s∑
n=2

n∑

k=0

(−1)k

k!(n− k)!
Ωn−k(Λ)HΛΩk(Λ)ρΛ

∣∣∣
1

=
s=s0∑
s=1

∣∣∣− i(HΛ + Trxs+1AΛ
xDΛ

x )ρΛ
s

+
N−s∑
n=2

n∑

k=0

(−1)k

k!(n− k)!
Ωn−k(Λ)[HΛ

s + HΛ
n−k + HΛ

s,n−k, Ωk(Λ)ρΛ
s+n]

∣∣∣
1

=
s=s0∑
s=1

∣∣∣− i
(HΛ + Trxs+1AΛ

xDΛ
x

)
ρΛ

s +
N−s∑
n=2

n∑

k=0

(−1)k

k!(n− k)!
Ωn(Λ)[HΛ

s,n−k, ρΛ
s+n]

∣∣∣
1

=
s=s0∑
s=1

∣∣∣− i
(HΛ + Trxs+1AΛ

xDΛ
x

)
ρΛ

s +
N−s∑
n=2

n∑

k=0

(−1)k(n− k)
k!(n− k)!

Ωn(Λ)[HΛ
s,1, ρ

Λ
s+n]

∣∣∣
1

=
s=s0∑
s=1

∣∣∣− i
(HΛ + Trxs+1AΛ

xDΛ
x

)
ρΛ

s

∣∣∣
1

=
∣∣∣− i(HΛ + TrxAΛ

xDΛ
x )ρΛ

∣∣∣
1
. (3.6)

In (3.6) we took into account that ρΛ
s (x1, . . . , xs; x′1, . . . , x

′
s) = 0, when s > s0, where s0

is finite and we used the following identities:
n∑

k=0

(−1)k

k!(n− k)!
Ωn−k(Λ)

[
Hs, Ωk(Λ)ρΛ

s+n

]
=

n∑

k=0

(−1)k

k!(n− k)!
Ωn(Λ)

[
Hs, ρ

Λ
s+n

]
= 0,

n∑

k=0

(−1)k

k!(n− k)!
= 0,
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and

Ωn−k(Λ)
[
HΛ

s,n−k, Ωk(Λ)ρΛ
s+n

]
= 0,

since the operators HΛ
n−k and Ωk(Λ) under the sign of the trace commute.

Here

n∑

k=0

(−1)k

k!(n− k)!
Ωn−k(Λ)

[
HΛ

s,n−k, Ωk(Λ)ρΛ
s+n

]
=

n∑

k=0

(−1)k

k!(n− k)!
Ωn(Λ)

[
HΛ

s,n−k, ρΛ
s+n

]

and from identity of particles, we have

n∑

k=0

(−1)k(n− k)
k!(n− k)!

Ωn(Λ)
[
HΛ

1,n−k, ρs+n

]
= 0.

So,

lim
t→0

∣∣∣
(UΛ(t)ρΛ−ρΛ

t

)
s
(x1, . . . , xs; x′1, . . . , x

′
s)−

(
− i

[
HΛ

s , ρΛ
s

]
(x1, . . . , xs; x′1, . . . , x

′
s)

+
N

V

(
1− s

N

)
Trxs+1

∑

1≤i≤s

(
φi,s+1(|xi − xs+1|)− φi,s+1(|x′i − xs+1|)

)

· ρΛ
s+1(x1, . . . , xs, xs+1; x′1, . . . , x

′
s, xs+1)

)∣∣∣
1

= 0.

This implies that the infinitesimal operator of the group UΛ(t) on BΛ
s by i concides with

the operator

[
HΛ

s ,
]
+

N

V

(
1− s

N

)
Trxs+1

∑

1≤i≤s

(
φi,s+1(|xi − xs+1|)− φi,s+1(|x′i − xs+1|)

)
(3.7)

on the right-hand side of the BBGKY hierarchy of quantum kinetic equations on B̃Λ
s .

According to [10] and Theorem 2.2 of Chapter XIX of reference [9], since UΛ(t) is
a strongly continuous semigroup on BΛ with generator on B̃Λ

s which is dense in BΛ
s , the

abstract Cauchy problem (2.3), (2.4) associated with operator (3.7) has the unique solution

ρΛ
s (t, x1, . . . , xs;x′1, . . . , x

′
s) =

(
UΛ(t)ρΛ

)
s
(x1, . . . , xs; x′1, . . . , x

′
s)

=
(
eΩ(Λ)e−iHΛte−Ω(Λ)ρΛeiHΛt

)
s
(x1, . . . , xs;x′1, . . . , x

′
s) (3.8)

for each ρΛ
s (x1, . . . , xs;x′1, . . . , x

′
s) ⊂ B̃Λ

s . For the initial data ρΛ
s belonging to a certain

subset of BΛ
s (to the domain of definition of D(−i(H + Trxs+1AxDx)s) of the operator

−i(H + Trxs+1AxDx)s, which is everewhere dense in BΛ
s , (3.8) is strong solution of

Cauchy problem (2.3)-(2.4).

The proof is completed.
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4 Summary

In this paper we have proved the existance of a unique solution for BBGKY’s hierarchy
of quantum kinetic equations with coulomb potential.
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