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1 Introduction

The metric space theory plays a major role in
mathematics (geometry, topology, analysis ...), computer
sciences and applied sciences, such that optimization,
economic theories.
In 2005, Zead Mustafa and Brailey Sims introduced a
new structure of generalized metric spaces ([6]), which
are called G-metric spaces as generalization of metric
space(X ,d). Many authors in [3-8] proved several fixed
point theorems for one map satisfying various contractive
conditions on complete G-metric spaces. Abbas et al. in
[1] prove a fixed point theorem for one map and several
fixed point theorems for two maps in G-metric spaces.
The main object of this paper is to prove common fixed
point theorems for six mappings and sequences of
mappings inG-metric spaces where the completeness is
replaced with weaker condition. Our results improve,
extend and generalize the corresponding results given by
many authors.
Definition 1.1[6] Let X be a nonempty set,R+, the set of
all nonnegative real numbers, and letG : X xX xX → R+

be a function satisfies the following properties:
(1) G(x,y,z) = 0 if x = y = z,
(2)G(x,x,y)> 0, ∀x,y ∈ X , x 6= y,
(3)G(x,x,y)≤ G(x,y,z), ∀x,y,z ∈ X , z 6= y,
(4)G(x,y,z) = G(x,z,y) = G(y,x,z) = ..., (Symmetry in
all three variables),
(5) G(x,y,z) ≤ G(x,a,a) + G(a,y,z)for allx,y,z,a ∈ X ,
(rectangle inequality).

Then the functionG is called a generalized metric, or,
more specifically aG-metric onX , and the pair(X ,G) is
called aG-metric space.
Definition 1.2[6] A G-metric space is said to be symmetric
if G(x,y,y) = G(y,x,x) for all x,y ∈ X .
Definition 1.3[6] Let (X ,G) be aG-metric space, let{xn}
be a sequence of points ofX , a pointx ∈ X is said to be
the limit of the sequence{xn}, we say that{xn}is
G-convergent tox if lim

n,m→∞
G(x,xn, xm) = 0.

Thus if xn → x in a G-metric space(X ,G), then for
anyε > 0, there existsN ∈N such thatG(x,xn, xm) < ε,
for alln,m ≥ N, (through this paper we mean byN the set
of all natural numbers).

Definition 1.4[6] Let (X ,G) be a G-metric space, a
sequence{xn} is calledG-Cauchy if givenε > 0, there is
N ∈ N such thatG(xn, xm, xl) < ε for all n,m, l ≥ N that
is if G(xn, xm, xl) → 0 asn,m, l → ∞.
Definition 1.5[6] A G-metric space(X ,G) is said to be
G-complete (or completeG-metric) if every G-Cauchy
sequence in(X ,G) is G-convergent in(X ,G).
Definition 1.6[6] A G-metric space(X ,G) is called
symmetric G-metric space ifG(x,y,y) = G(x,x,y) for
allx,y ∈ X .
Definition 1.7[6] Let (X ,G) and (X ′

,G′) be G-metric
spaces and letf : X → X ′ be a function, thenf is said to
be G-continuous at a pointa ∈ X if and only if,
givenε > 0, there existsδ > 0 such thatx,y ∈ X ; and
G(a,x,y)< δ impliesG′( f (a), f (x), f (y)) < ε. A function
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f is G-continuous atX if and only if it is G-continuous at
alla ∈ X .
Definition 1.8[2] The mappingsA,B : X → X are weakly
compatible if they commute at coincidence points. i.e. for
each pointu in X such thatAu =Bu, we haveABu = BAu.

2 Main Results

Here we start our work with the following theorem.
Theorem 2.1 Let (X ,G) be a G-metric space and
A,B,C, I,J,K : X → X be mappings such that
(i)A(X)⊆ J(X), B(X)⊆ I(X) andC(X)⊆ K(X)
(ii)G(Ax,By,Cz)

≤ aG(Kx,Jy, Iz)+ bG(Kx,Jy,By)

+cG(Jy, Iz,Cz)+ d G(Iz,Kx,Ax),

for all x,y andz in Xand 0≤ a+ b+ c+ d < 1,
(iii) the pairs {A,K} , {C, I} and {B,J} are weakly
compatible.
Suppose that one of the maps
A(X) , B(X) ,C(X), I(X) ,J(X) and K(X) is complete
subspace ofX . Then A , B ,C, I ,J and K have a unique
common fixed pointu inX .
Proof Let x0 ∈ X be an arbitrary point. By (i) there exists
x1, x2, x3 ∈ X such that
Ax0 = Jx1 = y0 , Bx1 = Ix2 = y1 andCx2 = Kx3 = y2 .
Consequently, we can define a sequence{yn} in X such
that
y3n = Ax3n = Jx3n+1 , y3n+1 = Bx3n+1 = Ix3n+2 andy3n+2 =
Cx3n+2 = Kx3n+3, for all n = 0,1,2, ....
Now, we prove{yn} is aG-Cauchy sequence.
Let Gm = G(ym, ym+1, ym+2) and by (ii), we obtain

G3n = G(y3n, y3n+1, y3n+2) = G(Ax3n, Bx3n+1,Cx3n+2)

≤ aG(Kx3n,Jx3n+1, Ix3n+2)+ bG(Kx3n,Jx3n+1,Bx3n+1)

+cG(Jx3n+1, Ix3n+2,Cx3n+2)+ d G(Ix3n+2,Kx3n,Ax3n)

≤ aG(y3n−1,y3n,y3n+1)+ bG(y3n−1,y3n,y3n+1)

+cG(y3n,y3n+1,y3n+2)+ d G(y3n+1,y3n−1,y3n)

≤ (a+ b+ d)G3n−1+ cG3n,

which implies,G3n ≤ α G3n−1, whereα = a+b+d
1−c < 1,

sincea+ b+ c+ d < 1 .
From above inequality and by (3), we obtain

G(yn,yn, yn+1) ≤ G(yn,yn+1, yn+2)

≤ αG(yn−1,ynyn+1) ≤ ... ≤ αnG(y0, y1, y2).

Then, for all n,m ∈N, n < m and above inequality, we
obtain that

G(yn, ym, ym)

≤ G(yn, yn+1, yn+1)+G(yn+1, yn+2, yn+2)

+G(yn+2, yn+3, yn+3)+ ...+G(ym−1, ym, ym)

≤
(

αn +αn+1+ ...+αm−1) G(y0, y1, y2)

≤ αn

1−α G(y0, y1, y2) → 0, asn, m → ∞.
For n,m, l ∈N, above inequality and by (5) implies that
G(yn,ym, yl) ≤ G(yn, ym, ym) + G(yl , ym, ym) → 0, as
n, m, l → ∞. So,{yn} is a G-Cauchy sequence. Then the
subsequence{y3n} = {Jx3n+1} ⊆ J(X) is a G-Cauchy
sequence inJ(X). Suppose thatJ(X)is complete, therefore
by the above, the sequence{Jx3n+1}is G-Cauchy and
henceJx3n+1 → u = Jv ∈ J(X)for somev ∈ X . Hence, the
sequence{yn}converges also tou and the subsequence
{Ax3n},{Bx3n+1}, {Cx3n+2}, {Kx3n}and {Ix3n+2}
converge tou.
We shall prove thatBv = Jv = u. On using (ii), we obtain
that

G(Ax3n, Bv,Cx3n+2)

≤ aG(Kx3n,Jv, Ix3n+2)+ bG(Kx3n,Jv,Bv).

+cG(Jv, Ix3n+2,Cx3n+2)

+dG(Ix3n+2,Kx3n,Ax3n).

As, n → ∞, we have G(u, Bv, u) ≤ bG(u, Bv, u) is a
contradiction. ThusBv = Jv = u.
Since {B,J} is weakly compatible, thus,BJv = JBv.
Hence,Bu = Ju.
Now, we prove thatBu = u, if Bu 6= u, then

G(Ax3n, Bu,Cx3n+2)

≤ aG(Kx3n,Ju, Ix3n+2)+ bG(Kx3n,Ju,Bu)

+cG(Ju, Ix3n+2,Cx3n+2)

+d G(Ix3n+2,Kx3n,Ax3n)

As, n → ∞, we have G(u, Bu, u) ≤ bG(u, Bu, u) is a
contradiction. Thus,Bu = Ju = u, that is,u is a common
fixed point ofB,J.
Sinceu = Bu ∈ B(X) ⊆ I(X), hence there existsw ∈ X
such thatIw = u. We prove thatCw = u. On using (ii), we
obtain that

G(Ax3n, Bu,Cw)

≤ aG(Kx3n,Ju, Iw)+ bG(Kx3n,Ju,Bu)

+cG(Ju, Iw,Cw)

+dG(Iw,Kx3n,Ax3n)

As, n → ∞, we have G(u, u,Cw) ≤ cG(u, u,Cw) is a
contradiction. Thus,Cw = Iw = u, by the weak
compatibility of the pair{C, I}, we haveICw = ICw, and
so,Iu =Cu.
Now, we prove thatCu = u, if Cu 6= u, then

G(Ax3n, u,Cu) = G(Ax3n, Bu,Cu)

≤ aG(Kx3n,Ju, Iu)+ bG(Kx3n,Ju,Bu).

+cG(Ju, Iu,Cu)+ dG(Iu,Kx3n,Ax3n)
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As, n → ∞, we have G(u, u,Cu) ≤ cG(u, u,Cu) is a
contradiction. Thus,Cu = Iu = u, that is,u is a common
fixed point ofC, I.
Similarly, u =Cu ∈ C(X)⊆ K(X), hence there existsp ∈
X such thatK p = u. We prove thatAp = u. On using (ii),
we obtain that

G(Ap, u, u) = G(Ap, Bu,Cu)

≤ aG(K p,Ju, Iu)+ bG(K p,Ju,Bu)

+cG(Ju, Iu,Cu)+ dG(Iu,K p,Ap)

≤ d G(Ap,u, u),

is a contradiction. Thus,Ap = K p = u, by the weak
compatibility of the pair{A,K}, we haveAK p = KAp,
and so,Au = Ku.
Now, we prove thatAu = u, if Au 6= u, then

G(Au, u, u) = G(Au, Bu,Cu)

≤ aG(Ku,Ju, Iu)+ bG(Ku,Ju,Bu)

+cG(Ju, Iu,Cu)+ dG(Iu,Ku,Au)

≤ dG(u,u,Au),

is a contradiction. Thus,Au = Ku = u, that is, u is a
common fixed point ofA,K. Then

Au = Bu =Cu = Iu = Ju = Ku = u

Now, we prove the uniqueness. To see the pointuis
unique, suppose thatw is another common fixed point of
A,B,C,K,J andIwithw 6= u.

G(u, u, w) = G(Au, Bu,Cw)

≤ aG(Ku,Ju, Iw)+ bG(Ku,Ju,Bu)

+cG(Ju, Iw,Cw)+ d G(Iw,Ku,Au)

≤ aG(u,u,w)+ cG(u,w,w)+ d G(w,u,u)

By using (5), we haveG(u, u, w)≤ (a+2c+d)G(u,u,w)
a contradiction. Therefore,w = u is the unique common
fixed point of mapsA , B ,C, I ,J andK.

If we puta = b = c = d = q in Theorem 2.1, we obtain
the following theorem
Theorem 2.2 Let (X ,G) be a G-metric space and
A,B,C, I,J,K : X → X be mappings such that
(i)A(X)⊆ J(X), B(X)⊆ I(X) andC(X)⊆ K(X)
(ii)G(Ax,By,Cz)

≤ q

[

G(Kx,Jy, Iz)+ G(Kx,Jy,By)
+G(Jy, Iz,Cz)+ G(Iz,Kx,Ax)

]

for all x,y andz in Xand 0≤ q < 1/
4,

(iii) the pairs {A,K} , {C, I} and {B,J} are weakly
compatible.
Suppose that one of the maps
A(X) , B(X) ,C(X), I(X) ,J(X) and K(X) is complete

subspace ofX . Then A , B ,C, I ,J and K have a unique
common fixed pointu inX .

If we put K = J = I = i(the identity mapping) in
Theorem 2.1, we obtain a common fixed point theorem
for three mappings as the following
Theorem 2.3Let (X ,G) be aG-metric space andA,B,C :
X → X be mappings such that

G(Ax,By,Cz)

≤ aG(x,y,z)+ bG(x,y,By)

+cG(y,z,Cz)+ d G(z,x,Ax),

for all x,y andz in Xand 0≤ a+ b+ c+ d < 1. Suppose
that one of the mappingsA(X) , B(X) and C(X) is
complete subspace ofX . ThenA , B andChave a unique
common fixed pointu inX .

In the following theorem, we have a common fixed
point results for two mappings
Theorem 2.4 Let (X ,G) be a G-metric space, suppose
mappings f ,g : X → X satisfy one of the following
condition

1.G( f x, f y, f z)

≤ aG(gx,gy,gz)+ bG(gx,gy, f y)

+cG(gy,gz, f z)+ dG(gz,gx, f x)

or
2.G( f x, f y, f z)

≤ aG(x,gy,gz)+ bG(x,gy, f y)

+cG(gy,gz, f z)+ dG(gz,x, f x),

or
3.G( f x, f y, f z)

≤ aG(gx,y,gz)+ bG(gx,y, f y)

+cG(y,gz, f z)+ dG(gz,gx, f x),

or
4.G( f x, f y, f z)

≤ aG(gx,gy,z)+ bG(gx,gy, f y)

+cG(gy,z, f z)+ dG(z,gx, f x),

or
5.G( f x, f y, f z)

≤ aG(x,y,gz)+ bG(x,y, f y)

+cG(y,gz, f z)+ d G(gz,x, f x),

or
6.G( f x, f y, f z)

≤ aG(x,gy,z)+ bG(x,gy, f y)

+cG(gy,z, f z)+ dG(z,x, f x),

or
7.G( f x, f y, f z)

≤ aG(gx,y,z)+ bG(gx,y, f y)
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+cG(y,z, f z)+ dG(z,gx, f x),

for all x,y and z in Xand 0≤ a + b + c + d < 1.
If f (X) ⊆ g(X), f andg are weakly compatible andf (X)
or g(X) is complete subspace ofX . Then f andg have a
unique common fixed pointu inX .
Proof To prove thatf andg have a unique common fixed
pointu inX

1.SettingA = B =C = f andK = J = I = gin Theorem
2.1.

2.SettingA=B=C = f , J = I = g andK = i(the identity
mapping) in Theorem 2.1.

3.SettingA=B=C = f , K = I = g andJ = i(the identity
mapping) in Theorem 2.1.

4.SettingA=B=C = f , K = J = g andI = i(the identity
mapping) in Theorem 2.1.

5.SettingA=B=C = f , I = g andK = J = i (the identity
mapping) in Theorem 2.1.

6.SettingA=B=C = f , J = g andK = I = i (the identity
mapping) in Theorem 2.1.

7.SettingA=B=C = f , K = g andJ = I = i (the identity
mapping) in Theorem 2.1.

Corollary 2.5 The condition 1 in Theorem 2.3

G( f x, f y, f z)

≤ aG(gx,gy,gz)+ bG(gx,gy, f y)

+cG(gy,gz, f z)+ dG(gz,gx, f x)

improves and is weaker than the conditions of Theorems
2.3-2.6 of [1].
Corollary 2.6 Let (X ,G) be aG-metric space, suppose
mappings f ,g : X → X satisfy one of the following
condition

G( f x, f y, f z)

≤ aG(gx,gy,gz)+ b

[

G(gx, f y, f y)
+G(gy, f y, f y)

]

+c

[

G(gy, f z, f z)
+G(gz, f z, f z)

]

+ d

[

G(gz, f x, f x)
+G(gx, f x, f x)

]

,

or
G( f x, f y, f z),

≤ aG(gx,gy,gz)+ b

[

G(gx,gy,gy)
+G(gy,gy, f y)

]

+c

[

G(gy,gz,gz)
+G(gz,gz, f z)

]

+ d

[

G(gz,gx,gx)
+G(gx,gx, f x)

]

for all x,y and z in Xand 0≤ a + b + c + d < 1.
If f (X) ⊆ g(X), f andg are weakly compatible andf (X)
or g(X) is complete subspace ofX . Then f andg have a
unique common fixed pointu inX .

Theorem 2.7 Let (X ,G) be a G-metric space, suppose
mappingsA, I : X → X satisfy one of the following
conditions

1.G(Anx,Any,Anz)

≤ aG(Imx, Imy, Imz)+ bG(Imx, Imy,Any)

+cG(Imy, Imz,Anz)+ dG(Imz, Imx,Anx),

or
2.G(Anx,Any,Anz)

≤ aG(x, Imy, Imz)+ bG(x, Imy,Any)

+cG(Imy, Imz,Anz)+ dG(Imz,x,Anx),

or
3.G(Anx,Any,Anz)

≤ aG(Imx,y, Imz)+ bG(Imx,y,Any)

+cG(y, Imz,Anz)+ dG(Imz, Imx,Anx),

or
4.G(Anx,Any,Anz)

≤ aG(Imx, Imy,z)+ bG(Imx, Imy,Any)

+cG(Imy,z,Anz)+ dG(z, Imx,Anx),

or
5.G(Anx,Any,Anz)

≤ aG(x,y, Imz)+ bG(x,y,Any)

+cG(y, Imz,Anz),+dG(Imz,x,Anx),

or
6.G(Anx,Any,Anz)

≤ aG(x, Imy,z)+ bG(x, Imy,Any)

+cG(Imy,z,Anz)+ dG(z,x,Anx),

or
7.G(Anx,Any,Anz)

≤ aG(Imx,y,z)+ bG(Imx,y,Any)

+cG(y,z,Anz)+ dG(z, Imx,Anx),

for all x,y andz in Xand 0≤ a+b+ c+d < 1. If An(X)⊆
Im(X), the pairs{An, Im} are weakly compatible and one
of the mapsAn(X) or Im(X) is a complete subspace ofX .
ThenA andI have a unique common fixed pointu inX .
Proof To prove thatAnandIm have a unique common fixed
pointu inX

1.Setting A = B = C = An and K = J = I = Im in
Theorem 2.1.

2.SettingA = B = C = An, J = I = Im and k = i(the
identity mapping) in Theorem 2.1.

3.SettingA = B = C = An, K = I = Im and J = i(the
identity mapping) in Theorem 2.1.

4.SettingA = B = C = An, K = J = Im and I = i(the
identity mapping) in Theorem 2.1.

5.SettingA = B = C = An, I = Im andK = J = i (the
identity mapping) in Theorem 2.1.

6.SettingA = B = C = An, J = Im and K = I = i(the
identity mapping) in Theorem 2.1.

7.SettingA = B = C = An, K = Im and J = I = i(the
identity mapping) in Theorem 2.1.
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That is, there existsu ∈ Xsuch thatAnu = Imu = u.
SinceAn(Au) = A(Anu) = Au, it follows thatAu is a fixed
point ofAnandIm and hence
Au = u. Similarly, we haveIu = u.
Theorem 2.8Let (X ,G) be aG-metric space, supposef :
X → X satisfy one of the following conditions

1.G( f x, f y, f z)

≤ aG(x,y,z)+ bG(x,y, f y)

+cG(y,z, f z)+ dG(z,x, f x),

or
2.G( f x, f y, f z)

≤ aG( f x,y,z)+ bG( f x,y, f y)

+cG(y,z, f z)+ dG(z, f x, f x),

or
3.G( f x, f y, f z)

≤ aG(x, f y,z)+ bG(x, f y, f y) ,

+cG( f y,z, f z)+ dG(z,x, f x)

or
4.G( f x, f y, f z)

≤ aG(x,y, f z)+ bG(x,y, f y)

+cG(y, f z, f z)+ dG( f z,x, f x),

or
5.G( f x, f y, f z)

≤ aG( f x, f y,z)+ bG( f x, f y, f y)

+cG( f y,z, f z)+ dG(z, f x, f x),

or
6.G( f x, f y, f z)

≤ aG( f x,y, f z)+ bG( f x,y, f y)

+cG(y, f z, f z)+ dG( f z, f x, f x),

or
7.G( f x, f y, f z)

≤ aG(x, f y, f z)+ bG(x, f y, f y)

+cG( f y, f z, f z)+ dG( f z,x, f x),

for all x,y andz in Xand 0≤ α < 1. If f (X) is a complete
subspace ofX . Then f has a unique common fixed pointu
inX and f is G continuous atu.
Proof To prove thatf has a unique common fixed pointu
inX

1.SettingA = B =C = f andK = J = I = i(the identity
mapping) in Theorem 2.1.

2.SettingA = B =C = K = f andJ = I = i(the identity
mapping) in Theorem 2.1.

3.SettingA = B =C = J = f andK = I = i(the identity
mapping) in Theorem 2.1.

4.SettingA = B =C = I = f andK = J = i(the identity
mapping) in Theorem 2.1.

5.SettingA = B =C = K = J = f andI = i (the identity
mapping) in Theorem 2.1.

6.SettingA = B =C = K = I = f andJ = i(the identity
mapping) in Theorem 2.1.

7.SettingA = B =C = J = I = f andK = i(the identity
mapping) in Theorem 2.1.

To show that f is G continuous atu, let {xn} ⊆ X be a
sequence such that lim

n→∞
xn = u.

By using 7, we obtain
G( f xn, f u, f xn)

≤ aG(xn, f u, f xn)+ bG(xn, f u, f u)

+cG( f u, f xn, f xn)+ dG( f xn,xn, f xn)

Sincef u = u, we deduce that

G( f xn,u, f xn)

≤ aG(xn,u, f xn)+ bG(xn,u,u).

+cG(u, f xn, f xn)+ dG( f xn,xn, f xn)

But (5) implies that

G(xn, u, f xn)

≤ G(xn, f xn, f xn)+G( f xn,u , f xn)

≤ G(xn,u,u)+2G( f xn,u , f xn),

G(xn, f xn, f xn)

≤ G(xn,u,u)+G( f xn,u , f xn)

Thus, we obtain that

G( f xn,u, f xn)

≤
a+ b+ d

1− (2a+ c+ d)
G(xn,u,u)→ 0,

as,n → ∞.
Then,f xn → u = f u, i.e. f is G continuous atu.

Remarks 2.9

1. Theorem 2.8 improves the Theorem 2.1 of [1]
2.Theorem 2.8 improves and generalizes the results of

[3-8]

Theorem 2.10 Let (X ,G) be a G-metric space and
At ,B j,Ck, I,J,K : X → X , for all t, j,k ∈N be mappings
such that
(i) there exists t0, j0, k0 ∈N such
thatAt0(X)⊆ J(X), B j0(X)⊆ I(X) andCk0(X)⊆ K(X)
(ii)G(Atx,B jy,Ckz)

≤ aG(Kx,Jy, Iz)+ bG(Kx,Jy,B jy)

+cG(Jy, Iz,Ckz)+ dG(Iz,Kx,Atx)
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for all x,y andz in Xand 0≤ a+ b+ c+ d < 1,
(iii) the pairs

{

At0,K
}

, {Ck0, I} and
{

B j0,J
}

are weakly
compatible.
Suppose that one of the mapsI(X) ,J(X) and K(X) is
complete subspace ofX . ThenAt , B j ,Ck, I ,J andK have
a unique common fixed pointu inX .
Proof By Theorem 2.1, the mappingsAt0 , B j0 ,Ck0, I ,J
andKfor somet0, j0, k0 ∈N have a unique common fixed
point inX . That is, there exists a unique pointu ∈ Xsuch
that

At0u = B j0u =Ck0u = Iu = Ju = Ku = u

Suppose that there existst ∈ N such thatt 6= t0. Then by
using (ii), we have

G(Atu,u,u) = G(Atx,B j0u,Ck0u)

≤ aG(Ku,Ju, Iu)+ bG(Ku,Ju,B j0u)

+cG(Ju, Iu,Ck0u)+ dG(Iu,Ku,Atu)

≤ dG(u,u,Atu)

is a contradiction. Hence for everyt ∈ N, we
haveAtu = u. Similarly B ju = u andCku = u. Therefore
for every t, j,k ∈N, we have

Atu = B ju =Cku = Iu = Ju = Ku = u.
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