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Abstract: In this paper, we consider coupled nonlinear Klein-Gordguagions with weak damping terms, in a bounded domain. The
blow up of the solution with negative initial energy is edistired.
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1 Introduction 2 Preliminaries

In this section, we give some assumptions and lemmas

In this paper we consider the following coupled nonlinearWhich will be used throughout this work. Hereafter we

Klein-Gordon equations denote by]. and|||, the norm ofL? () andLP (),
i respectively.
Ue— Autmiut ul® fu=fi(uy), (k) €Qx(0T), Concerning the functionsy (u,v) and f, (u,v), we
Vie — AVHmv4 v [Ty = fa(uv),  (xt) € Q x (0,T), take
U0 = o(). (O =u (.  xeQ,
Vlg)((%?t))_:v\?((;){)\i(é’o)_vl(x)’ Xxeea%’ fi(uv)=(r+1) {a|u+v|r Y(u+v)+blul Z ulv| 2 }’

1) r+1 r-3
whereQ is a bounded domain with smooth boundag ~ f2(u,v) =(r+1) [61|'~'+V|r71 (U+V)+blul 2 |v[ 2 V} :
inR" (n=1,2,3), m, mp >0 andp,q > 1 are constants.
The coupled nonlinear Klein-Gordon equation which
models the motion of charged mesons in an l<r ifn<2,
electromagnetic field is investigatet] | { 1<r<t ifn>2 (2)

For p = q, Ye [2] studied the global existence and ) )
asymptotic stability of solutions of the problert)(In  One can easily verify that
[3], Piskin proved the global existence, decay and blow .
up of solutions of the problemi). Also, In the case of " BV +VRUY) =+ DF WY), YUV ER, ()
p =g =1 problem was studied by Korpusow]| where
Miranda and Medeiros 5] and Wu [g]. When 1
m = mp = 0, the problem {) was considered by many F(uv) = [aIU+V|r+l+2b|uvlT} : (4)
authors 7,8,9,10]. )
In this work, the blow up of the solution with negative e have the following result.

initial energy is proved forp = q = 1, by using the | emma 1[12). There exist two positive constants ¢
This paper will be organized as follows. In Section 2,

we present some lemmas and the local existence theoremc, (|u|r+1 + |v|r+1) <F(uv)<cg (|u|r+1+ |v|r+1) (5)
In Section 3, we show the blow up properties of solutions
inthe caseop=q=1. is satisfied.

wherea, b > 0 are constants andsatisfies
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We define the energy function as follows Theorem 2Let the assumptions of Theorem 1 hold.
Assume further that g q = 1. If initial data satisfies

1 1
E) = 5 (IluwlP+1wl?) + 3 (I0ul*+ v

E(0)=0 +Vovy) dx> 0,
+m§|\u||2+m§||v||2)_/QF(U’V)dX © (0) /Q(uoul Vova) dx

then the corresponding solution blows up in finite time. In

_ The nextlemma shows that our energy functio®l ( other words, there exists a positive constantslich that
is a nonincreasing function along the solution Df. im (HUH2 N HVHZ)
—= 00,
t—T*

Lemma 2E (t) is a nonincreasing function fort 0 and
ProofTo apply Lemma 3, we define

E'(t) = — ([lwll®+[*) <O. (@) 1
( ) W) =5 [ (luP+P)dx (©)
ProofMultiplying the first equation of 1) by u; and the
second equation byv, integrating over Q, using  Therefore
integrating by parts and summing up the product results, W (1) :/ (Ut +vv) dx; (10)
we get Q

‘ and
E(t)—E(0) = —/ (||ur||2+ |\vr||2) drfort>0. (8) ,
0 q/’(r):/g(ut +vt2)dx+/g(uut+vvh)dx (11)
Next, we state the local existence theorem of the
problem (), which can be obtained in a similar way as ~ Then, eq {) is used to estimatei () as follows

donein [7].

V W' ©) = (Il ) = (10l 10 ) = (8 ul+m i)
Theorem 1(Local existence)Suppose that holds, and 7/ (Ut +vw) dxt (r+ 1) / F (uv)dx 12)
further (Up,Vo) € H3 (Q) x H3 (Q), (u1,v1) € L2(Q) x 2 e
L?(Q). Then problemY) has a unique local solution Now, we exploit @) to substitute for

me |[ul[? -+ m||v]|*; we have
u,veC([0,T);Hg(Q)),
W O+¥ O = 2(Jul+ wIP) ~2E O + (-1 [ Fuvdx
w €C([0,T);L2(Q)) NLP*L(Q x [0,T)) and y € C([0,T);L2(Q2)) NLH1(Q x [0,T)). > co(r—1) (HUHIXH HVHIﬂ), (13)
Moreover, at least one of the following statements holds 1 1 )
true: wherecg (|u| + |V ) < F (u,v) is used.
)T Now, Holder's inequality is used to estimatkbs”[ﬁ
—= 00
:i) ’ and||v|/ 1 as follows
e e = e [ A TR A Y e 2 -
oast — T7. / |U|2dX§ (/ |u|r+1dx> (/ 1dX) )
Q Q Q
3 Blow up of solutions W, is called the volume of the domai, then
ﬂ
In this section, we are going to consider the blow up of the ||u|”ﬁ > </ |u|2dx) 2 (Wn)_(%) , (14)
solution for the probleml), whenp =q=1. Q
and similarly
Lemma 3[11]. Suppose thap (t) is a twice continuously ril .,
differentiable function satisfying ||V|\;ﬂ > </Q |v|2dx) (Wn)*(T), (15)
")+ @ (t) > Coptto(t), t>0, . , :
{ wl,U EO)) >qé ( )(1,7 %q; 0 ®) Substituting the estimatd 4), (15) into (13), we conclude

where G > 0, a > 0 are constants. Theny (t) blows up ")+ (©) = co(r— )W) (2 | (5 luPdx) * + (I Mde)T] .
in finite time. (16)
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In order to estimate the right-hand side ib6), we [11] Y. Zhou, Global existence and nonexistence for a nealin

make use of the following inequality wave equation with damping and source terms, Math Nachr,
278(11) (2005) 1341-1358.
(X+Y)P <2P71(XP 4 YP), [12] S.A. Messaoudi, B.S. Houari, Global nonexistence of
positive initial-energy solutions of a system of nonlinear
X,Y >0, 1< p < oo, applying the above inequality we viscoelastic wave equations with damping and source terms,
have J Math Anal Appl2010,365 277-287.
+1 r+1 r+1

r-1

2 () (Jo luPaxt fo WP0x) © < (fo luPdx) * + (Jo 2e)

Z
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Consequently,16) becomes

r+1
v O+ > 2 (er—1w () (/ |u\2dx+/g |v|2dx> :

Q
ffl) r+1

= 20—y () g ().

It is easy to verify that the requirements of Lemma 3 are
satisfied by

Co=2co(r—1) (Wn)‘(r‘ié) > 0anda = r+i > 0. research interests are in local
existence, global existence, continuous dependence,
Theroferey (t) blows up in finite. global nonexistence, asymptotic behavior and decay

of solutions for nonlinear hyperbolic differential
equations, analysis of nonlinear differential equations,
and mathematical behavior of nonlinear differential
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