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Abstract: If the distances of TSP satisfy the triangle inequality, the minimum-cost-spanning tree (MST) heuristics produces a tour
whose length is guaranteed to be less than 2 times the optimum tour length and Christofides’ heuristics generates the 3/2 times the
optimum tour length. Otherwise, the quality of the approximation is hard to evaluate. Here a four vertices and three lines inequality is
used to construct an approximation of the optimum tour instead of the triangleinequality. The performance ratio of the heuristics may
not be a constant for all kinds of TSP. But it is determined for a concrete TSP.
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1 Introduction

TSP has been proven to be NP-complete [1] in most
cases. The number of the Hamiltonian cycles (HC)
increases in proportion to the factorial of the number of
cities. It is a great challenge to find the optimum
Hamiltonian cycle (OHC) in such a large space without
heuristics. Due to the theoretical and practical values,
TSP has been widely studied in the fields of
combinatorial optimization, operation research, computer
science etc. in order to resolve it within a reasonable
computation time. Unfortunately,P = NP is still one of
the great unanswered questions in mathematics [2].

Given an algorithmA, it produces the worst HC
whose length is noted asl(HCA). Let l(OHC) represent
the length of the OHC. The performance of the algorithm
A is evaluated by its performance ratio which is defined as
l(HCA)/l(OHC). If the distances of TSP conform to the
triangle inequality, such as the Euclidean TSP, we can
find an approximation no less than 2 or 3/2 times the
OHC with the MST [3] and Christofides’ heuristics [4].
This kind of TSP is called the△-TSP. Many researchers
focus on the△-TSP and a lot of achievements has been
obtained. Bollig and Capelle [5] integrated the ordered
binary decision diagrams (OBDD) into the MST to design
the approximate algorithm for metric TSP. It is found that
the number of OBDDs changes exponentially according
to the scale of TSP.

The approximate ratio 0.999log2n is introduced with a
cycle cover algorithm for asymmetrical△-TSP [6] and it
is improved to 0.842log2n by Kaplan et al in 2005 [7].
Bazgan et, al. [8] defined two objective functions and they
designed an algorithm for Max TSP. If the two objective
functions fulfill the triangle inequality, they obtain the
performance ratio 0.41. Otherwise, a performance ratio
0.27 is approximated. The parameterized△-TSP is
studied by Thomas and Hans [9] and found that the
approximate ratio changes according to a defined triangle
factor. In worst case, the approximate ratio becomes
infinite if the triangle factor is bigger than 1 with the MST
and Christofides’ heuristics. Bkenhauer et, al. [10]
merged the precedence constraints into the approximate
algorithm for parameterized△-TSP and found the
performance ratio is determined by the number of ordered
vertices and triangle factor. In total, the quality of the
approximations is hard to guarantee for the other kind of
TSP. Thats to say, a constant performance ratio of an
algorithm does not exist for TSP of general distances,
unlessP = NP [11].

Here the four vertices and three lines inequality [12]
is used to compute an approximation of the OHC. The
four point conditions for symmetrical TSP are
summarized by Deineko, Klinz and Woeginger [13] in
2006. Under their defined restrictions, the OHC of some
kinds of TSP will be found within a polynomial
computation time. But the others obey the four point
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conditions are still NP-complete. Therefore, it is useful to
find an approximation of the hard TSP under the four
vertices and three lines inequality. The four vertices and
three lines inequality is a universal characteristic of four
adjacent vertices whether they obey the triangular
inequality or not. The paths obey the inequality illustrate
the restrictions of the underlying distance matrices in a
weighted graph. Given four adjacent verticesh, i, j andk,
they will combine 4!/2 paths for symmetrical TSP and
half of them satisfy the four vertices and thee lines
inequality. In this paper, we will design an approximate
algorithm for TSP based on the four vertices and three
lines inequality. With the limitative weights of edges, we
believe that the performance ratio of the approximate
algorithm is able to compute for an arbitrary kind of TSP.

The paper is organized as follows. The four vertices
and three lines inequality is introduced in section 2. The
performance ratio of the heuristics is computed in section
3. Section 4 gives the summary of the approximate
method.

2 The four vertices and three lines inequality

Given an undirected graphG=(V,E), the length of an edge
ei j connecting two verticesi andj is noted asli j >0, where
ei j ∈ E and i, j∈ V. For arbitrary three verticesi, j andk
∈ V, the following inequality (1) holds.

li j + l jk ≥ lik (1)

This kind of TSP is called△-TSP, such as the
Euclidean TSP. Except the△-TSP, most of the other TSP
are non-△-TSP, i.e. not all of the three adjacent verticesi,
j andk obey the inequality (1).

Similarly, four verticesh, i, j andk∈ V are given. For
TSP with more than 4 vertices, they will combine 12
paths shown in Figure 1. These paths are arranged in two
columns. The paths in the left column are noted with odd
numbers and the paths of right column are noted with
even numbers. For the two paths in the same line, such as
the 1st and 2nd paths, their two end vertices are identical
whereas the two middle vertices are exchanged. Whatever
the verticesh, i, j andk obey the triangle inequality, one
of the two paths is shorter than the other. For example, if
the 5th path is shorter than the 6th path, the inequality (2)
holds. This is the four vertices and three lines inequality.
In view of Figure 1, total 6 paths satisfy inequality (2).

lhi + li j + l jk ≤ lh j + l ji + lik (2)

For symmetrical TSP, the inequality is simplified aslhi +
l jk ≤ lh j + lik which is one restriction of the four point
conditions [9].

The OHC is composed ofn edges and it is also taken
as the combinations ofn paths composed of four vertices.
The four-vertex paths are noted asP4=(h, i, j, k) (1 ≤ h, i,
j, k ≤ n). All the P4s in the OHC must satisfy the four
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Fig. 1: 12 paths combined with 4 vertices

vertices and three lines inequality although some of them
violate the triangle inequality. TheP4 obeys the four
vertices and three lines inequality is noted asOP4.
Otherwise, it is represented asCP4. A CP4 will become
anOP4 after the two middle vertices are exchanged, such
as the pair of the 1st and 2nd paths in Figure 1. Therefore,
the CP4 setsS1 and theOP4 setsS2 are mapped one to
one and the function is the four vertices and three lines
inequality, i.e.,f 4: CP4 → OP4, whereCP4 ∈S1, OP4 ∈S2
and f 4 represents the inequality (2). An arbitraryCP4 in
S1 has one reflectionOP4 in S2.

When aCP4 is mapped into its reflectionOP4, we are
interested in the error between theCP4 and theOP4. Two
simple Euclidean pathsCP4=(h, j, i, k) andOP4=(h, i, j,
k) is used to illustrate the errorerr. They are illustrated in
Figure 2, whereo is the intersection of edgeseh j andeik.
For symmetrical TSP, they own the same middle edge. The
error between theCP4 andOP4 is defined as formula (3).

err =
lh j + lik − (lhi + l jk)

lhi + l jk
×100% (3)

Due to the diversity of TSP, we only give the
conclusion that the errorerr is bigger than 0. When the
four vertices and three lines inequality is used to construct
the HCs, it will always generate the shorter HCs with the
OP4s. It is also used to improve the HCs by changing the
CP4s into theOP4s. The middle edges in theCP4s are
neglected in formula (3) and they can represent any paths
with more than two vertices. At this time, the function of
the four vertices and three lines inequality is the same as
that of the 2-opt move [14].

In Figure 2,o is the intersection of edgeseh j andeik.
It is clear that the inequalitylhi + l jk ≤ lh j + lik holds due
to the two triangle inequalitylhi ≤ loh + loi and l jk ≤ lo j
+ lok. In general, it is not the OHC if one HC include two
intersecting edges for Euclidean TSP.
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Fig. 2: The illustration of error err with two simple paths

3 The heuristics based on four vertices and
three lines inequality

A heuristics is designed based on the four vertices and
three lines inequality. It is shown as follows.

Step 1. Input an initialOP4= (h, j, i, k) into the head of a
vacant HC.

Step 2. While(the HC is not full)
Step 3. Compute the nextOP4=( j, i, k, x) with a new

vertexx.
Step 4. Input the vertexx into the HC behind and

adjacent tok.
Step 5. j:=i, i:=k, k:=x.
Step 6. End

The heuristic algorithm will produce a HC composed
of OP4s. We want to know the performance ratio of the
approximate algorithm in worst case.

Total 6OP4s are combined with four verticesh, i, j and
k. The length of the 6OP4s are different. The shortest or
the otherOP4s may belong to the OHC. The shortestOP4

is noted asSOP4 and the longestOP4 is noted asLOP4.
In worst case, theSOP4 belong to the OHC whereas the
LOP4 is generated. The ratio between theLOP4 and the
SOP4 is defined as formula (4).

r =
l(LOP4)

l(SOP4)
(4)

For symmetrical TSP withn cities (vertices), the
number of theOP4s is computed asn(n-1)(n-2)(n-3)/4.
The number of theSOP4s and LOP4s is equal to
n(n-1)(n-2)(n-3)/24, respectively. With the
n(n-1)(n-2)(n-3)/24 pairs of theSOP4s andLOP4s with
the same four vertices,n(n-1)(n-2)(n-3)/24 ratios will be
computedr1, r2, · · · , r n(n−1)(n−2)(n−3)

24
. The maximal value

is noted asrmax=max{r1,r2, · · · ,r n(n−1)(n−2)(n−3)
24

}. As we

know, the OHC is composed ofn OP4s. With the four
vertices and three lines inequality, we can compute the
rmax-approximation in worst case. The approximate ratio
rmax is not a constant for all kinds of TSP whereas it is
determined for a concrete TSP.

We will end the paper with a simple example. The
regular square with edge of length 1 is shown in Figure 3.
The length of the OHC is 4. The longestLOP4s are (h, i,

k, j), (h, k, i, j), (i, h, j, k) and (i, j, h, k) whose length is
equal to 2+

√
2. The shortestSOP4s are (h, k, j, i), (h, i,

j,k), (i, h, k, j) and (j, i, h, k) whose length is equal to 3.
rmax is computed as2+

√
2

3 . In worst case, MST heuristics
is guaranteed to produce the 2×4 approximation,
Christofides heuristics is guaranteed to produce 3/2×4
approximation and our method is guaranteed to produce
2+

√
2

3 × 4 approximation. This simple example can not
explain this method is better than MST heuristics and
Christofides’ heuristics. It only proves that an
approximation with the worst ratio will be found with the
heuristics of four vertices and three lines inequality.

Fig. 3: A regular square with edge of length 1

4 Conclusion

The four vertices and three lines inequality is the
characteristic of four adjacent vertices in a weighted
graph. The OP4s illuminate the restrictions of the
underlying distance matrices. A heuristics based on the
four vertices and three lines inequality is designed to find
an approximation of TSP. The performance ratio may be
not a constant for all kinds of TSP. However, it is
determined for a concrete TSP in worst case. In the
future, the experiments will be done to show thermax of
TSP instances and the heuristics will be improved to
reduce thermax.
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