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Abstract: This paper deals with the problem of regional gradient controllability of hyperbolic systems. We show how one can reach
a desired state gradient given only on a part of the system evolution domain. Also we explore a numerical approach using Hilbert
Uniqueness Method (HUM) that leads to an explicit formula of the optimal control. The obtained results are successfully tested through
computer simulations leading to some conjectures.
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1 Introduction

Many real systems are purely of distributed nature, and
many of the systems conceived by humans are naturally
very complex. Indeed, every complex problem always
necessitates a complex solution. In spite of the fact that
the most elaborated mathematical methods have been
developed, a lot is to be done to bridge the gap between
applied mathematics and the industrial world problems.
The system theory contributed to fulfil this objective, and
thus, obtain exploitable results in different domains.
Particulary, the controllability is one of the most
interesting notions of the system theory. Various previous
researches treated the problem of controllability of
hyperbolic systems which are composed of wave equation
that we find in many real problems [1,2]. Copious works
deal with the problem of steering a system (S) to a
prescribed state defined on a space domainΩ , were
considered and studied in (Curtain and Zwart, 1995) [3],
and the references therein. The study of controllability in
hyperbolic systems was the subject of countless
researches(Dolecki and Russell 1977, El Jai and Pritchard
1988, Lions 1988) ([4],[5]). The regional case was
studied by Zerrik et al (2003) [6]. Pussed by the need to
control the flux Zerrik et al.(1999)[7] developed the
gradient controllability of parabolic systems. Our study
will be devoted to the regional gradient controllability of
the hyperbolic systems. This paper is organized as
follows. Section 2 present a definition and
characterization of regional controllability of hyperbolic
systems. Section 3 defines the actuators gradient strategic

and elaborates on its relationship with regional gradient
controllability. Section 4 focusses on the approach
devoted to the computation of the optimal control that
permits to attain a gradient in a subregionω of Ω . At the
last, the obtained results are successfully applied in one
dimensional system with two numerical examples leading
to some conjectures.

2 Regional gradient controllability

2.1 Considered system

Let Ω be an open bounded subset ofR
n with regular

boundary ∂Ω . For T > 0 we denoteQ = Ω×]0,T[,
Σ = ∂Ω×]0,T[ and we consider the hyperbolic system
defined by





∂ 2y(x, t)

∂ t2 −Ay(x, t) = Bu(t) in Q

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω
∂y(ξ , t)

∂νA
= 0 on Σ

(1)

where A is a second-order elliptic linear symmetric
operator given by:





A=−
n

∑
i, j=1

∂i(ai j ∂ j ) with ai j = a ji ∈ C
1(Ω) and there existsα > 0

such that
n

∑
i, j=1

ai j ξi ξ j ≥ α
n

∑
i=1

| ξi |2 ∀ξ = (ξ1, ...,ξn) ∈ IRn

(2)
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with domain

D(A) =

{
y∈ H2(Ω),

∂y(ξ , t)
∂νA

= 0 on ∂Ω
}
. (3)

B∈L (U,H1(Ω)) whereU = L2(0,T; IRp) andp is the number

of actuators,(y0,y1)∈D(A)×H1(Ω).We denote(yu(t),
∂yu

∂ t
(t))

the solution of the equation (1). If we denote byĀ=

(
0 I
A 0

)

z=(y,
∂y
∂ t

) andB̄u=(0,Bu) then the system(1) can be written
as: 




∂z(x, t)
∂ t

= Āz(x, t)+ B̄u(t) in Q

z(0) = (y0,y1)
t in Ω

(4)

for all (z1,z2) ∈ D(Ā) = D(A)×H1(Ω) the solution of the
system (4) is expressed using the semi-group(S̄(t))t≥0
generated bȳA and given by

z(t) = S̄(t)z0+
∫ t

0
S̄(t− τ)B̄u(τ)dτ (5)

With the assumption that the operatorA admits basis of
eigenfunctionswn j associated with the eigenvaluesλn of
multiplicity rn.

S̄(t)z(.) =


∞

∑
n=1

rn

∑
j=1

[
〈z1,ωnj 〉cos(

√
−λnt)+

1√
−λn
〈z2,ωnj 〉sin(

√
−λnt)

]
ωnj (.)

∞

∑
n=1

rn

∑
j=1

[
(−
√
−λn)〈z1,ωnj 〉sin(

√
−λnt)+ 〈z2,ωnj 〉cos(

√
−λnt)

]
ωnj (.)




and
∫ t

0 S̄(t− τ)B̄u(τ)dτ =


∞

∑
n=1

rn

∑
j=1

[∫ t

0

1√
−λn
〈Bu(τ),ωnj 〉sin(

√
−λn(t− τ))dτ

]
ωnj (.)

∞

∑
n=1

rn

∑
j=1

[∫ t

0
〈Bu(τ),ωnj 〉cos(

√
−λn(t− τ))dτ

]
ωnj (.)




Forω ⊂Ω an open subregion ofΩ with positive Lesbegue
measure, letχω be the restriction function defined by

χω : (L2(Ω))n× (L2(Ω))n −→ (L2(ω))n× (L2(ω))n

(z1,z2) 7→ χω (z1,z2) = (z1,z2)|ω
andχ∗ω denotes the adjoint operator, given by

χ∗ω : (L2(ω))n× (L2(ω))n −→ (L2(Ω))n× (L2(Ω))n

(z1,z2) 7→ χ∗ω (z1,z2) =

{
(z1,z2) in ω
0 in Ω \ω

Consider the operator∇ given by the formula

∇ : H1(Ω) −→ (L2(Ω))n

y 7→ ∇y= (
∂y
∂x1

, ...,
∂y
∂xn

)

And the operator̃∇ given by the formula

∇̃ : H1(Ω)×H1(Ω) −→ (L2(Ω))n× (L2(Ω))n

(y0,y1) 7→ ∇̃(y0,y1) = (∇y0,∇y1)

Let us give some definitions about the regional
controllability of the gradient.

2.2 Definition and properties

Definition 1.

–The system (1) is said to be ω-exactly gradient
controllable if for all (gd

p,g
d
s) ∈ (L2(ω))n× (L2(ω))n

there exists u∈U such that

χω (∇yu(T),∇
∂yu

∂ t
(T)) = (gd

p,g
d
s)

–The system (1) is said to be ω-weakly gradient
controllable if for all ε > 0 for all
(gd

p,g
d
s) ∈ (L2(ω))n × (L2(ω))n there exists u∈ U

such that

‖ χω (∇yu(T),∇
∂yu

∂ t
(T))− (gd

p,g
d
s) ‖(L2(ω))n×(L2(ω))n≤ ε

Consider the operator

H : L2(0,T, IRp)−→ H1(Ω)×H1(Ω)

u 7→ (yu(T),
∂yu

∂ t
(T))

It is clear that the system (1) is ω−exactly (resp.
ω-weakly) gradient controllable if

Imχω ∇̃H = (L2(ω))n× (L2(ω))n

(resp. Imχω ∇̃H = (L2(ω))n× (L2(ω))n.)

Remark.

1.LetJ(u) =
∫ T

0 ‖ u(t) ‖2
Rp dt be the transfer cost . Then

for anyω ⊂Ω , the regional gradient transfer cost inω
is smaller than the transfer cost inΩ .

2.The above definitions mean that we are only
interested in the transfer of the system gradient to a
desired function on the subregionω ⊂Ω .

3.If the system (1) is exactly gradient controllable inω
then it is weakly gradient controllable inω.

4.For ω2 ⊂ ω1 the system (1) is exactly (resp. weakly)
gradient controllable inω1 then it is exactly (resp.
weakly) gradient controllable inω2.

Proposition 1.

1.The system (1) is ω−exactly gradient controllable if
and only if

Kerχω + Im∇̃H = (L2(Ω))n× (L2(Ω))n

2.The system (1) is ω-weakly gradient controllable if and
only if

Kerχω + Im∇̃H = (L2(Ω))n× (L2(Ω))n

c© 2014 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.3, No. 1, 11-19 (2014) /www.naturalspublishing.com/Journals.asp 13

Proof.

1.Let y ∈ (L2(Ω))n × (L2(Ω))n then
χωy ∈ (L2(ω))n× (L2(ω))n and since the system (1)
is ω− exactly gradient controllable then there exist
u∈U such thatχωy= χω ∇̃Hu. Let y1 = y− ∇̃Hu and
y2 = ∇̃Hu then we havey= y1+ y2 with y1 ∈ Kerχω
andy2 ∈ Im∇̃H.
Conversely lety∈ (L2(ω))n× (L2(ω))n , then
ỹ = χ∗ωy ∈ (L2(Ω))n × (L2(Ω))n which allows to
write ỹ = y1 + y2 with y1 ∈ Kerχω and y2 ∈ Im∇̃H
consequently there existsu ∈ U such thaty2 = ∇̃Hu
therefore ˜y = y1+ ∇̃Hu which givesy = χω ∇̃Hu and
thus the system (1) is ω−exactly gradient
controllable.

2.Let y ∈ (L2(Ω))n × (L2(Ω))n then
χωy ∈ (L2(ω))n× (L2(ω))n and since the system (1)
is ω− weakly gradient controllable then there exist
un ∈ U such thatχωy = lim χω ∇̃Hun let y1 = y− y2

with y2 = lim ∇̃Hun then we havey = y1 + y2 with

y1 ∈ Kerχω andy2 ∈ Im∇̃H.
Conversely let y ∈ (L2(ω))n × (L2(ω))n, then
ỹ = χ∗ωy ∈ (L2(Ω))n × (L2(Ω))n which allows to

write ỹ = y1 + y2 with y1 ∈ Kerχω and y2 ∈ Im∇̃H
Consequently there existsun ∈ U such that
y2 = lim ∇̃Hun therefore
ỹ = y1 + lim ∇̃Hun which givesy = lim χω ∇̃Hun and
thus the system (1) is ω-weakly gradient controllable.

3 Gradient controllability and actuators

In this section we show that there exist a link between the
regional gradient controllability and the actuators
structure. Consider system (1) excited byp zone actuators
(Di , fi) whereDi ⊂Ω and fi ∈ H1(Di)





∂ 2y(x, t)

∂ t2 −Ay(x, t) =
p

∑
i=1

(χD fi)(x)ui(t) in Q

y(x,0) = 0,
∂y
∂ t

(x,0) = 0 in Ω
∂y(ξ , t)

∂νA
= 0 on Σ

(6)

Definition 2.
A sequence of the actuators is said to be gradient strategic
if the excited system is weakly gradient controllable.

Proposition 2.
If the sequence of the actuators(Di , fi)1≤i≤p is gradient
strategic then

1.p≥ sup(rm).

2.Rank(Gm) = rm, for all m≥ 1 where(Gm) is the matrix
of order(p, rm) given by

(Gm)i, j =





n

∑
k=1

〈
∂ωmj

∂xk
, fi〉Di zonal case

n

∑
k=1

∂ωmj

∂xk
(bi) pointwise case

Proof.
The proof will be developed in the internal zonal case.
The system (6) is weakly gradient controllable over[0,T]
then for all
z= (z1,z2) in (L2(Ω))n× (L2(Ω))n

〈∇̃Hu,z〉(L2(Ω))n×(L2(Ω))n = 0, for all u∈ L2(0,T; IRp) and
T〉0 =⇒ z= 0. Consider the following system:





∂ 2ϕ(x, t)
∂ t2 −A∗ϕ(x, t) = 0 in Q

ϕ(x,T) =−h0;ϕ ′(x,T) = h0 in Ω
ϕ(ξ , t) = 0 on Σ

(7)

Multiplying the system (7) by
∂y
∂xk

and integrating overQ

and using the green formula we obtain :

−〈 ∂y′

∂xk
(T),ϕ(T)〉+ 〈 ∂y

∂xk
(T),ϕ

′
(T)〉=

p

∑
i=1

∫ T

0
〈 fi ,

∂ϕ
∂xk
〉ui(t)dt

then
n

∑
k=1
〈 ∂y′

∂xk
,h0〉+ 〈

∂y
∂xk

,h0〉=
n

∑
k=1

p

∑
i=1

∫ T

0
〈 fi ,

∂ϕ
∂xk
〉ui(t)dt

〈∇̃Hu,(I , I)〉=
n

∑
k=1

p

∑
i=1

∫ T

0
〈 fi ,

∂ϕ
∂xk
〉ui(t)dt

with I =




h0
.
.
.

h0


 and therefore




n

∑
k=1

p

∑
i=1

∞

∑
m

rm

∑
j=1

∫ T

0
(−λm)

1
2 〈−h0,ωmj 〉〈 fi ,

∂ωmj

∂xk
〉sin((−λn)

1
2 (τ−T))ui(τ)dτ

+

∫ T

0
〈h0,ωmj 〉〈

∂ωmj

∂xk
, fi〉cos((−λn)

1
2 (τ−T))ui(τ)dτ}

= 0 ∀u∈ L2(0,T; IRp) and T〉0




=⇒ h0 = 0
this amounts to:



∞

∑
m
(−λm)

1
2 sin(−λm)

1
2 (τ−T)

rm

∑
j=1

n

∑
k=1
〈−h0,wmj 〉〈

∂ωmj

∂xk
, fi〉

+
∞

∑
m

cos(−λm)
1
2 (τ−T)

rm

∑
j=1

n

∑
k=1
〈h0,wmj 〉〈

∂ωmj

∂xk
, fi〉= 0

1≤ i ≤ p




=⇒ h0 = 0
for T large enough ,{cos(.−T),sin(.−T)} is an
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orthonormal set ofL2(0,T), then




(−λm)
1
2

rn

∑
j=1

n

∑
k=1
〈−h0,ωmj 〉〈

∂ωmj

∂xk
, fi〉= 0

and
rn

∑
j=1

n

∑
k=1
〈h0,ωmj 〉〈

∂ωmj

∂xk
, fi〉= 0

So
rn

∑
j=1

n

∑
k=1
〈h0,ωmj 〉〈

∂ωmj

∂xk
, fi〉 = 0 ⇒ h0 = 0

which concludes the proof.

4 Regional target control

The propose of this section is to explore an approach
devoted to the computation of the optimal control of the
system (6) to a given gradient in the subregionω.
Suppose that(gd

p,g
d
s) ∈ χω(Im(∇)× Im(∇)) is given and

we set

Ḡ = {(φ0,φ1) ∈ D(Ω)×D(Ω) | φ0 = φ1 = 0 sur Ω\ω}
(8)

Ḡn =





(φ̃0, φ̃1) ∈ (D(Ω))n× (D(Ω))n | (φ̃0, φ̃1) =







φ0
.
.
.

φ0







φ1
.
.
.

φ1







such that (φ0,φ1) ∈ Ḡ





(9)

whereD(Ω) is the space of test functions.
The problem is a follows: Does there exist a controlu∈U
with minimum-norm such that for
(y0,y1) ∈ D(A)×H1(Ω) and f ∈ H1(D)





∂ 2y(x, t)

∂ t2 −△y(x, t) = (χD f )(x)u(t) in Q

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω
∂y(ξ , t)

∂ν
= 0 on Σ

(10)

and the problem :





min
u∈L2(0,T)

J(u) = ‖u‖2L2(0,T)

χω (∇yu(T),∇
∂yu

∂ t
(T)) = (gd

p,g
d
s)

(11)

where(yu) solution of (10)

4.1 HUM approach

The approach developed here is an extension of the Hilbert
uniqueness method (HUM) developed by Lions (see[5])

For (φ1,−φ0) ∈ Ḡ, the system




∂ 2φ(x, t)
∂ t2 −△φ(x, t) = 0 in Q

φ(x,T) = φ0(x),
∂φ
∂ t

(x,T) = φ1(x) in Ω
φ(ξ , t) = 0 on Σ

(12)
Has a unique solution (see[5]).
In Ḡn we define the following semi-norm :

‖(φ̃1,−φ̃0)‖Ḡn =

(∫ T
0

(
∑n

i=1 〈
∂φ(t)

∂xi
, f 〉L2(D)

)2
dt

) 1
2

(13)
and we consider the system :




∂ 2ψ(x, t)

∂ t2 −△ψ(x, t) =
n

∑
i=1
〈∂φ(t)

∂xi
, f 〉L2(D)(χD f )(x) in Q

ψ(x,0) = y0(x),
∂ψ
∂ t

(x,0) = y1(x) in Ω
∂ψ(ξ , t)

∂ν
= 0 on Σ

(14)
which has a unique solution such that

(ψ(T),
∂ψ
∂ t

(T)) ∈ H2(Ω)×H1(Ω)(see[2])

and
(ψ(T),

∂ψ
∂ t

(T)) = (ψ0(T),
∂ψ0

∂ t
(T))+(ψ1(T),

∂ψ1

∂ t
(T)),

whereψ0 andψ1 are solutions of the systems




∂ 2ψ0(x, t)

∂ t2 −△ψ0(x, t) = 0 in Q

ψ0(x,0) = y0(x),
∂ψ0

∂ t
(x,0) = y1(x) in Ω

∂ψ0(ξ , t)
∂ν

= 0 on Σ

(15)

and




∂ 2ψ1(x, t)

∂ t2 −△ψ1(x, t) =
n

∑
i=1
〈∂φ(t)

∂xi
, f 〉L2(D)(χD f )(x) in Q

ψ1(x,0) = 0,
∂ψ1

∂ t
(x,0) = 0 in Ω

∂ψ1(ξ , t)
∂ν

= 0 on Σ
(16)

We consider the operator

Λ(φ̃1, ˜−φ0) = P(∇ψ1(T),∇ψ
′
1(T))

is a symmetric and bounded operator whereP = χ∗ω χω .
Then the regional gradient controllability problem turns up
to solve the equation :

Λ(φ̃1, ˜−φ0) =−P(∇ψ0(T),∇ψ
′
0(T))+χ∗ω (gd

p,g
d
s) (17)

and we have the following result:

Theorem 1.If the system (10) is ω− weakly gradient
controllable then (17)) has a unique solution(φ0,φ1) and

u∗(t) =
n

∑
i=1
〈∂φ(t)

∂xi
, f 〉L2(D) drives the system (10) to

c© 2014 NSP
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(gd
p,g

d
s) on ω at time T, whereφ is the solution of the

system (12). Moreover, this control is the solution of the
problem (11).

Proof.
Let wi(x) be the eigenfunctions of∆ associated with the
eigenvaluesλi . The mapping (13) defines a norm inḠn.
Indeed

‖(φ̃1,−φ̃0)‖Ḡn = 0 gives
n

∑
i=1
〈 ∂φ

∂xi
, f 〉2L2(D) = 0 on[0,T]

which is equivalent to

∑∞
j=1

(
〈φ0,w j〉cos[(−λi)

1
2 (t−T)]+

〈φ1,w j 〉
(−λ j )

1
2

sin[(−λ j)
1
2 (t−T)]

)
∑n

i=1〈
∂w j
∂xi

, f 〉L2(D) = 0

(18)
thus, for T large enough ,{cos(.−T),sin(.−T)} is an
orthonormal set ofL2(0,T), then (18) gives

〈φ0,w j〉
n

∑
i=1
〈∂w j

∂xi
, f 〉L2(D) = 0

and

〈φ1,w j〉
n

∑
i=1
〈∂w j

∂xi
, f 〉L2(D) = 0

since (the system (10) is ω-weakly gradient controllable

then
n

∑
i=1
〈∂w j

∂xi
, f 〉L2(D) 6= 0 and we have〈φ0,w j〉 = 0 and

〈φ1,w j〉 = 0, ∀i ≥ 1. It follows thatφ0 = φ1 = 0 and (13)
is a norm. LetĜ be the completion ofḠn by the norm (13)
andĜ∗ its dual. We show thatΛ is an isomorphism from
Ĝ into Ĝ∗. Indeed

〈Λ(φ̃1, ˜−φ0),(φ̃1, ˜−φ0)〉=
n

∑
i=1

(
〈∂ψ1

∂xi
(T),φ1〉−〈

∂ψ ′
1

∂xi
(T),φ0〉

)

multiplying (12) by
∂ψ1

∂xi
and using of the Green formula

we have.
∫ T

0
〈 ∂φ(t)

∂xi
, f 〉L2(D)

n

∑
j=1

〈 ∂φ
∂x j

, f 〉2
L2(D)

dt = 〈 ∂ψ1

∂xi
(T),φ1〉−〈

∂ψ ′1
∂xi

(T),φ0〉

So we have〈Λ(φ̃1, ˜−φ0),(φ̃1, ˜−φ0)〉 = ‖(φ̃1,−φ̃0)‖2Ĝ .

Hence, (17) has only one solution (φ̃1, φ̃0) and
n

∑
i=1
〈 ∂φ

∂xi
, f 〉2L2(D) steers the system (10) to the desired

gradient (gd
p,g

d
s) on ω at time T. Now we consider

Uad =

{
u∈U |χω(∇yu(T),∇

∂yu

∂ t
(T)) = (gd

p,g
d
s)

}
.

For v∈Uad and under (11) we have

J
′
(u∗)(v−u∗) = 2

∫ T

0
u∗(t)(v(t)−u∗(t)dt

= 2
∫ T

0

n

∑
i=1
〈 ∂φ

∂xi
, f 〉2L2(D)(v(t)−u∗(t))dt

Applying Green’s formula after multiplying (12) by
∂ (yu−yv)

∂xi
, and from the boundary and initial conditions

we have :
∫ T

0
〈 ∂φ(t)

∂xi
, f 〉2

L2(D)
(v(t)−u∗(t))dt = 〈 ∂yu

∂ t
(T)− ∂yv

∂ t
(T),

∂φ
∂xi

(T)〉

− 〈 ∂yu

∂ t
(0)− ∂yv

∂ t
(0),

∂φ
∂xi

(0)〉

+ 〈yu(0)−yv(0),
∂φ ′

∂xi
(0)〉

− 〈yu(T)−yv(T),
∂φ ′

∂xi
(T)〉

so
∫ T

0

n

∑
i=1
〈∂φ(t)

∂xi
, f 〉2L2(D)(v(t) − u∗(t))dt = 0 Hence,

J
′
(u∗)(v−u∗) = 0.

The uniqueness ofu∗ comes from the strict convexity ofJ
and establishes its optimality.

4.2 Numerical approach

In this section we give an approach which gives explicit
formulae for φ̃0 , φ̃1 and the optimal control solution of
(11). We have seen that the problem (11) can be used to
solve (17), which is equivalent to solving the minimization
problem

inf
(φ̃1,φ̃0)∈Ĝ

R(φ̃1, φ̃0) (19)

whereR is given by

R(φ̃1, φ̃0) =
1
2

∫ T

0

(
n

∑
i=1
〈 ∂φ

∂xi
, f 〉L2(D)

)2

dt+
n

∑
i=1
〈∂ψ0

∂xi
(T),φ1〉

− 〈∂ψ ′
0

∂xi
(T),φ0〉−〈gd

pi
,φ1〉+ 〈gd

si
,φ0〉

Expanding the integrand and lettingT→+∞, we obtain:

1
2T

∫ T

0

(
n

∑
i=1

〈 ∂φ
∂xi

, f 〉L2(D)

)2

dt=
∞

∑
j=1

1
4
(〈φ0,w j 〉2−

1
λ j
〈φ0,w j 〉2)(

n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2

(20)
Thus, forT large enough, we obtain :

1
2

∫ T

0

(
n

∑
i=1

〈 ∂φ
∂xi

, f 〉L2(D)

)2

dt≃
∞

∑
j=1

T
4
(〈φ0,w j 〉2−

1
λ j
〈φ1,w j 〉2)(

n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2

(21)
The problem (19) can allow us to minimize the functional
Rgiven by :

R(φ0,φ1) ≃
∞

∑
j=1

T
4
〈φ0,w j 〉2(

n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2−
n

∑
i=1

〈 ∂ψ ′0
∂xi

(T),w j 〉〈φ0,w j 〉

+〈φ0,w j 〉〈gd
si
,w j 〉

+
∞

∑
j=1

−T
4λ j
〈φ1,w j 〉2(

n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2+ 〈 ∂ψ0

∂xi
(T),w j 〉〈φ1,w j 〉

−〈gd
pi
,w j 〉〈φ1,w j 〉

(22)

The first term of (22) is independent of〈∂φ
∂ t

(0),w j〉 and

the second term is independent de〈φ(0),w j〉. Hence we
can minimize

T
4
〈φ0,w j 〉2ω (

n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2−
n

∑
i=1

〈 ∂ψ ′0
∂xi

(T),w j 〉〈φ0,w j 〉ω + 〈φ0,w j 〉ω 〈gd
si
,w j 〉
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and

− T
4λ j
〈φ1,w j〉2ω(

n

∑
i=1
〈 f , ∂w j

∂xi
〉L2(D))

2+
n

∑
i=1
〈∂ψ0

∂xi
(T),w j〉〈φ1,w j〉ω −〈gd

pi
,w j〉〈φ1,w j〉ω

which gives




〈φ0,w j 〉ω =
2
T

n

∑
i=1

(〈 ∂ψ ′0
∂xi

(T),w j 〉 − 〈gd
si
,w j 〉)

(
n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2

〈φ1,w j 〉ω =
2λ j

T

n

∑
i=1

(〈 ∂ψ0

∂xi
(T),w j 〉 − 〈gd

pi
,w j 〉)

(
n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2

(23)

Then we obtain

φ0 =





2
T

∞

∑
j=1

n

∑
i=1

(〈 ∂ψ ′0
∂xi

(T),w j 〉 − 〈gd
si
,w j 〉)

(
n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2
w j (x) x∈ ω

0 x∈Ω\ω

(24)

and

φ1 =





2
T

∞

∑
j=1

λ j

n

∑
i=1

(〈 ∂ψ ′0
∂xi

(T),w j 〉 − 〈gd
pi
,w j 〉)

(
n

∑
i=1

〈 f , ∂w j

∂xi
〉L2(D))

2
w j (x) x∈ ω

0 x∈Ω\ω

(25)

and the optimal control which steers the system (11) to the
desired gradient(gd

p,g
d
s) in ω at timeT is given by

u∗(t)=
+∞

∑
i=1

[〈φ0,wi〉cos(
√
−λi(t−T))+

〈φ1,wi〉√
−λi

sin(
√
−λi(t−T))]〈

n

∑
l=1

∂wi

∂xl
, f 〉L2(D)

(26)

We define a final error (depending on the subregionω and
the location of the actuator) by considering
E = ‖∇yu(T)−gd

p‖2(L2(ω))n
+‖∇y

′
u(T)−gd

s‖2(L2(ω))
n.

φ0,φ1 andu∗ are given by (24), (25) and (26). The general
algorithm for computing the optimal control for (10) is as
follows.
Algorithm

1.Choose actuator locationD⊂Ω , the subregionω and
precisionε.

2.Choose approximation orderM.
3.Calculation ofφ0 andφ1 using (24), (25) andu∗ from

(26).
4.Solve (12) and obtaining∇yu(T) and∇y

′
u(T).

5.If E ≤ ε stop, elseM←M+1 and return to step 3.

5 Simulation results

Here we consider one-dimensional system excited by one
internal pointwise actuator




∂ 2y(x, t)

∂ t2 − ∂ 2y(x, t)

∂x2 = δ (x−b)u(t) in ]0,1[×]0,T[

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in ]0,1[

y(0, t) = y(1, t) = 0 on ]0,T[.
(27)

Because of linearity of the above system, we take
y0(x) = y1(x) = 0.
For T = 2 and b=0.23, we have the following results:

5.1 Example1

Here we test the previous algorithm with the desired
gradient position and speed gradient given by

{
gd

p(x) = 2sin(πx)/(x4+1)
gd

s(x) = 8sin(πx)x2

Global target
For ω =]0,1[ we have the figures:

Figure 1: The desired position gradientgd
p (dashed line)

and its reached (solid line) inω.

Figure 2: The desired speed gradientgd
s(dashed line) and

its reached (solid line) inω.

0,0 0,5 1,0 1,5 2,0

-1,0

-0,5

0,0

0,5

1,0

1,5

Figure 3: The evolution of the control function.
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Regional target
For ω =]0.3,0.5[, we have the following figures

Figure 4: The desired position gradientgd
p (dashed line)

and its reached (solid line) inω.

Figure 5: The desired speed gradientgd
s (dashed line) and

its reached (solid line) inω

Figure 6: The evolution of the control function.

Fig 4 and Fig 5 show that the reached position gradient
(resp. speed gradient) is very close to the desired gradient
position (resp. gradient speed) inω. The reached state
gradient and speed gradient are obtained with the error
ε = 2.7631×10−3 and the costJ(u∗) = 2.32×10−1.

0,0 0,2 0,4 0,6 0,8 1,0
-10

0

10

20

30

40

50

Figure 7: The reconstruction error with respect to the
actuator location.

The following simulation results show the evolution of the
reconstruction error with respect to the actuator locationb
in ]0,1[.
Figure 7 reveals the following facts:

–For a given subregionω, there is an optimal actuator
location (optimal in the sense that it leads to a desired
state gradient very close to the reached one).

–When an actuator is located sufficiently far from the
subregion ω, the reconstructed gradient error is
constant for any locations

Relation between the subregion area and
reconstruction error
Here we study the evolution of the reconstruction error
with respect to the subregion area.

Table 1: Evolution of the error with respect to the
subregion area.

subregion Reconstruction error

]0.1,0.9[ 4.0005×10−3

]0.1,0.8[ 3.7310×10−3

]0.1,0.7[ 3.6562×10−3

]0.2,0.7[ 3.3631×10−3

]0.3,0.6[ 2.7631×10−3

]0.3,0.5[ 1.2693×10−4

]0.3,0.4[ 1.0971×10−5

We note that the reconstruction error depends on the area
of the subregion. Its means that the greater the area is the
greater the error is.

5.2 Example2

Here the considered position and speed gradient are given
by {

gd
p(x) = π sin(πx) tan(x)

gd
s(x) = (π sin(πx)+cos(πx))exp(x)

Global target
For ω =]0,1[ we have the figures:
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Figure 8: The desired position gradientgd
p (dashed line)

and its reached (solid line) inω.

Figure 9: The desired speed gradientgd
s (dashed line) and

its reached (solid line) inω.

Figure 10: The evolution of the control function.

Regional target
For ω =]0.65,1[, we have the following figures

Figure 11: The desired position gradientgd
p (dashed line )

and its reached (solid line) inω.

Figure 12: The desired speed gradient
∂y
′
(T)

∂x
(dashed

line ) and its reached (solid line ) inω.

Figure 13: The evolution of the control function.

Figures 11 and 12 show that the reached position gradient
(resp. speed gradient) is very close to the desired gradient
position (resp. gradient speed) inω.
The reached state and speed gradient are obtained with the
errorε = 5.1419×10−3 and the costJ(u∗) = 3.17×10−1

0,0 0,2 0,4 0,6 0,8 1,0
-6

0

6

12

18

24

Figure 14: The reconstruction error with respect to the
actuator location.

In this example, we examined the evolution of the
reconstruction error, with respect to the actuator location,
we obtained similar conclusion as in the example 1.

6 Conclusion

In this work we have extended the notion of regional
gradient controllability to hyperbolic systems. We gave

c© 2014 NSP
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definitions and important characterizations in connection
with strategic actuator and which allowed as to extend the
HUM approach and then achieve the desired gradient. A
minimization problem is also considered which provided
us an algorithm with explicit formula of the optimal
control that is performed through numerical examples and
simulations. The problem where the subregion target is a
part of the boundary of the system evolution domain, is of
great interest and the work is under consideration and will
be the subject of the feature paper. We are also interested
to control the gradient of semilinear systems which are
very close to nonlinear ones, and then we try to extend the
existed results given in observability (see[8]and[9]) and
controllability (see[10]) of semilinear systems to gradient
case.
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