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Abstract: This paper deals with the problem of regional gradient controllability oEhlyplic systems. We show how one can reach
a desired state gradient given only on a part of the system evolutionicloAlao we explore a numerical approach using Hilbert
Uniqueness Method (HUM) that leads to an explicit formula of the optimatirob The obtained results are successfully tested through
computer simulations leading to some conjectures.
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1 Introduction and elaborates on its relationship with regional gradient
controllability. Section 4 focusses on the approach

Odevoted to the computation of the optimal control that
ermits to attain a gradient in a subregi@of Q. At the

ast, the obtained results are successfully applied in one

Qimensional system with two numerical examples leading

Many real systems are purely of distributed nature, an
many of the systems conceived by humans are naturall
very complex. Indeed, every complex problem always
necessitates a complex solution. In spite of the fact tha
the most elaborated mathematical methods have bee
developed, a lot is to be done to bridge the gap between

applied mathematics and the industrial world problems. ) ) .

The system theory contributed to fulfil this objective, and 2 Regional gradient controllability

thus, obtain exploitable results in different domains.

Particulary, the controllability is one of the most 2 1 Considered system

interesting notions of the system theory. Various previous

researches treated the problem of controllability of | ot 0 pe an open bounded subset &F with regular
hyperbolic systems which are composed of wave equatiooyndary Q. For T > 0 we denoteQ = Qx]0,T|,

that we find in many real problems,p]. Copious works 5 — 9 %]0, T[ and we consider the hyperbolic system
deal with the problem of steering a system (S) to adefined by

prescribed state defined on a space dom@inwere

some conjectures.

considered and studied in (Curtain and Zwart, 1995) [ 9%y(x,1) )

and the references therein. The study of controllability in gz AYxD=BUy in Q
hyperbolic systems was the subject of countless y(x,0) :yo(x),a—y(x,O) —yi(x)in Q (1)
researches(Dolecki and Russell 1977, El Jai and Pritchard aY(ED)

1988, Lions 1988) 4],[5]). The regional case was T}A’ =0 on X

studied by Zerrik et al (2003)9]. Pussed by the need to

control the flux Zerrik et al.(1999]] developed the \here A is a second-order elliptic linear symmetric
gradient controllability of parabolic systems. Our study operator given by:
will be devoted to the regional gradient controllability of

the hyperbolic systems. This paper is organized as AZ?id(ajgj>withaj:ajie(gl(mandthereeximw
follows. Section 2 present a definition and if=1 @

characterization of regional controllability of hyperiwol n oo )
systems. Section 3 defines the actuators gradient strategic | Suehthat 3 &&= aj [&17 ¥ = (&, . € R

i,J=1
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with domain
o~ {yer(@)

B .Z(U,HY(Q)) whereU = L?(0,T;RP) andp is the number
of actuators(yo,y1) € D(A) x HL(Q). We denotdyy(t), a{“( )

the solution of the equatior. If we denote byA = (0 ! )

AO
w9
as:

oy(&,t)

(?VA

=0 on 0(2} 3)

andBu= (0, Bu) then the systeni] can be written

9zx1) =Azx,t)+Bu(t)in Q
20) = (yo.y1)" in
for all (z1,2) € D(A) = D(A) x H1(Q) the solution of the
system 4) is_expressed using the semi-grotf(t))i>o
generated byA and given by

2(t) = S{t)zo + /Ot St — 7)Bu(t)dt (5)

With the assumption that the opera#@radmits basis of
eigenfunctionswnj associated with the eigenvaluggs of
multiplicity rp.

[

(z1, n; ) cos(v/—Ant) + (22, ;) sin( 7/\,—,[)} awn; ()

1
/=n

IMe
JVl:

Vo) 1, 6y ) Sin(y/~Ant) + (22, @n; ) G0 —/\nt)]ahj(.)

HM8

fosw(tf T)Bu( )dt =
3 [ = (BT, v sinty/ It~ 1) ey ()
=1/

23

Forw C Q an open subregion @ with positive Lesbegue
measure, leg,, be the restriction function defined by

Xo : (L2(Q))"x (L2(Q))" — (L2(w))" x (L2(w))"
(21,22) = Xo(z1,2) = (21, 2)|w

andx’ denotes the adjoint operator, given by

ahj>cos(\/f)\n(t - r))dr] W ()

(L2(@)" — (L2(Q)" x (LA(Q))"
(z1,22) In w

@z o xma={EP0e

Xoy (L2 (@))%

Consider the operatat given by the formula

0:HY(Q) — (LZ(Q)); 5
y— Oy= (03 7%)

And the operatoﬁl given by the formula
0:HY(Q) x HY(Q) — (L2(Q))" x (L2(Q))"
(Yo,y1) = O(¥o,¥1) = (Oyo,Oy1)

Let us give some definitions about the
controllability of the gradient.

2.2 Definition and properties

Definition 1.

—The system 1) is said to be w-exactly gradient

controllable if for all (g§,92) € (L3(w))" x (L*(w))"
there exists & U such that
0
XoO%ulT), D5 (T)) = (g8, &)

—The system 1) is said to be w-weakly gradient

controllable if for all € > 0 for all
(99,99 € (L?())" x (L*(w))" there exists ue U
such that

| Xeo 06T, D2 ) — (2,68 ez < €

Consider the operator

H: L%0,T,RP) — HY(Q)xHY(Q)

s (™), 2 m)

It is clear that the systeml) is w—exactly (resp.
w-weakly) gradient controllable if

Imy, OH = (L2(w))" x (L2(w))"
(resp  Imy, OH = (L2(w))" x (L2(w))".)
Remark.
1.Letd(u) = fOT | u(t) |2, dt be the transfer cost . Then

foranyw C Q, the regional gradient transfer costdn
is smaller than the transfer costéh

2.The above definitions mean that we are only
interested in the transfer of the system gradient to a
desired function on the subregionC Q.

3.1f the system 1) is exactly gradient controllable i@
then it is weakly gradient controllable m.

4.Forwp C wy the system]) is exactly (resp. weakly)
gradient controllable in; then it is exactly (resp.
weakly) gradient controllable .

Proposition 1.

1.The systeml] is w—exactly gradient controllable if
and only if
Kerxew+ImOH = (L2(Q))" x (L2(Q))"
2.The systemd] is w-weakly gradient controllable if and
only if
= (L2(Q))"

Kerxe + ImOH x (L2(Q))"

regional
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Proof. 2.RankGp) = rp, for all m > 1 where(Gy,) is the matrix
of order (p,rm) given by

llet vy € (L))" x (L3Q)" then N O
XoY € (L2(w))" x (L%(w))™ and since the systend)( X % fi)o; zonal case
is w— exactly gradient controllable then there exist (Gm)ij = k=1
u e U such thaley = X, Hu. Lety; = y—[Huand M7t} .
y2 = OHu then we have/ = y; + Y2 with y; € Kerxy z dxk] (bj) pointwise case

andy, € ImOH. k=1
Conversely ley € (L2(w))" x (L?(w))", then Proof

¥ =Xy € (LZ(Q)).H x (L%(Q))" which allows to proof will be developed in the internal zonal case.
write ¥ = y1 + Y2 with y; € Kerx, andy, € ImOH The system@) is weakly gradient controllable ovéd, T]
consequently there existse U such thaty, = OHu then for all

thereforey= y; + OHu which givesy = xoOHuand  z=(z1,2) in (L%(Q))" x (L3(Q))"

thus the system 1j is w—exactly gradient (ﬁHu z>(|_2( Q) 2(Q)n = =0, forallue L?(0,T;RP) and

)M (L
2.?_%?”0"""5'&6 2@« (L2(Q) then T)0 = z=0. Consider the following system:
XoY € (L?(w))" x (L?(w))™ and since the systend) Po(xt) . _
is w— weakly gradient controllable then there exist o2 $(xt)=0 inQ ;
up € U such thatyyey = lim x,0OHun lety; =y —y» P (x, ):—h0¢( ,T)=hpin Q )
with v, = lim OHu, then we havey = y; + Y, with $(&t) = onx

y1 € Kerxy, andy, € ImOH. dy
Conversely Iet y € ngw x (L?(w))", then  Multiplying the system?) byR and integrating ove®

§ = Xoy € (LA(Q))" x n which allows 1 5hq ysing the green formula we obtain :
write Y = y1 +y2 with y; € Kerxw andy, € ImOH

Consequently there existu, € U such that oy . 6(T /
y2 = lim OHu, therefore <0Xk( )9 )>+<5Xk 3 Z '7
¥ = y1 + lim OHu, which givesy = lim x,OHu, and
thus the systen] is w-weakly gradient controllable. o i <ﬂ ho) 0y ho Z/ f it
’dx
n p
3 Gradient controllability and actuators (OHu, ( =22 / f" tdt
In this section we show that there exist a link between the ho
regional gradient controllability and the actuators ith | — : d theref
structure. Consider systert)(excited byp zone actuators W'th'! = - | andthereiore
(Dj, f;) whereD; c Q andf; € HY(D;) H
o
IV i) = 3 (6 00U i Q S £S5 S 17 a6, 2 i ()T ()
e D=3 (6 fi)u 33,32, (At (1 5l (A =T
0 m 1
yx0) =0, 2 (x.0) =0 in o (6 " /0 (o, (S ) cos((-An) (1~ D))}
9y(1) = on X =0 vu e L?(0,T;RP) and T)0
0VA
—hy=0
this amounts to:
Definition 2. ® I ; 'm N aah,j
A sequence of the actuators is said to be gradient strategic ;( Am)2 Sin(—Am)2 (1 =T z Z {~ho, Wm; ) { 0% i)
if the excited system is weakly gradient controllable. ® ) ' Jok=t dwm
+2cos( —Am) 2 ( z Z (ho, Wm, ) —,m:o
. =1Kk=1 2
Proposition 2.
If the sequence of the actuatofB;, fi)1<i<p is gradient 1<i<p
strategic then o
:>h0=0
1.p>sup(rm). for T large enough {cog.—T),sin(.—T)} is an
@© 2014 NSP
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orthonormal set of2(0,T), then
i m n dwm
(_)\m)2 'Zl Z <_h07mﬂj><TXkJ7 f|> =0
j=1k=1
and
h n dm
h , Wm 717 fi)y=0
3 3 (o) (0 6)
So
h n A wm,
<h070)mj><0 J,fi>:0 :>h0:0
= X

which concludes the proof.

4 Regional target control

The propose of this section is to explore an approac
devoted to the computation of the optimal control of the
system 6) to a given gradient in the subregiow.
Suppose thatgd, %) € xw(Im(0) x Im(0)) is given and
we set

G={(®@) eD@Q)xD(Q) | @=m=0 sur Q\w}
(8)
®\ (@
o) @meco@rxo@)r| @m=|| ||
o/ \a
suchthat (@, @) € G
©
whereD(Q) is the space of test functions.
The problem is a follows: Does there exist a contrel U
with minimum-norm such that for
(Yo,y1) € D(A) x HY(Q) andf € H'(D)
22y(x,t )
TYC — syt = (09Ut i Q
7 .
Yx0) =y, Fx0)=y(d i @ @10
9yt on =
ov

and the problem :

. - 2
w1 Mo
(11)

Yol Da(T), 02 (7)) = (g, )

where(yy) solution of (LO)

4.1 HUM approach

The approach developed here is an extension of the H|Iberl§|

uniqueness method (HUM) developed by Lions (5pe[

For (@1, —@) € G, the system
%p(x,t .
#—Aqo(x,t):o in Q
ot 00
PxT) = @(x), 5 () =qu(x) in 0
P&.t) = on (122)
Has a unique solution (ses].
In G" we define the following semi-norm :
1
. - 2 2
I~ @lle = (5 (54 (%2 Do) )
13)
and we consider the system :
92 Do .
Vo wn =3 (50 D e in 0
W(x,0) = yo(x )70#(x70):y1(X) in Q
YY) on =
v (14)
which has a unique solution such that
(1), 22 (7)) € (@) x H1(@)(see)
and 5 5 5
(1), 22 (T)) = (o(T), 20 (1)) + (4 (T), 2L (T)),
wherep andy; are solutions of the systems
azﬁi(zx’t)—awo(x,t):o in
t,Uo(x,O):yo(x),%(x,O):yl(x) in Q (15)
5‘!’0(57'[) -0 on
oav
and
2 n
TG aunie) = 3 (PR Doy (6D i Q
Lpl(X,O):Od;tll(XO) 0 in 0
A2 =0 on X
ov (16)

We consider the operator

MA@, =) = 20y (T), Oy (T))

is a symmetric and bounded operator whéfe= X Xcw.
Then the regional gradient controllability problem turips u
to solve the equation :

A=) = =2 (Tio(T), Do(T)) + X55(05. 68)
and we have the following result:

17

Theorem 1If the system X0) is w— weakly gradient
controllable then {7)) has a unique solutiofig, ¢1) and

-5 00

ax )izp) drives the system1() to
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(gp,gs) on w at time T, wherep is the solution of the
system 12). Moreover, this control is the solution of the
problem (1).

Proof.

Let wi(x) be the eigenfunctions a associated with the
eigenvalues\;. The mapping 13) defines a norm irG".
Indeed

- - 7]
(6~ )l = Oguvesz< g N =00on0.T]

which is equivalent to

574 (<cmﬁw,>cos{<—A.>%<th>J+%sin{<fm>%<mn) 5740 iz =0

(18)
thus, for T large enough{cog.—T),sin(.—T)} is an
orthonormal set of?(0, T), then (L8) gives

D ow;
<%’Wj>i;<TXi’ IEEY

and h
Wi
<¢1,Wj>i;< ax 12 =0

since (the systeml() is w-weakly gradient controllable
d .

then Z<T"):',f>L2 o — 0 and

(@, wj) =0,Vi > 1. It follows thatqb @ =0and (3

is a norm. LeG be the completion oB" by the norm 13

andG* its dual. We show thad\ is an isomorphism from
Ginto G*. Indeed

# 0 and we have g, w;)

Z<<f9‘yﬂl< o) -G )¢b>>
oy

multiplying (12) by —— X ! and using of the Green formula
we have.

0‘/»’1

(M) —{

T 9 n a
X ;”X( Lzmg odt = (52 (M), @)

SO we have</\((ﬁ|-7_~qb)a((ﬁla_~(ﬂ))> = ||((h£7_~('h))”26 .
Hence, (7) has only one solution(@,@) and

L0 .., .
—, f steers the systemlQ) to the desired
izi<dxi >|_2(D) 3% Q)

gradient (g8,09) on w at time T. Now we consider

0
Uad = {u € U[Xo(Oyu(T), D%(U) = (g%,gé’)}-
Forv € Uyg and under11) we have

:
J(U)(v—ut) = 2/0 U (1) (v(t) —
_ 2/

u*(t)dt

0X| F)P2(py (V(t) — U*(t))dt

Applying Green’s formula after multiplying 1) by

w, and from the boundary and initial conditions
we halve :
[T220 112 0 0w @t = (2 () - B m), 22y,
dyy oy op

- <W( )*W(O)sﬁ(oﬁ

00w 5 0)

~ oMW, 22 )

2 *

SO / ax. L2(D>(v(t) — u*(t))dt = 0 Hence,

J(ur (v u*) =0.
The uniqueness af* comes from the strict convexity df
and establishes its optimality.

4.2 Numerical approach

In this section we_give an approach which gives explicit
formulae forg , ¢ and the optimal control solution of
(12). We have seen that the probleiil) can be used to
solve (L7), which is equivalent to solving the minimization
problem

19)

inf R )

(¢1.)<G
whereR is given by

o T n 2 n
R(oL @) = %/0 (2(32 iz >> dt+i: <‘;—L)’f(T)7<m>

o
X

Expanding the integrand and lettifig— +, we obtain:

(T). @) — (g5, 1) + (69, )

aw; 2
% >|_2 D))

2T/ ( t?><4 LZ(D> dt= 214 (@.w))? *lj<¢b7Wj> )(i(f

Thus, forT large enough, we obtain :

IS IS

(21)
The problem 19) can allow us to minimize the functional
Rgiven by :

ZlA«RJW’ izl ’19>q LZ(D

<¢b WJ><gsi w;)
ow; oy

+zi4’\ oL W) (Z“sTX‘JhZ(D))Z*(TX‘_
<9p, wj) (@, w;)

(20)

ow;j

l n
j <(P1qu>2)(iZl<f-, TX‘_J)LZ(DQZ

n

) (@, W)

(T), Wi} (@, wj)

(22)
The first term of 22) is independent o(i—(tp(O),WQ and

the second term is independent @&0),w;). Hence we
can minimize

T, (Zf R zl<‘;ix’|°m.wj><%,wj>w+<%w,->w<gg,wj>

© 2014 NSP
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and Because of linearity of the above system, we take
m Yo(X) = y1(x) = 0. ,
v w<Zl<f Iy o) *2[* Mw)(@we— (g5 w)@w)e  ForT = 2 and b=0.23, we have the following results:
which gives
, i«‘f,"f M) — (e w)) 5.1 Examplel
(W) = = _ _ . .
' T Ql(f,%)@(my Here we test the previous algorithm with the desired
ot X (23) gradient position and speed gradient given by
- Z«Txim wi) = (g wp)
(o = 5 = g9 = 2sin(19 /(< + 1)
(3,35 o) gd(x) = 8sin(1x)x?
Then we obtain
/ Global target
i i“tj;%(T)vwﬁ ) For w =]0, 1] we have the figures:
w-] 72w W XE@ ()
b
0 - xeQ\w ve ]
and o
o S(GRMw (e w) o]
ZTAE - W) XEW (o5 04
T (5.1 S o]
0 - xe Q\w 02

and the optimal control which steers the systén) o the
desired gradiengd, gd) in w at timeT is given by Figure 1: The desired position gradigfit(dashed line)
and its reached (solid line) .

ur(t) = z[%w.)coS(\/jt ) <(plw>sm VEA(t=T)) ZM 2o

VA
(26) o
We define a final error (depending on the subregioaind
the location of the actuator) by considering ‘1
&= ”DyU(T) - g%”(ZLZ(w))n + ” Dyu(T) - gcsj H(ZLZ(O)))”' .
M, @1 andu* are given by 24), (25) and £6). The general o y
algorithm for computing the optimal control fot @) is as
follows. :
Algorithm S T T T S
1.Choose actuator locatidh C Q, the subregiorw and
precisione. o Figure 2: The desired speed gradigftdashed line) and
2.Choose approximation ordk. its reached (solid line) im.
3.Calculation ofgy and ¢ using @4), (25) andu* from
(26).

4.Solve (2) and obtainindgly,(T) andDy’u(T).
5.1f & < ¢ stop, elseM < M + 1 and return to step 3.

5 Simulation results

Here we consider one-dimensional system excited by one oo+
internal pointwise actuator 1

Py(xt)  o%y(x1)

-0,5 -

=9d(x—b)u(t) in ]0,1[x]0,T|

oz ax20
y(X7 0) = yo(X), d—i’(x, 0) = y]_(X) in ]O7 1[ 00 05 10 15 20
y(0,t) =y(Lt)=0 on ]O,T[.
27) Figure 3: The evolution of the control function.
@© 2014 NSP
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Regional target
For w =]0.3,0.5], we have the following figures

1.8
1.6
1.4
124
1.0 o
0.8 -
0,6 -
0.4
0.2

0,0 -

-0.2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: The desired position gradiegﬁ,t(dashed line)

and its reached (solid line) iw.

T T T T T T
0,0 0.2 0.4 0,6 0.8 1.0

Figure 5: The desired speed gradighidashed line) and

its reached (solid line) iw

S

0.0

0.5

2,0

Figure 6: The evolution of the control function.

Fig 4 and Fig 5 show that the reached position gradientby
(resp. speed gradient) is very close to the desired gradient
position (resp. gradient speed) . The reached state

50 4

40

30

20 4

0,0 0,2 0,4 0,6 08 1,0

Figure 7: The reconstruction error with respect to the
actuator location.

The following simulation results show the evolution of the
reconstruction error with respect to the actuator location
in]0,1].

Figure 7 reveals the following facts:

—For a given subregiow, there is an optimal actuator
location (optimal in the sense that it leads to a desired
state gradient very close to the reached one).

—When an actuator is located sufficiently far from the
subregion w, the reconstructed gradient error is
constant for any locations

Relation between the
reconstruction error

Here we study the evolution of the reconstruction error
with respect to the subregion area.

Table 1: Evolution of the error with respect to the
subregion area.
| subregion| Reconstruction errof

subregion area and

]0.1,0.9 4.0005x 103
10.1,0.8] 3.7310x 1073
10.1,0.7[ 3.6562x 1073
10.2,0.7 3.3631x 1073
10.3,0.6[ 2.7631x 1073
]0.3,0.5] 1.2693x 104
10.3,0.4] 1.0971x 10°°

We note that the reconstruction error depends on the area
of the subregion. Its means that the greater the area is the
greater the error is.

5.2 Example2

Here the considered position and speed gradient are given

g (x) = rrsin(7x) tan(x)
{ gd(x) = (msin(x) + cog ) ) exp(X)

gradient and speed gradient are obtained with the erroGlobal target
€ = 2.7631x 102 and the cosd(u*) = 2.32x 10~ L.

For w =]0, 1] we have the figures:

© 2014 NSP
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T T T T T T
0,0 0.2 0.4 0.6 08 1,0

Figure 8: The desired position gradiegﬂ,t(dashed line)
and its reached (solid line) .

T T T T T T
0.0 0.2 0.4 0.6 08 1,0

Figure 9: The desired speed gradighdashed line) and
its reached (solid line) ii.

0,5
0,0 -

-0,5 4

T T T T T
0.0 05 10 1.5 2,0

Figure 10: The evolution of the control function.

Regional target
For w =]0.65, 1], we have the following figures

0.5 - /

0,0 4 a

T T T T T T
0.0 0.2 0.4 0.6 08 1.0

Figure 11: The desired position graditgﬁt(dashed line)
and its reached (solid line) .

T T T T T T
0.0 0.2 0.4 0.6 08 1,0

. _ . 9y (T)
Figure 12: The desired speed grad|e|X§X— (dashed
line ) and its reached (solid line ) .

1,54
1,0 4
0,0 4

-1.5 4

2,04

-2,5

T T T T T
0,0 05 1,0 1.5 2,0

Figure 13: The evolution of the control function.

Figures 11 and 12 show that the reached position gradient
(resp. speed gradient) is very close to the desired gradient
position (resp. gradient speed)an

The reached state and speed gradient are obtained with the
errore =5.1419x 10 2 and the cosf(u*) = 3.17x 101

24

0,0 0,2 0.4 0,6 0,8 1,0

Figure 14: The reconstruction error with respect to the
actuator location.

In this example, we examined the evolution of the
reconstruction error, with respect to the actuator locatio
we obtained similar conclusion as in the example 1.

6 Conclusion

In this work we have extended the notion of regional
gradient controllability to hyperbolic systems. We gave

© 2014 NSP
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definitions and important characterizations in connection
with strategic actuator and which allowed as to extend the
HUM approach and then achieve the desired gradient. A
minimization problem is also considered which provided
us an algorithm with explicit formula of the optimal
control that is performed through numerical examples and
simulations. The problem where the subregion target is a
part of the boundary of the system evolution domain, is of ] Analysis (2002) at the Faculty
great interest and the work is under consideration and will of Sciences in Meknes.
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