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Given a covariance matrix, principal component analysis (PCA) with sparsity constraint
considers the problem of maximizing the variance explained by a particular linear com-
bination of the input variables while constraining the number of nonzero coefficients in
this combination. However, when loading an input variable is associated with an indi-
vidual cost, we need to incorporate weights, which represent the loading cost of input
variables, into sparsity constraint. And in this paper, we present a version of PCA with
weighted sparsity constraint. This problem is reduced to solving some semidefinite
programming ones via convex relaxation technique. Two applications of the PCA with
weighted sparsity constraint to refine the sparsity constraint of sparse PCA illustrate its
efficiency and reliability in practice.

Keywords: Principal component analysis, semidefinite relaxation, semidefinite pro-
gramming, truncation, iterative re-weighting.

1 Introduction

Sparse decompositions of data are required in many applications. In economics, spar-
sity increases the efficiency and reduces risk of a portfolio [7], and implies lower transac-
tion cost in financial asset trading strategies as well. In computer vision, sparse decompo-
sition is related to the extraction of some concerned pixels which are relevant parts from
images [12]. In machine learning, sparsity is closely related to feature selection and to
improved generalization of learning algorithms. And in biology, the sparsity is necessary
for finding focalized local patterns hidden in gene expression data analysis [1].

Being first introduced by Pearson in [18], and developed independently by Hotelling
in [6], principal component analysis (PCA) has now become a popular technique used



80 Thanh D. X. Duong and Vu N. Duong

to reduce multidimensional data sets to lower dimensions for analysis with applications
throughout science and engineering, see [11]. This reduction is achieved by transforming
to a new set of variables, the principal components, which are uncorrelated and ordered so
that the first few retain most of the variation present in all of the original variables. It aslo
can be performed via a singular value decomposition of the data matrix or an eigenvalue
decomposition of the data covariance matrix.

A drawback of PCA is the lack of sparseness of the principal vectors since the principal
components are usually linear combinations of all variables and the loadings are typically
nonzero. This makes it often difficult to be applied in many applications where the prin-
cipal components would be convenient if these components contained very few nonzero
loadings. This leads to appearance of methods to finding sparse principal components ex-
plaining most of the variance present in the data. To achieve this, it is necessary to sacrifice
some of the explained variance and the orthogonality of the principal components. Rota-
tion techniques in [9] can be consider the first approach. In [22], the author studied simple
principal components by restricting the loadings to take values from a small set of allow-
able integers such as 0, 1 and -1. Simple thresholding techniques [3] was an ad hoc way
to deal with the problem, where the loadings with small absolute value are thresholded to
zero. SCoTLASS [10] and SLRA [23, 24] were introduced to get modified principal com-
ponents with possible zero loadings. ESPCA [15] used discrete spectral formulation based
on variational eigenvalue bounds and an effective greedy strategy to give provably optimal
solutions via branch-and-bound search. For very large problems, SPCA [25] was proposed
via a regression type optimization problem and DSPCA [4] via relaxing a hard cardinality
constraint with a convex approximation.

In practice, there are many applications in which loading an input variable is associated
with an individual cost. In these cases, it is essential to incorporate weights, which represent
the loading cost of input variables, into PCA. Weighted PCA has thus been introduced
and used in many applications such as learning from incomplete data in [19], giving an
efficient search algorithm for motion data in [5], and face recognition in [17], etc. However,
incorporating both weight and sparsity into PCA have not been studied yet so far and this
paper tries to fill this gap.

By directly incorporating a weighted sparsity criterion in the PCA problem formulation
(shortly called WSPCA), we consider a nonconvex optimization containing a weighted
sparsity constraint. In the literature, there have not been available result to deal with
weighted sparsity constraint. Hence, we introduce a convex-based relaxation approach
to reduce WSPCA problem to solving a semidefinite program (SDP), which can be solved
efficiently in polynomial time via interior-point methods [20, 21].

This paper is organized as follows. The next section contains the main results, where
we introduce WSPCA problem and present its relaxed SDP problem. In Section 3, two
application of WSPCA to refine sparsity constraint of sparse PCA are given. These appli-
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cations are necessary and useful since the outputs of all sparse PCA methods do not satisfy
sparsity constraint in general, i.e., if we hope to find a principal component with less than
m nonzero entries, the outputs often contain more than m nonzero entries. Section 4 shows
convincable numerical results of the two applications on both artificial data and real-life
data.

Notation 1.1. In this paper, we denote the set of symmetric matrices of size n by Sn,
the vector of ones by 1, the cardinality (number of nonzero elements) of a vector x by
Card(x), and the number of nonzero coefficients in a matrix X by Card(X). For X ∈
Sn, the notation X º 0 means that X is positive semidefinite, ‖X‖F is the Frobenius norm
of X , i.e., ‖X‖F =

√
Tr(X2), and ‖x‖2 is the 2-Euclide norm for x ∈ Cn.

2 Main Results

In this section, we derive an SDP relaxation for the problem of maximizing the variance
by a vector while constraining its weighted cardinality. Then, we apply the problem to
decompose a data covariance matrix into sparse factors.

2.1 Semidefinite relaxation

Let A ∈ Sn be a covariance matrix, i.e., A º 0, and w ∈ Rn be a weight vector with
wi > 0 for all i = 1, . . . , n. We consider a WSPCA problem of maximizing the variance
of vector x ∈ Rn while constraining its weighted cardinality:

maximize xT Ax,

subject to ‖x‖2 = 1,
n∑

i=1

wiδ(xi) ≤ k, (2.1)

x ≥ 0,

where δ : R −→ {0, 1} is defined by

δ(x) =

{
0, if x = 0,

1, if x 6= 0,

and the given positive number k restricts the number of nonzero entries of the solution, thus
the following inequality should be hold:

min
i=1,...,n

wi ≤ k ≤
n∑

i=1

wi.

Hence, by choosing w = 1, the weighted sparsity constraint
∑n

i=1 wiδ(xi) ≤ k collapse
to the classical sparsity constraint Card(x) ≤ k.
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Lemma 2.1. Let X = xxT , then X º 0, rank(X) = 1, Tr(AX) = xT Ax, Tr(X) =
‖x‖2, and

n∑

i,j=1

wiδ(Xij)wj =
[ n∑

i=1

wiδ(xi)
]2

.

Proof. The first four conclusions are well-known results of the lifting procedure for
semidefinite relaxation, see [1, 4, 13, 14]. Since δ(Xij) = δ(xi)δ(xj), we get the last
conclusion.

By the above lemma, problem (2.1) can be rewritten as follows:

maximize Tr(AX),

subject to Tr(X) = 1,
n∑

i,j=1

wiwjδ(Xij) ≤ k2, (2.2)

X º 0,

rank(X) = 1.

It is noticed that problem (2.2) reduces to the convex maximization objective xT Ax

and the nonconvex constraint ‖x‖2 = 1 to a linear objective and a linear constraint respec-
tively. However, problem (2.1) is still nonconvex. Hence, we need to relax the nonconvex
weighted sparsity constraint and the rank constraint.

Lemma 2.2. Let x,w ∈ Rn such that wi > 0 for all i = 1, . . . , n. Then,

[ n∑

i=1

√
wi |xi|

]2

≤
[ n∑

i=1

wiδ(xi)
]2

‖x‖22 .

Proof. By Schwarzt inequality,

[ n∑

i=1

√
wi |xi|

]2

≤
[ n∑

i=1

w2
i δ(xi)

]
‖x‖22 .

Moreover,
∑n

i=1 w2
i δ(xi) ≤ [

∑n
i=1 wiδ(xi)]

2, we complete the proof.

The condition X º 0, rank(X) = 1 and Tr(X) = 1 imply that ‖X‖F = 1. Thanks
to Lemma 2.2, this means that

n∑

i,j=1

√
wiwj |Xij | ≤

[ n∑

i,j=1

wiwjδ(Xij)
]1/2

.

Using the above inequality and dropping constraint rank(X) = 1, we get a relaxation of
(2.2) as follows:
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maximize Tr(AX),

subject to Tr(X) = 1,
n∑

i,j=1

√
wiwj |Xij | ≤ k, (2.3)

X º 0.

It is remarkable that problem (2.3) is an SDP in the variable X ∈ Sn, and dropping con-
straint rank(X) = 1 is the truncation technique as in [1, 13]. This means, we will solve
SDP problem (2.3) to get solution X , and an approximation solution of (2.1) is the domi-
nant eigenvector of X .

2.2 Sparse decomposition

Let A ∈ Sn be a covariance matrix, we obtain a WSPCA decomposition as the follow-
ing algorithm:
repeat

1. Solve the SDP (2.3) to get solution X .
2. Let x be is the dominant eigenvector of X . Add x to the solution set of weighted

sparse PCA decomposition.
3. Update A := A− (xT Ax)xxT .

until max {|Aij | : i, j = 1, 2, ..., n} < threshold or the number of principle components
attains a specified maximum number.

It is remarkable that the specified maximum number used to terminate the above algo-
rithms should be rank(A) since, in PCA, the number of principle components is at most
rank(A), see for example [11].

3 An Application to Refine Sparsity Constraint

When w = 1, the WSPCA collapses to DSPCA and the the relaxed problem get the
form as follows:

maximize Tr(AX),

subject to Tr(X) = 1,

1T X1 ≤ m, (3.1)

X º 0,

where the integer number m represents an expectation that the dominant eigenvector of
solution X gets atmost m nonzero entries. However, it is well known that the solution of
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sparse principal component analysis, see for example [3,4,9,10,22–25], does not satisfy the
sparsity constraint. Hence, it is desirable to add a post-processing to (3.1) which finding an
approximate solution satisfying the sparsity constraint. Next, we present two applications
of WSPCA to refine the sparsity constraint of sparse principal component analysis (3.1).

3.1 Re-weight technique

Since large entries of weight vector w in WSPCA problem (2.3) force the solution
x to concentrate on the indices where wi is small, the weights wi should be chosen to
be inversely proportional to the magnitude of solution entries xi. Then, the new sparsity
constraint number k should be chosen to focus on the solution entries xi with large
magnitude (or small weight). The following is a simple iterative algorithm that alternates
between estimating solution x and redefining the weights.

Sparse PCA with re-weight technique (RSPCA)
Input: A ∈ Sn such that A º 0, m ∈ [1, . . . , n], and ε > 0.
Output: x - a sparse principal component of A.

1. Set the iteration count l to zero k(0) = m and w
(0)
ij = 1, i, j = 1, . . . , n.

2. Solve the relaxed WSPCA problem (2.3) to get solution X(l) and
set x(l) be the dominant eigenvector of X(l).

3. Update the weights and the sparsity constraint number:

w
(l+1)
i =

1

x
(l)
i + ε

, for each i = 1, . . . , n, (3.2)

k(l+1) = sum of m smallest weights in w(l+1). (3.3)

4. Terminate when Card(x(l)) ≤ m or l attains a specified maximum number
of iterations lmax, then return x := x(l). Otherwise, increment l and go to step 2.

The updating sparsity constraint number in (3.3) is the result of expectation that the
(n − m) smallest entries in x(l) will get zero value in the next iteration. And we should
set a threshold for expected nonzero-valued component x

(l)
i . Moreover, the parameter

ε > 0 in (3.2) should be chosen as ε < threshold to provide stability and to ensure that a
zero-valued component in Xij does not strictly prohibit a nonzero estimate at the next step.

3.2 Truncation technique

Let x be the dominant eigenvector of solution X of un-weight relaxed problem (3.1).
Here, in the post-processing, the weights is designed so that the solution of WSPCA has
atmost m nonzero entries which is corresponding to the m largest entries of x. Thus, the
weights corresponding to the (n − m) smallest entries of x are set to be infinity (in fact,
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to be 1/ε where ε is very small positive number), and the other weights are set as (3.2).
The following is a simple iterative algorithm that finds an appropriate small positive value ε.

Sparse PCA with truncation technique (TSPCA)
Input: A ∈ Sn such that A º 0, m ∈ [1, . . . , n], and 1 > ε > 0.
Output: x - a principal component of A with m nonzero entries.

Initial w = 1.
repeat

* Solve the relaxed WSPCA problem (2.3) to get solution X ,
set x be the dominant eigenvector of X ,
and I be the set of index of the m largest entries of x.

* Update the weights, the sparsity constraint number and ε

wi =
1

xi + ε
, for each i ∈ I,

wi =
1
ε
, for each i 6∈ I,

k =
∑

i∈I

wi,

ε = ε2.

Until Card(x) ≤ m.

Let A ∈ Sn be a covariance matrix, we can also obtain a sparse PCA decomposition as
the algorithm in section 2.2.

4 Numerical Experiments

In this section, we will compare the effectiveness of the proposed applications of
WSPCA (RSPCA and TSPCA) with the other methods mentioned in the introduction. We
perform the test on an artificial data proposed by [25] and a well-known real-life data set -
Pit Props data.

4.1 Artificial data

To show the effectiveness of RSPCA and TSPCA as the sparsity constraint refinement
post-processing of DSPCA, we consider the simulation example proposed by [25]. In this
example, three hidden factors are first created

V1 ∼ N(0, 290), V2 ∼ N(0, 300),

V3 = 0.3V1 + 0.925V2 + ε, ε ∼ N(0, 1),
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V1, V2 and ε are independent.

Then 10 observed variables are generated as the follows

Xi = V1 + ε1
i , ε1

i ∼ N(0, 1), i = 1, 2, 3, 4,

Xi = V2 + ε2
i , ε2

i ∼ N(0, 1), i = 5, 6, 7, 8,

Xi = V3 + ε3
i , ε3

i ∼ N(0, 1), i = 9, 10,

εj
i are independent, j = 1, 2, 3, i = 1, . . . , 10.

To avoid the simulation randomness, the exact covariance matrix which is an infinity
amount of data generated from the above model is used to compute principal components
using the different approaches. The variance of the three underlying factors is nearly the
same (290, 300 and 283.8, respectively). Since the first two are associated with four vari-
ables while the last one is associated with only two variables, V1 and V2 are almost equally
important, and they are both significantly more important than V3. In [25], the first two
principal components explain 99.6% of the total variance. In [4], by choosing the sparsity
constraint m = 4, DSPCA gives the same results as SPCA and SCoTLASS which are
better than simple thresholding method. Moreover, the output of DSPCA also satisfy the
the sparsity constraint m = 4 (having 4 nonzero entries). Thus, the sparsity constraint
refinement post-processing of DSPCA is not required.

Now, we consider the results of DSPCA when choosing the sparsity constraint m =
5 in Table 4.1. The output of DSPCA do not satisfy the sparsity constraint when both
the first and second principal components have 6 nonzero entries. Hence, the sparsity
constraint refinement post-processing is needed. With the same explained variance, the
first principal component of RSPCA (with threshold = 10−2, ε = 10−4) satisfies the the
sparsity constraint after 41 iteration, but the second even after 100 iterations. Here, the
results show that TSPCA is the best choice. And it is noticeable that the output of RSPCA
may not satisfy the sparsity constraint in some case, but the ones of TSPCA always satisfy.

Table 4.1: The first two principal components with m=5.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
Explained
variance

DSPCA, PC1 0 0 0 0 .49 .49 .49 .49 .14 .14 50.2%
DSPCA, PC2 -.49 -.49 -.49 -.49 0 0 0 0 .14 .14 41.9%
RSPCA, PC1 0 0 0 0 .46 .46 .46 .46 0 0.39 49.7%
RSPCA, PC2 .48 .48 .48 .48 0 0 0 0 -.20 -.17 42.1%
TSPCA, PC1 0 0 0 0 .45 .45 .45 .45 .42 0 49.8%
TSPCA, PC2 .49 .49 .49 .49 0 0 0 0 0 -.18 40.7%
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4.2 Pit Props Data

The pit props data (consisting of 180 observations and 13 measured variables) was
introduced in [8] and is another benchmark example used to test SPCA. All simple thresh-
olding [3], SCoTLASS [10], SPCA [25], and DSPCA [4] have been tested on this data set.
As reported in [25], SPCA performs better than SCoTLASS in the sense that it identifies
principal components with 7, 4, 4, 1, 1, and 1 nonzero loadings respectively - while ex-
plaining nearly the same variance as SCoTLASS, the result SPCA of is much sparser; and
better than simple thresholding in the sense that it explains more variance. As reported
in [4], DSPCA performs better than SPCA in the sense that it identifies principal compo-
nents with 6, 2, 3, 1, 1, and 1 nonzero loadings (with respect to sparsity constraint 5, 2, 2,
1, 1, and 1).

Table 4.2: The first three principal components of DSPCA, RSPCA and TSPCA with sparsity con-
straint 5, 2, 2, 1, 1, and 1.

Method DSPCA RSPCA TSPCA
Variable PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

topdiam -0.56 0 0 0.50 0 0 -0.48 0 0
length -0.58 0 0 0.51 0 0 -0.49 0 0
moist 0 0.71 0 0.71 0 0 0 0.71 0
testsg 0 0.71 0 0.71 0 0 0 0.71 0
ovensg 0 0 0 0 0 0 0 0 0
ringtop 0 0 -0.79 0 0 0.81 0 0 -0.81
ringbut -0.26 0 -0.61 0.38 0 0.58 -0.40 0 -0.58
bowmax -0.1 0 0 0 0 0 0 0 0
bowdist -0.37 0 0.41 0 0 0 -0.42 0 0
whorls -0.36 0 0 0.42 0 0 -0.43 0 0
clear 0 0 0 0 0 0 0 0 0
knots 0 0 0 0 0 0 0 0 0
diaknot 0 0 0.01 0 0 0 0 0 0
Variance % 26.6 14.48 13.15 26.17 14.48 12.33 26.20 14.48 12.17

Here, we want to compare the results of RSPCA and TSPCA - using the same sparsity
constraint (5, 2, 2, 1, 1, and 1) - with those of DSPCA. The results are given in Table
4.2 with threshold being 10−2 and ε = 10−4. While explaining 76.05% variance - nearly
the same as DSPCA (77.3%) - the first six principal components of RSPCA satisfies the
sparsity constraint after 4, 1, 3, 1, 1, and 1 iterations respectively. TSPCA method explains
75.93% variance without any iteration. It is also remarkable that these results are better
than ESPCA (75.9%) in [15]. However, we can see that there is an overlap between the
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first principal component and the third principal component on entry “ringbut”. Hence, it
is reasonable to think about a better sparsity constraint as 4, 2, 2, 1, 1, and 1. The outputs
for this case are displayed in Figure 4.1, where they also explain a large amount of the
variance: 74.09% for RSPCA method and 74.10% for TSPCA method.
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Figure 4.1: Cumulative cardinality and percentage of total variance explained versus number of prin-
cipal components, for SPCA, DSPCA, RSPCA and TSPCA with sparsity constraint (4, 2, 2, 1, 1, and
1) on the pit props data.

Table 4.3: The first three principal components of RSPCA and TSPCA with sparsity constraint 5, 2,
2, 1, 1, and 1.

Method RSPCA TSPCA
Variable PC1 PC2 PC3 PC1 PC2 PC3

topdiam 0.50 0 0 0.48 0 0
length 0.51 0 0 0.49 0 0
moist 0 -0.71 0 0 0.71 0
testsg 0 -0.71 0 0 0.71 0
ovensg 0 0 0 0 0 0
ringtop 0 0 -0.69 0 0 -0.70
ringbut 0.38 0 -0.54 -0.40 0 -0.53
bowmax 0 0 0 1.00 0 0
bowdist 0.41 0 0 -0.42 0 0
whorls 0.41 0 0 -0.43 0 0
clear 0 0 0 0 0 0
knots 0 0 0 0 0 0
diaknot 0 0 0.48 0 0 0.50
Variance % 26.17 14.48 14.63 26.2 14.48 14.50
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Finally, with the less sparsity results (5, 2, 3, 1, 1, and 1) than DSPCA , the results of
RSPCA and TSPCA in Table 4.3 explain more variance than DSPCA (78.35% and 78.26%
compared with 77.3%). The first six principal components of RSPCA satisfies the sparsity
constraint after 4, 1, 7, 1, 1, and 1 iterations respectively. Figure 4.2 shows the cumulative
number of nonzero loadings and the cumulative explained variance. In this figure, we can
observe that RSPCA is the best choice for this data.

1 2 3 4 5 6
4

6

8

10

12

14

16

18

Number of principal components

C
um

ul
at

iv
e 

ca
rd

in
al

ity

SPCA
DSPCA
TSPCA
RSPCA

1 2 3 4 5 6
20

30

40

50

60

70

80

Number of principal components

P
er

ce
nt

ag
e 

va
r.

 e
xp

la
in

ed

Figure 4.2: Cumulative cardinality and percentage of total variance explained versus number of prin-
cipal components, for SPCA, DSPCA, RSPCA and TSPCA with sparsity constraint (5, 2, 3, 1, 1, and
1) on the pit props data.

5 Conclusions and perspectives
The application of specific solution will be discussed elsewhere since we want to keep

our method general for other weighted sparsity constrained optimizations. In this paper,
we attempted to present the principal component analysis with weighted sparsity constraint
method (WSPCA) to find the principal components not only explaining most of the vari-
ance present in the data but also satisfying weighted sparsity constraints through the solving
of semidefinite problems. Two applications of WSPCA to refine the sparsity constraint of
sparse PCA has been presented via re-weight technique (RSPCA) and truncation technique
(TSPCA). The numerical results show the effectiveness of RSPCA and TSPCA methods.
This implies that re-weight technique and truncation technique can be usefully applied to
others sparse PCA methods as well as other semidefinite problems containing sparsity con-
straint.

The drawback of WSPCA is that the SDP problem involved in (2.3) contains more than
O(n2) constraints, which make the memory requirements of Newton’s method prohibitive
for very large-scale problems. This should be the subject of a future investigation by us-
ing smoothing technique, which has recently shown to be reducing memory requirements
in solving large-scale SDP problems, see [4, 16]. Finally, finding an efficient re-weight
function in (3.2) and updating sparsity number function in (3.3) are also of our priorities.
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