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Abstract: The generalized de Bruijn digrapBg(n,d) has good properties as an interconnection network topology. Thercesou
location problem in an interconnection network is one of the facility locatioblpros. Finding absorbants of a digraph corresponds to
solving a kind of resource location problem. In this paper, we solve sq@@e problems given in the article "Erfang Shan, T.C.E.Cheng,
Liying Kang, Absorbant of generalized de Bruijn digraphs, Informod@ss. Lett. 105 (2007) 6-11".
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1 Introduction two kinds of resource location problems,§]. For
example, each vertex in an absorbant or a dominating set

In this paper, we deal with simple digraphs which admit provides a service (file-server, and so on) for a network.

self-loops but no multiple arcs. LdD = (V,A) be a In this case, every vertex has a direct access to

digraph with the vertex sat and the arc sef. There is file-servers. Since each file-server may cost a lot, the

an arc fromxtoy if (x,y) € A. The vertexxis called a number of an absorbant or a dominating set has to be

predecessor of andy is called a successor of For a  minimized. The generalized de Bruijn digra@(n,d) is

vertex v € V, the out-neighborhood ofv is  definedin P 5] by congruence equations as follows:

N*(v) = w|(v,w) € A and its in-neighborhood is the set

N*(v) = u|(u,v) € A. The closed out-neighborhood wof _ B

is the set Nfl[v] = NT(v) Uv and its closed V(Ge(nd))={0.1,2,..n-1} and

in-neighborhood is the s& [v] =N~ (v)Uv. ForSCV,

its out-neighborhood is the sbl™ (S) = Js.sNT (s) and _ Cy— ;

its in-neighborhood is the ser(S)(:) U%SSEIS*(S)F Izﬁ[ﬂ AlGa(nd)) = {(xy) :y = dx+i(modn),0 < x < d -1}

and N—[§ are defined similarly. An absorbant of a . . .

digraph D is a setS of vertices ofD such that for all | he following open problems are given i [1. Is it true

VeV —S N*(V)NS#0, i.e.,N-[§ = V. The absorbant that if Gg(n,d) is a generalized de Bruijn digraph with

number of D, denoted byy(D), is defined as the 9=2andn=>d,y(Gg(n,d)) < ya(Gs(n,d))? If it is not

minimum cardinality of an absorbant 6. An absorbant SO: does there exist a generalized de Bruijn digraph

of D of cardinalityya(D) is called ays-set. AseSCVis ~ ©8(n.d) satisfying ya(Gg(n.d)) < y(Gg(n,d))? 2. Find

a dominating set ob if for all veV — S, N~ (V)N S# 0, sufficient conditions for thr(]a absorbant numbeggf(n,d)

i.e., N*[S = V. Similarly, the domination number @, 0 be the lower pounc{m]. 3. Find a sufficient and

denoted byy(D), is defined as the minimum cardinality necessary condition for the absorbant numbeBgfn, d)

of a dominating set OD. For Standard graph theory to be its d0m|nat|0n number. 4. 1Is -|t true that

terminology not given here we refer to [4]. The resource Ya(Ge(8k — 4,4k — 3)), for k > 2? 5. Is it true that

location problem in an interconnection network is one of Ya(Gs(6k, 2k— 1)), fork > 2?2 ?

the facility location problems. Constructing the In this article, we solve the problem 4 and we provide

absorbants and dominating sets corresponds to solving partial solution to the problem 3 using problem 4.

* Corresponding author e-maylellowmuthu@yahoo.com

© 2014 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amisl/020102
yellowmuthu@yahoo.com

G. Marimuthu, B. Johnson: Solution to Some Open Problems on Absooshan

2 Solution of the problems

(2k—1)x=0(mod 2k — 1). Clearlyx = 0,2,4,...
are the solution of the congruence.

2k—2

We use the following results subsequently in the proof ofBy Theorem F

the problemTheorem A ([7]). |3 ] < Ya(Ge(n,d)) <
[&]// Theorem B ([7]). If d = 2,4 and(d + 1)|nord =3

and 8n, theny,(Gg(n,d)) = g3+.// Theorem C ([8]). For

x=0,2k—1,4k—2,6k—3
x=2,2k+ 1,4k 6k— 1
x=4,2k+3,4k+2,6k+1

domination number of generalized de Bruijn digraphs, we

obtain
1.y(Gg(2s,2s—1)) = 2.

2.y(Gg(8s—4,4s—3)) =3 and
3.y(Gg(6s,2s— 1)) = 4, wheresis a natural number.

Theorem D ([2]). Letged(n,d — 1) = g. Then the number
of loops in Gg(n,d) is g. [g} , where [x|denotes the
smallest integer not less thax// Theorem E ([1]).

Assume ged(a,m) = d. Then the linear congruence
ax = b(modm) has solutions if, and only ifd|b.//
Theorem F ([1]). Assumegcd(a,m) = d and suppose

thatd|b. Then the linear congruen@x = b(modm) has
exactlyd solutions modulan. These are given byt + ,
t+2%,..t+(d—1)F, wheret is the solution, unique
modulo T of the linear congruencéx = &(mod™).//
Theorem G ([6]).f n=d+1, theny*(GB(n,d)) =1,d
is even,y*(Gg(n,d)) = 2,d is odd.//

Theorem 2.1. Is it true thaty,(Gg(8k — 4,4k — 3)), for
k > 2. Proof. By Theorem A,
2 < ya(Gp(8k— 4,4k — 3)) < 3. So we only need to show
that y,(Gg(8k — 4,4k — 3)) # 2. Every vertex in

x=2k—2,4k—3,6k—4,8k— 5

are also the solutions of the congruence. Therefore the
number of self-loop vertices ig( 22 + 1) = 4k, which

is also given in Theorem D. Conversely, any vermf

the set{0,1,2,...,8k — 5} satisfying the congruence

relation 4 4) = 7' (mod &%) is a self-loop vertex. By
retracing the steps we get ‘the converse part. We construct
a subseY; of V(Gg(8k— 4,4k — 3)) as follows:

3
J{(2k—1)i+1,(2k—1)i+3,...,
i=0

Vi = (2k—1)i+2k—3}.

We claim that for everw € Vq,{v} NN~ (v) = 0. Any
vertex inVy is of the formj,2k — 1+ j,4k— 2+ j and
6k—3+j,j =13,...,2k— 3. Since a self-loop vertex is

a solution of the congruence equation
M = 7 (mod &%) any vertex inVy is not a
solutlon of this congruence equation. Therefore, any
vertex inV; does not have a self-loop. For any two
verticesu,v € Vj, without loss of generality assume that
u > v. DefineS= {u,v} andm= u—v. Construct the sets

Gg(8k— 4,4k — 3) hasd in-neighbors. Self-loop vertices D1 a”dDZ as follows:

increase the cardinality of an absorbant, so we are going D, = U {4k—2+2i,6k—3+2i} andD, = U {4k -+
to collect all the vertices, which do not have a self-loop.

For that, we first develop a necessary and sufficientl+2i}.

condition for a vertex to have a self-loop. In
Gg(8k — 4,4k — 3), the arcs are
y = (4k — 3)x+i(mod 8k —4),0 <i < 4k—-4 and
0 <y < n-—1 Supposex is a self-loop vertex in
Gg(8k — 4,4k — 3). We want to determine for how many

x = 0212,....n — 1 the congruence
= (4k — 3)x + i(mod 8k — 4) or equivalently, the
congruence @ = 5 (mod %‘4), where

g=gcd(n,d— 1) is satisfied. Clearly

g=gcd(8k— 4,4k —4)
=4gcd(2k—1,k—1)

= 4ged(2k—1—k+1,k—1)
= dged(k k— 1)
:4,

we have(k—1)x = —(mod 2k —1). By Theorem E, this
congruence has solutlons only wheln. Ihat isi = 2x,x

Suppose thatm < 4k — 3. Then by definition of
Gg(n,d), there is a vertexw in V(Gg(8k — 4,4k — 3))
such that w € N (u N N (v) and
INT(SUS <2(4k—3)+2—-1=8k—5+#8k—4. This
shows thaSis not an absorbant @g(8k — 4,4k — 3).

Now we consider the casm > 4k — 3. From the

definiton of Vi, let u = (2k — 1)x + y and
v = (2k — 1)s +t, for xs € {0,1,2,3} and
yte{1,3,...,2k—-3}. If m=(2k—1)(x—s)+ (y—t)is

odd, therx — sis odd. It follows that neither both ofand

s are odd nor even. Ik and s are consecutive integers,
thenm=2k—1+y—-t<2k—1+2k—3-1=4k-5<
4k — 3. The only possiblilty ofx and s is 3 and 0

respectively and we get
m= 6k -3+ 2,i = 0,12,...,k — 2. Therefore
m=6k —-3+2 € Dg,i = 012....k—-—2 and

m=6k—-3—-2ie€Dy,i=123,...,.k—2.

If mis even, therk— s is even. Also sincex— s is
even, both ok ands are either odd or even. The number
X —sto be even, the only possibilities are eittxer 2 and

is even. Also we havex< 4k—4=x<2k—2.The y =0 or x =3 and y = 1. Thus we get
congruence @ = 7 (mod &#4)  becomes m = 4k — 2 £ 2,i = 0,1,2....k — 2. Therefore
© 2014 NSP
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=4 -2+ 2 € Dg,i = 0,,2,....k — 2 and
m=4k—-2-2i < 4k—-3,if i =1,2,...,k— 2. Therefore
if m> 4k — 3, then eitheme D1 orme D».

Casel. Suppose thahe Dq is even.

Then choosen = 4k — 2 andu = (2k— 1)x+y,x =
0,1,2,3andy=1,35,...,2k—3. Sincem=4k—2, vis
of the formv = (2k — 1)x+y+ 4k — 2. We claim thatu is
an in-neighbor of. For that, it is enough to prove that
is a out-neighbor ofi. From the definition of5g(n,d), we
have,

NT(u) = {(4k—
((4k—3)((2k—

3)((2k—1)x+y)(mod 8k —4),
(
((4k—3)((2k—
)
(

D)x+y)+1)(mod 8k—4),...,
1)x+y)+4k—4)(mod 8k—4)}
1)x+y(4k—3)(mod 8k —4),
)X+Y(4k—3) +1)(mod 8k—4), ...,
3)(2k — 1)x+ y(4k — 3) + 4k — 4) (mod 8k — 4)}.
(4k — 3)(mod 8k —4) = (k— 1)(8k —4)
8k—4) = (2k—1)(mod 8k — 4), we have

{(4k—3)(2k—

(4k—

( 3)(2k—1)x+
((4k—
2

Since (2k — 1)
+(2k—1)(mod

NT(u) = {((2k—1)x+y(4k— 3))(mod 8k — 4),
((2k—1)x+y(4k—3) + 1)(mod 8k —4),...,
((2k—1)x+y(4k—3) + 4k — 4)(mod 8k — 4)}.

When

y=1 ((2k—1)x+ (4k—3)y+2)(mod 8k—4) = ((2k—
1)X+y+4k—2)(mod 8k — 4)

y=3,((2k—1)x+ (4k—3)y+6)(mod 8k—4) = ((2k—
1)x+y+4k—2)(mod 8k — 4)

y=2k—3,((2k—1)x+ (4k— 3)y+ 4k — 7)(mod 8k —
4) = ((2k—1)x+y+ 4k —2)(mod 8k — 4).

From the above argument,is an out-neighbor ofi
andu € N~ (v). Similarly we can prove that € N~ (u).

Form > 4k — 3, by the above argument, we can prove that

ue N~ (v)andve N~ (u).

This shows that SN N (S = S and
INT(SUS =2(4k—3)+2—-2=8k—6 # 8k— 4
ThereforeSis not an absorbant @&g(8k — 4,4k — 3).
Case2. Suppose thane D1 is odd.

Then choosem = 6k — 3)u = (2k — 1)x +y and
v = (2k — 1)s +t, where sx = 0,1,2,3 and
yt = 135,....2k — 3. We claim that
2k—2 € N~ (u)ynN~(v). For that, it is enough to prove
thatu,v e NT(2k—2). From the definitions of5g(n,d),
we have

N (2k—2) = {(4k — 3)(2k — 2)(mod 8k —4),

((4k—3)(2k—2)+1)(mod 8k —4),...,
((4k—3)(2k—2) 4+ 4k —4)(mod 8k—4)}
Since

(2k—2)(4k—3) = (k—2)(8k—4) +
(mod 8k — 4), we have

(6k—2) = (6k—2)

N*(2k—2) = {6k—2,6k—1,6k,...,2k— 2}
— {3(2k—1)+1,3(2k—1)+2,...,3(2k— 1) + 4k — 1}
= {3(2k—1)+1,3(2k—1)+2,...,2k—4,2k— 3,2k — 2}.

By the above argument, iih € D1 is odd. Therx = 3 and
s=0. Therefore R—2 € N~ (u) and X—2 & N (v). For
m> 6k — 3, by the above argument we can prove thiat-2
2e N~ (v) and X—2 e N~ (u). This shows thafN~ (S) U
§ =2(4k—3)+2—1=8k—5+# 8k—4. ThereforeSis
not an absorbant @dg(8k — 4,4k —3). Case3. me Dy.

Then by a similar argument as in Case 2, we have
2k — 2 € N (u Nn N (v). This implies that
INT(9JUY =2(4k—-3)+2—-2=8k—6 # 8k— 4
ThereforeSis not an absorbant @&g(8k — 4,4k — 3).

The above argument forces us to conclude that
va(Gg(8k — 4,4k — 3)) # 2. By Theorem A, we have
va(Ge(8k — 44k — 3)) < 3 Therefore
Va(Gg(8k—4,4k—3)) =3.

Now we explain the steps given in the proof of the
above Theorem 2.1 by giving an example. Consider the
graphGg(8k — 4,4k — 3) = Gg(20,9), for k= 3.

3

Vi = | J{5i+1,51 +3} = {1,3,6,8,11,13 16,18}
i=0

1
D1 = | J{10+2i,15+2i} = {10,15,12,17}
i=0
0
Dz = J{13+2i} = {13}.
i=0

In Table 2.2, the elements Bf; are represented in the
first row and the common in-neighbors afand v in
Gg(20,9) are given in the third row. The elements D}
are mentioned in fourth row along with their common
in-neighbors in Gg(20,9). Some pairs inVi with
m = u—V are not mentioned in the table because in that
casem < 4k — 3.

Theorem 2.2 The absorbant number ¢4(Gg(n,d)) and
the domination number of(Gg(n,d)) are equal, if any
one of the following conditions hold.

(@n=d+1
(b)n=d

© 2014 NSP
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Table 1: The vertices inv;y and their in-neighbors dbg(20,9).

Let Sbe an absorbant or a dominating seGgf(n,d).

The vertices and their in-neighbors in bold face are the verticesThen by the definition ofGg(n,d),|S +d|S > n. This

of the setv;.
Vertex In neighbors
0 0|2|4|6| 8 |11]13| 15| 17
1 0|2|4|6| 9 |11|13] 15| 17
2 0|2(4|6| 9 |11|13| 15| 18
3 0(2(4|7| 9 |11 13|15 18
4 0(2(4|7] 9 |11|13]| 16| 18
5 0|2|5|7] 9 |11|13]| 16| 18
6 0|2|5|7| 9 |11|14]| 16| 18
7 0[3|5|7] 9 |11|14]| 16| 18
8 03|57 9 |12|14]| 16| 18
9 1(3|5[7] 9 |12]| 14| 16| 18
10 1113|5710 12| 14| 16| 18
11 113|5|7|10|12| 14| 16| 19
12 113|5(8|10|12| 14| 16| 19
13 1{3|5|8|10|12| 14| 17 | 19
14 1{3|6|8|10|12| 14| 17| 19
15 1/3|6[(8]10|12| 15| 17| 19
16 1/4|16|8|10|12| 15| 17 | 19
17 1/4|6|8]10| 13| 15| 17| 19
18 214|6|8|10|13|15| 17| 19
19 214|6|8|11|13|15| 17| 19

Table 2: The setsD4,D», and their common in-neighbors in
Gs(20,9)

d=u-v 10 12 15 17
1,1 13,1 16,1
13,3
{u,v} 66 18,1
18.8 18,6 18,3
Common in-neighbors afandv | uis anin-neighborof | 2k—2=14
vis an in-neighbor ofi

When{u,v} = {16,3}, thend = 13.
The common in-neighbors ofandv are X—2 = 4.

(cd=1

(d)d|nandn < d?

(e} =2,4,(d+1)|nand 2 does not divida
(Ain=8k—4 andd =4k —3 fork > 2
(g)n=6kandd = 2k—1 fork > 2

Proof. (a) Suppose that = d + 1. By using Theorem G,
we havey,(Gg(n,d)) = y(Gg(n,d)). (b) Suppose that =
d.

For anyv e V,NT(v) =N~ (v) = {0,1,2,...,d — 1}.
Clearly INT(v)] = [N~ (v)| = d = n— 1. DefineS= {u}
foranyu e V. ThenN*[u] = N~ [u] = V.

(c) Suppose that = 1.

Let V = {0,1,2,...,n— 1} be the vertex set of
Gg(n,d). Whend = 1, NT[v] = N~|v] = {v} for any
veV. Thus the se6={0,1,2,...,n— 1} is a dominating
set and an absorbant 8g(n,d).

(d) Suppose that|n andn < d?.

shows that  ya(Gg(n,d)) > and

y(Gg(n,d)) > [g77]. If d|n, then

ksl

d-1
V=U{§,gi+15i+2....85i+(§-1)}.
i=0

DefineS= {0,d,2d,3d,...,({ — 1)d}. We claim that
S is an
absorbant. For every vertex u € V,
N-(u)={§,§+5g+25.....g +(d-1)5}. Letvbe
any vertex inV — S 1t is enough to prove that has an
out-neighbor inS. Any vertexv in V(Gg(n,d)) is of the
formv=Ji+rfor0<i<d-land0<r < §—1 Then
there is a vertexrd € V(Gg(n,d)) such that
N*(§i+r)nS={rd}. This shown thaBis absorbant of
Gg(n,d). Thereforeys(Gg(n,d)) < § = [44] .

d+1

Defne S = {01,23..,(§-1)}. The
out-neighbors of any vertexu in S is
N*(u) = {ud,ud + L,ud + 2,...,ud +d — 1} [ N*(u)

ues

={0,1,2,...,n— 1} = V. This shows thatS is a
dominating set of  Gg(n,d). Therefore,
y(Ge(n,d)) < §=[g4].

(e) Suppose thatl = 2,4,(d + 1)|n and 2 does not
dividen.

1
U {3i,3 + 1,31 + 2}.
i=0
S={8i+1]i=0,1,2,..., §—1}. First we claim that
SNAN*T[§ =0.

SinceN™ (x) = {6i +2,6i + 3}(mod n) for anyx € S
6i +2,6i +3 # 3j+1(j€{0,1,..., 5—1}), which
implies thatSNN* (x) = 0. HenceSNN™ (x) = 0. Further
we claim thatN*(x) "Nt (y) = 0, for any two distinct
verticesx,y € S. Suppose not. Then there are two distinct
verticesx,y € S, such thatN*(x) N NT(y) # 0. Then
L<INTO)NNT(y)| <d =2

Suppose that ¥ [NT(X) "NT(y)| <d—1=1. Then
IN*(x) UNT(y)| = 3. Note thatN"(x) UNT(y) consists
of three consecutive integers. Then there exists a vertex
ze NT(x) UNT(y) such thatz € S This contradicts the
earlier fact.

Suppose thafN ™ (x) "NT(y)| =d =2 ThenN* (x) =
N*(y). Hence we have(® —x) = 0(mod n). Since 2 does
not dividen,y = x, which is contrary tox £ y. So our claim
follows. This implies thaN*(S)US=V, and soSis an
dominating set oGg(n,d).

(%)=}

Since V = Let

Suppose that d = 4 Since
N1
d + v = Usis + 4
i=0
5 + 25 + 35 + 4} Let
n

S={5i+2[i=0,1,2,...,2 —1} . By a similar argument,
we can prove thaB is a dominating set o6Gg(n,d). By
Theorem B, the desired result follows.

() From Theorem 2.1. and Theorem C, the result
follows.
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