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Abstract: In this paper, we present a common fixed point theorem for commuting operators which generalizes Darbo’s fixed point
theorem and some results in the literature. As an application, we study the existence of common solutions of a class of equations in
Banach spaces.
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1 Introduction and Preliminaries

Fixed point theory is one of the most fruitful and effective
tools in mathematics which plays an important role in
nonlinear analysis (for example see [3,4]). In this paper,
we are interested in the existence of a fixed point for
commuting mappingS,{Ti}i∈I satisfying the following
inequalities:

µ(S(A))≤ ϕ(sup
i∈I

(µ(Ti(A))), (1)

or
ψ(µ(S(A))≤ ψ(µ(Ti(A)))−ϕ(µ(Ti(A))), (2)

whereµ is a measure of noncompactness on the Banach
spaceE, I is the set of indices,S and Ti for i ∈ I are
continuous functions from a closed bounded and convex
subset Ω of E into E and ψ ,ϕ : R+ → R+ are
nondecreasing functions such that limn→∞ ϕn(t) = 0 for
each t ≥ 0 and ψ satisfies some certain conditions,
specified later. Equation (1) and (2), in the caseTi is the
identity function fori ∈ I has been studied in [2].
At the beginning we provide some notations, definitions
and auxiliary facts which will be needed in the sequel.
From now on, assume thatE is a given Banach space with
the norm‖.‖ and zero elementθ . Denote byB(x, r) the
closed ball inE centered atx and with radiusr. We write
Br to denoteB(θ , r). If X is a subset ofE then the
symbolsX, ConvX stand for the closure and the closed
convex hull ofX, respectively. The algebraic operations
on sets will be denoted byX + Y and λX (λ ∈ R).

Moreover, we denote byME the family of all nonempty
bounded subsets ofE and byNE its subfamily consisting
of all relatively compact sets.

Definition 1([5]). A mappingµ : ME → R+ is said to be
measure of noncompactness in E if it satisfies the following
conditions:

(1)The family kerµ = {X ∈ME : µ(X) = 0} is nonempty
and kerµ ⊂NE.

(2)X ⊂Y ⇒ µ(X)≤ µ(Y).
(3)µ(X) = µ(X).
(4)µ(ConvX) = µ(X).
(5)µ(λX+(1−λ )Y)≤ λ µ(X)+(1−λ )µ(Y) for λ ∈

[0,1].
(6)If (Xn) is a nested sequence of closed sets fromME

such thatlimn→∞ µ(Xn) = 0, then the intersection set
X∞ = ∩∞

n=1Xn is nonempty.

Observe that the intersection setX∞ from axiom (6) is a
member of the kerµ . In fact, sinceµ(X∞)≤ µ(Xn) for any
n, we have thatµ(X∞) = 0. This yields thatX∞ ∈ kerµ .

Definition 2([7]). A measureµ is called sublinear if it
satisfies the following tow conditions:

(1)µ(λX) = |λ |µ(Y) for λ ∈R

(2)µ(X+Y)≤ µ(X)+ µ(Y)
Where X,Y ∈ME.

Definition 3([7]). A measureµ satisfying the condition

µ(X∪Y) = max{µ(X),µ(Y)}

will be referred to as a measure with maximum property.
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It is worthwhile mentioning that the Kuratowski and
Hausdorff measure of noncompactness have maximum
property.

Definition 4([10]). A mapping T of a convex set M is said
to be affine if it satisfies the identity

T(kx+(1− k)y) = kTx+(1− k)Ty

whenever0< k< 1, and x,y∈ M.

Theorem 1([1]). Let Ω be a nonempty, bounded, closed
and convex subset of a Banach space E. Then each
continuous and compact map F: Ω → Ω has at least one
fixed point inΩ .

Obviously the above theorem constitutes the well known
Schauder fixed point principle. Its generalization, called
the Darbo’s fixed point theorem, is formulated below.

Theorem 2([8]). Let Ω be a nonempty, bounded, closed
and convex subset of a Banach space E and let T: Ω →
Ω be a continuous mapping. Assume that there exists a
constant k∈ [0,1) such that

µ(TX)≤ kµ(X)

for any nonempty subset X ofΩ , whereµ is a measure of
noncompactness defined in E. Then T has a fixed point in
the setΩ .

Lemma 1([2]). Let ϕ : R+ →R+ be a nondecreasing and
upper semicontinuous function. Then the following two
conditions are equivalent:

(1)limn→∞ ϕn(t) = 0 for each t≥ 0.
(2)ϕ(t)< t for any t> 0.

2 Main results

Theorem 3.Let E be a Banach space,Ω be a convex
closed bounded subset of E, I be a set of indices, and
{Ti}, S be continuous functions fromΩ into Ω such that

(i) For any i∈ I, Ti commutes with S.

(ii) For any A ⊂ Ω and i ∈ I, we have
Ti(Conv(A)) ⊂ Conv(Ti(A)) where Conv(A) is the convex
hull of A .

(iii) There exists an upper semicontinuous and
nondecreasing functionϕ : R+ → R+ where ϕ is such
that limn→∞ ϕn(t) = 0 for each t≥ 0 and for any A⊂ Ω

µ(S(A))≤ ϕ(sup
i∈I

µ((Ti(A)), (3)

wheneverµ is an arbitrary measure of noncompactness
on E.

Then, we have

(1) The set{x ⊂ Ω : S(x) = x} is nonempty and
compact.

(2) For any i∈ I, Ti has a fixed point and the set
{x∈ Ω : Ti(x) = x} is closed and invariant by S.

(3) If Ti is affine and{Ti}i∈I is a commuting family,
then Ti and S have a common fixed point for every i∈ I
and the set{x∈ Ω : Ti(x) = S(x) = x,∀i ∈ I} is compact.

Proof.To prove the first part of theorem we consider the
sequenceΩn defined asΩ0 =Ω andΩn =Conv(S(Ωn−1))
for n= 1,2,3, ... . Then, we show that

Ωn ⊂ Ωn−1 , Ti(Ωn)⊂ Ωn , µ(Ωn)≤ ϕn(µ(Ωn))
(4)

for everyn= 1,2,3, ... andi ∈ I .
It is clear thatΩ1 ⊂ Ω0 and

Ti(Ω1)⊂Conv(S(Ti(Ω0)))

⊂Conv(S(Ω0))

= Ω1.

There for, we have

µ(Ω1) = µ(ConvS(Ω0))

= µ(S(Ω0))

≤ ϕ(sup
i∈I

µ(Ti(Ω0))

≤ ϕ(µ(Ω0))

So (4) holds forn= 1. Assuming now that (4) is true
for somen≥ 1 andi ∈ I . Then

Ωn+1 =Conv(S(Ωn))

⊂Conv(S(Ωn−1))

= Ωn

and

Ti(Ωn+1) = Ti(Conv(S(Ωn)))

⊂Conv(S(TiΩn))

⊂Conv(S(Ωn))

= Ωn+1

for any i ∈ I . Hence, the assertion (4) is true by the
induction.

Next, since limn→∞ ϕn(t) = 0 for eacht ≥ 0 and for
any A ⊂ Ω and µ(Ωn) ≤ ϕn(µ(Ωn)), we have
µ(Ωn)→ 0 asn→ ∞. Since the sequence(Ωn) is nested,
in view of axiom (6) of Definition (1), Ω∞ =

⋂∞
n=1Ωn is
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nonempty, closed and convex subset ofΩ . HenceΩ∞ is
the member of kerµ . So,Ω∞ is compact. Next, keeping in
mind thatS mapsΩ∞ into itself and taking into account
the Schauder fixed point principle as Theorem (1) we
infer that the operatorShas a fixed pointx in the setΩ∞.
Obviouslyx ∈ Ω . Thus the setF = {x ∈ Ω : Sx= x} is
closed by the continuity ofS. On the other hand,Ti
commutes withS for any i ∈ I , we see thatTix is a fixed
point ofS for anyx∈ F.

ThusTi(F)⊂ F , and using lemma (1)

µ(F) = µ(S(F))
≤ ϕ(sup

i∈I
µ(Ti(F))

≤ ϕ(µ(F)),

we conclude thatµ(F) = 0 and according to the
closedness ofF, F is compact.

(2) The second part of the theorem has been proved in
[10].

(3) For every i ∈ I , Fi is convex sinceTi is affine
mapping. Also, we haveS(Fi) ⊂ Fi and Tj(Fi) ⊂ Fi for
every j ∈ I with Fi is convex, closed and bounded, and for
anyA⊂ Fi , we get

µ(S(A))≤ ϕ
(

sup
j∈I

µ(Tj(A))
)

.

Then by using part (1)S has a fixed point inFi , therefore
S and Ti have a common fixed point. Since S is
continuous and by the hypothesis (3), we see that the set
of common fixed point ofSandTi is a compact.

(4) The fourth part of the theorem has been proved in
[10].

Remark.In the theorem (3) replacing hypothesis (iii) by
the following condition implies that theorem (3) is still
correct.

(3*) Suppose thatµ is an arbitrary measure of
noncompactness andψ ,ϕ : R+ → R+ are given functions
such thatϕ is lower semicontinuous andψ is increasing
and continuous onR+. Moreover,ϕ(0) = 0 andϕ(t) > 0
for t > 0 and

ψ(µ(SA))≤ ψ(µ(TiA))−ϕ(µ(TiA)) (5)

for any nonempty subsetA of Ω .

Proof.To prove this fact, we argue similar to the proof of
remark 2.1 in [2]. Let us first observe that from inequality
(5) we infer thatψ(t)− ϕ(t) ≥ 0 for t ≥ 0. Thus, since
the functionψ is invertible and the inverse functionψ−1

is defined and continuous on an subinterval ofR+, we can
equivalently write inequality (5) in the form

µ(SA)≤ ψ−1(ψ(µ(TiA))−ϕ(µ(TiA))) (6)

for anyA ∈ ME. Further, let us consider the functionφ :
R+ → R+ defined by the formula

φ(t) = ψ−1(ψ(t)−ϕ(t)).

Observe thatφ is continuous onR+. Moreover, inequality
(6) can be written in the form

µ(S(A))≤ ϕ(sup
i∈I

µ((Ti(A)))

for anyA∈ME, which has the same form as inequality (3)
from Theorem (3). Notice that in view of the fact that the
functionψ−1 is increasing onR+ we deduce that fort > 0
the following inequality holds

φ(t) = ψ−1(ψ(t)−ϕ(t))< ψ−1(ψ(t)) = t.

Thus, in view of Lemma (1), the function f satisfies the
condition limn→∞ ϕn(t) = 0 for eacht ≥ 0 from Theorem
(3). This shows that we can apply Theorem (3) which
justifies our above stated assertion.

Theorem 4.Let E be a Banach space andΩ be a
nonempty convex, closed and bounded subset of E. Let
T1,T2 and S be continuous functions fromΩ into Ω such
that

(1) T1T2 = T2T1 and TiS= STi for any i∈ {1,2}.

(2) T1,T2 are affine.

(3) There exists an upper semicontinuous and
nondecreasing functionϕ : R+ → R+ such that
limn→∞ ϕn(t) = 0 for each t≥ 0 and for any A⊂ Ω we
have

µ(S(A))≤ ϕ(µ(A)).

Then the set{x∈ Ω : Sx= T1x= T2x= x} is nonempty and
compact.

Proof.To prove this fact, we argue similar to the proof of
Theorem 3.2 in [9]. We consider the operator
H(x) = S(T1(X)). It is clear that H mapsΩ into Ω ,
commutes withT1, and is continuous. Moreover, we have

µ(H(A)) = µ(S(T1(A)))≤ ϕ(µ(T1(A)))

for anyA ⊂ Ω . Hence, by Theorem (3), H andT1 have a
common fixed point which is a fixed point withS. Thus,
the nonempty setF = {x∈ Ω : T1x= x} is closed, convex
and bounded subset ofΩ , for T1 being continuous and
affine. Moreover, by (1) we haveS(F) ⊂ F and
T2(F)⊂ F . Therefore, we have

µ(S(T2(A)))≤ ϕ(µ(T2(A)))

for any A ⊂ F . By the same argument as before, we
considerH1(x) = ST2(x) for x ∈ F . It follows that the set
{x∈ Ω : Sx= T1x= T2x= x} is nonempty and compact.
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3 Application

In this section as an application, we study the existence of
common solutions for the following equations:

x(t) = f (t,T1x(t)), (7)

x(t) = f (t,x(t)), (8)

x(t) = T2x(t), (9)

x(t) = λT2x(t)+ (1−λ ) f (t,T1x(t)), λ ∈ [0,1],
(10)

under some appropriate assumptions on the functionsf , T1
andT2 weaker than those in [9]. Let (E,‖.‖) be a Banach
space andB be a convex, closed and bounded subset ofE.
Denote byC([0,b],B) the space of all continuous functions
from [0,b]; b> 0, intoB endowed with the norm

‖x‖∞ = sup
t∈[0,b)

‖x(t)‖.

Assume that
(a) for given fixed f : [0,b] × B → B, there exists
ϕ : R+ → R+ whereϕ is an upper semicontinuous and
nondecreasing function such that limn→∞ ϕn(t) = 0 for
eacht ≥ 0 and

‖ f (t,x)− f (t,y)‖ ≤ ϕ(‖x− y‖)

for all x,y∈ B, t ∈ [0,b];
(b) Ti : B → B are linear continuous operators, satisfying
Ti( f (t,x)) = f (t,Ti(x)) for any (t,x) ∈ [0,b]×B and i ∈
{1,2}.

Theorem 5.Under hypotheses (a) and (b), equations (7),
(8), (9), and (10) have at least one common solution in
C([0, b], B).

Proof.We argue similar to the proof of theorem 3.2 in ([9]).
First, it is clear thatC([0,b],B) is a closed, bounded and
convex subset ofC([0,b],E). On the other hand, setting
Sx(t) := f (t,x(t)), for x∈C([0,b],B), we obtain that

‖Sx(t)−Sy(t)‖≤ ϕ(‖x(t)− y(t)‖)≤ ϕ(‖x− y‖∞).

This implies that

‖Sx−Sy‖∞ ≤ ϕ(‖x− y‖∞)

for anyx,y∈C([0,b],B).
Let µ : ME →R+ be defined by the formula

µ(X) = diamX,

where diamX = sup{‖x− y‖ : x,y ∈ X} stands for the
diameter of X. It is easily seen thatµ is a measure of
noncompactness inC([0,b],B) (see [6]) in the sense of
Definition (1) and

µ(S(A))≤ ϕ(µ(A))

for anyA ∈ C([0,b],B). Finally, sinceS andTi commute,
we conclude from Theorem (4) that T1,T2, andS have a
common fixed point. Therefore, equations (7), (8), (9), and
(10) have at least one common solution inC([0,b],B), and
the proof is complete.
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