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1 Introduction And author have established the following theorem.
Leta > 0, andf, g be two positive function ofD, «[, such

In recent years, many researcher have worked ORngatf is nondecreasing arglis non-increasing. Then
fractional differential and integral inequalities using

Riemann-Liouville, Caputo and g-fractional integrals see r(a+1)
[1-10, 19]. Some author have studied on Siago fractional ~ J9fY(t)g’(t) < —J V()39 (), (1.3)
integral operator, for example, we refer the reader to t
[11-18] and references cited therein. In [4], Dahmani

established reverse Minkowski fractional integral ];%raﬁnit 0> 0.y>0,06>0.
inequality. Also, in [1] Ahmed Anber and et al., have '

studied the fractional integral inequalities using

Riemann-Liouville fractional integral as follows. t 39 (£ ()l (t te Bt
Leta >0,p>1, %+% =1 and letf, g be two positive rg+1 (P9 ))+F(a+1) (F(Hg"v)
function on|0, %[, such ;[?r?t for alt > 0, J7fP(t) < oo, < (JTEY()(IPQP (1) + (390 (1)) (JP £ (1)).
J9gA(t) <. If0 <m< g SM<w, Te [0,t] then the (1.4)
inequality
a 1 a 1 M L i1
PEHOP + 7] < (ﬁ)pq‘] [(f(t)pg(t)q]’ (1.1) In literature few results have been obtained on some
hold. And fractional integral inequalities using Saigo fractional
Leta > 0,f andg be two positive function of0, [, such  Ntegral operatorin [15, 16]. Motivated from [1, 3, 4], our
TEP(L) < o0 JIGUE) < 0.t > 0. 1F 0 < m< L < purpose in this paper is to establish some new results
thatJ fP(t) < o0, J%gI(t) <o, t > 0. 1f0 <M< goig < 5ing Saigo fractional integral ([15]). The paper has been
M < o, T € [0,t] then we have organized as follows, in Section 2, we define basic
. 1 M 1 definitions and proposition related to Saigo fractional
[QYFP()]P +[3%(t)]a < (E)WJ“ [(f(t)o(t)], (1.2) derivatives and integrals. In Section 3, we give the results

wherep > 1 and% + % =1.

about reverse Minkowski fractional integral inequality
using fractional Saigo integral, In Section 4, we give
some other inequalities using fractional Saigo integral.
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2 Preliminariese

We give some necessary definitions and properties whichg(x, r) =

will be used latter. For more details, see [15, 17].

Definition 1. A real-valued function (), ( x > 1), is said
to be in space ¢ (i € R), if there exists a real number
p > p such that {x) = xP@(x); where@(x) € C(0, ).

Definition 2. Let a > 0 ,B,n € R,then the Saigo
fractional integral "ff”’[f(x)] of order a for a

real-valued continuous function() is defined by([17]),
see also ([12, p 19], [14])

ISP ()] = X7 3 (x— 09 LoFa(a+ B, —n; a1 L) fD)dt.
2.1)

where, the functionF;(—) in the right-hand side of (2.1)
is the Gaussian hypergeometric function defined by

= (@n(b)n X"

oF1(a,b;c;x) = Zo O (2.2)
and(a)n, is the Pochhammer symbol
(@n=a(@a+1)..(a+n—1)— % (@)o = 1.

For f(x) = x* in (2.1) we have the known result [17] as:

Fp+Hrp+1-g+n

63 X =
F(u+1=B)r(p+1l+a+n)

xH-B,
(2.3)

(a>0,min(u,u—pB+n)>-1,x>0),

3 Reverse Minkowski fractional integral
inequality

Consider

x 0 B(x—7)a-1 T
—Tra@ fn,a,lf;)A, (te
1 x=0t (a+B)(=n) x-1)°
T (o) xatB Ma+1) xa+B+l
LatB(at B+l x=0*
ra+2) xa+p+2

2Fi(a+B, (0,x);x > 0)

(3.3)
Clearly, we can say that the functioB(x,7) remain
positive because for alt € (0,x) , (x > 0) since each
term of the (3.3) is positive. Multiplying both side of (3.2)
by G(x, T), then integrating resulting identity with respect
to T from 0 tox, we get

7G7B X
M+1 p);'(—a),/o (X—T)a712F1(0+l37—'7;a;1—%)fp(T)dT
p X
< I‘M—a)/o (x—r)"‘lel(aJrB,—n;a;l—%)(f+g)p(T)dT~

(3.4)
which is equivalent to

MP
(M+1)p

hence, we can write

650 M11P (9] < S 16571+ 9P, 35)

152 7102001]” < s (6071 +0001]
(3.6)
On other hand, using condition < E ; we obtain
A+ DM < S (fD+em), @)
therefore,
A+ DR < (PN +eD)P. (38)

Now, multiplying both side of (3.8) b&(x, 1), (T € (0,X),
x> 0), whereG(x, 1) is defined by (3.3). Then integrating

In this section, we establish reverse Minkowski fractional resulting identity with respect tofrom 0 tox, we have

integral inequality involving Siago fractional integral

operator (2.1).

Theorem 1. Let p> 1 and let f, g be two positive
function on [0,o), such that for all x> 0,

o T(PO0) < e 1T < e f
0<m< §;<M T € (0,x) we have

1 1
e e (5P 9P

(3.1)

[““”[ff’(x)]]% + (1829 ]

foranya > max0,—B},B<1,B—-1<n<0.

Proof: Using the conditior% <M, 1€(0,x),x>0,we
can write

(M+1)PE(1) < MP(f +0)P(1). (3.2)

18P 00)]” < (mil)

ol

[6271(F +9)P0)]

(3.9)
The inequalities (3.1) follows on adding the inequalities
(3.6) and (3.9).
Our second result is as follows.
Theorem 2.Let p> 1 and f, g be two positive function
n [0,%), such that for all x> 0, 1§;>"[fP(x)] < o,

1EPE)] <. 10 <m< KD <M, T € (0.1) then we
have

2 2 1
P P P

MEDED ) [lgsaep 0]+

M 1
1656 M1001]

[6:2718°001] *+ 155 M1 001] ” =

(3.10)
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Proof: Multiplying the inequalities (3.6) and (3.9), we which implies that
obtain

i) 80 em0] 4 16891g900]] < (16271700 + g P)1)”.

(3.11) Consequently,
Applying Minkowski inequalities to the right hand side of

1 1

(3.11), we have (|gf;(ﬁ!'7 [[f(x)]%[g(x)]ﬂ) P <M [|" Bngix)|®.
1 1 1 4.6
(18100 +90)7] P12 < (G711 00]” + 1541 2 o other hand, sinaag(1) < (1), T € [0,x), x> O,(thel)1

T (3.12)  we have
which implies that

2
p

18271010+ 90007 * < [1g7 7001+ 1P g

1
+2[0M[fp(x)]] [aﬁn[gq(x)]} 1 11 1 11
(3.13) [F()]P[g(T)]9 = mP[g(T)]4[g(T)]P = mP[g(T)]. (4.8)
using (3.11) and (3.13) we obtain (3.10). Theorem 2 is thus\iultiplying both side of (4.8) byG(x, 1), ( T € (0,x),
proved. x> 0), whereG(x, 1) is defined by (3.3). Then integrating

resulting identity with respect to from 0 tox, we have

[F(0)]F > me[g(r)]?, (4.7)
. multiplying equation (4.7) b:{/g(r)]%, we have,

4 Fractional integral inequalities involving xap

/OX(X* 1) oFu(a+ B, —n;ail— ;)[f(r)%g(r)%]dr

Saigo fractional integral operator ’_(")l
. . . . . . <M (X_'[)a*l F(a+l}_ 'a'l_l) (T)dT
In this section, we establish some new integral inequalitie =~ (a)  Jo 2 A l=2)9 :
involving the Siago fractional integral operator (2.1). (4.9
Theorem 3.Let p> 1, £+ ¢ = 1and f, g be two positive thatis,
function on [0,,0), such that gﬁ ME(x)] < oo I&f’” [[f(x)]%[g(x)]%] <mp [Igf;(ﬁ’”g(x)} . (4.10)
Igff’”[g( X)] <. If0<m< E ; <M< Te[0XWe once e can write,
have
1 1
1 a.B.n i 1\ @ 2 [1a.B:n g
E215001] P 15710 < () 1827001 Blatwd]. (1627 [T O01Plo0aI] )™ < o 1G58 ) o
(4.1) o : -
hold. Forall x> 0, & > max{0,~B},B<1,B—1<n < au:llt)lplymg equation (4.6) and (4.11) we get the result
0. . .
Theorem 4.Let f and g be two positive function ¢® oo,

Proof:- Sincegzy <M, T € [0, x> 0, therefore such that

1 -1 1 a,B.n 00, a B n .
[9(D]? > M3 [f(1)]s, @y o100 <o T IG] < 0 x> 0,110 < m <
and also grF SM <, Te [0,x]. Then we have
[f(0)][g(T)]a > M@ [f(0)]a[f(1)]? [5:Em 100 165679900 < (M7 187 (0050 nola.
1 1.1 (4.12)
=M ql[f(r)]é+é (43) " where p> 1, %"-% =1, forall x>0, a > max{0,— 3},
>MT[f(1)). B<1,B-1<n<O0.

o . Proof:- Replacingf (1) andg(t) by f(1)P andg(1)%, 7 €
Multiplying both side of (4.3) byG(x,7), (T € (0,X),  [0,x], x> 0 in theorem 3, we obtain (4.12).
x> 0), whereG(x, 1) is defined by (3.3). Then integrating

resulting identity with respect tofrom 0 tox, we have Theorem 5. Let f, g be two positive function 00, ),
such that f is non-decreasing and g is non-increasing.
x—a-B 1 Then

[ o= 07 aRa B -nias1 - () pgnidr

ra) . 1B (g% () < BT 813601118660 ).
Ma x a-B a1 T (4.13)
s r(a) /O(X*T) 2F1(a+B’7”’a’17})f(T)dT' Forallx>0,a >maxX0,-B},<1,B-1<n<0y>0

@4.4) &>0.
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Proof:- let 7,p € [0,X], x> O, for anyd > 0, y > 0, we x> 0), which (in view of the argument mentioned above
have in proof of theorem 5 ) remain positive. Then integrating

resulting identity with respect to from 0 tox, we have
(M- ) (Plp)-P(0) 20, (414)

Ié’.f”[fﬂx)g WPy [P e oG- 2y

¥(1)g°(p) — £¥(1)g° (1) — 1Y(p) (g% (p) + ¥(p)g° (1) > 0.
(4.15)  tlox w)

Therfore N w ®

<IN g
£Y(1)g% (1) + ¥ O(p) < £Y(1)a%(p) + fY(p)g° (1), -
(1)g°(1) + ¥ (p)(9°(p) < (1)g°(p) (p>9(4(.1)6) 1P ) (w;’/o(Xfp)w,lzpl(wwﬁmlf;)fy(p)dp_
Now, multiplying both side of (4.16) byG(x,1), ( (4.20)

T € (0,x), x> 0), whereG(x, 7) is defined by (3.3). Then which implies (4.19). This completes proof.

wéeﬁ;?/gng resulting identity with respecttdrom 0 tox, Remarkt may be noted that the inequality (4.13) and

(4.19) are reversed if the functions are

(1)~ (p)) (P (p) - (1)) <O

AU R e )fV(mg (p)dp

/(x P LR+ 0~ ui1-2)gP(o)dp

—a—B X
e N TCR A R  e

x P a-1 NP T
+e)g’(e) r(a) /o( —OT R a1 AT g arkEor o — Y, B=¢ andn = ¢, in theorem 6
x—a-B - T directly we reduces to the theorem 5.
<o) gy | -0 e+ B i1 ) ogdr
ap 2 Theorem 7.Let f > 0, g > 0 be two functions defined on
+fV(x)Xr(a) /0(x—r)“*lel(a+B,—n;a;1—5)95(x). [0,), such that g is non-decreasing. If

4.17
.17 152 (x) > 152 g(x), x> . (4.21)
a.p.n 3% ) 3% a.p.n a.p.n 3% 3% a.B.né .
1571099 () + () (@ (G 10 < (RIS (V0] + (PG (Rixg) then for alla > max(0, B}, B <1, B—1< 1 <0,y>0,
Again, multiplying both side of (4.18) byG(x,p), ( 9 >0andy—94>0, we have
p € (0,x), x > 0), whereG(x, p) is defined by (3.3). Then 3 B
integrating resulting identity with respect gofrom 0 tox, Iéf’f”’fy %(x) < Iéf’f”’fy(xm °(x), (4.22)
we have

Proof:-We use arithmetic-geometric inequality, fpr> 0,
152 M g A + 16 9e? ]l M[A] 8> 0, we have:

< Igff”[gé(x)] “B”[fV( )]+I5’7f7”[f (x)]l(‘{’f”’[g‘S(X)], A5 10(1) = 5259V 0(1) < PY(1)g8(1), T € (0,%),x> 0.

s
(4.23)

then we can write Now, multiplying both side of (4.23) byG(x,1), (

3. T € (0,%), x> 0), whereG(x, 1) is defined by (3.3). Then
25PNV (x)g2 (X)) < Wz'gxﬁ NG 6P (). integrating resulting identity with respect tdrom 0 tox,
. we have
This proves the result (4.13).
—a—=B rx
Theorem 6. Let f, g be two positive function i@, ), VTV(sX,- @ o (X—T)“’12F1(0+Bv—f7:0!;1—%)[fy’a(f)]df
such that f is non-decreasing and g is non-increasing. 5 x B x .
Then we have VT /O(x—r)"*lel(a—FB,—n;a;l—;)[gV*‘S(r)]dr
rA-g+n) 900 —a-B x
FA—BIr(ira+n)® o [FY()g°(¥)] < Xr(a) /0 (x—r)"’lgFl(aJrB,fr];a;lf%)[f"(r)g"s(r)]dr.
ri-¢+9 AN £V ()0 (4.24)
ri-ori+y+ Z)X"’IO'X [F(09" (0] consequently

| &Bnry |¥.0.8100 | .0.8100 |9y )
= (g1 (et « (87610) (5 [(ix.)]lg) o lox M2 = 25l Mg P (9] <16 [0 ().

For all x > 0, a > max0,—B}, ¢ > max0,—¢}B < 1, o (4.25)
B-1<n<0¢<1lp—1<l<0y>03>0. which implies that

Pfgguf— Multiplying both side of equation (4.18) by VTV6|(‘;;(B~W[]‘V 3(x)] < |aﬁn[fy( x93 (x)] + yéélgxﬁ M(gr-3(x)].
o =PV R+ 0. -l - §) (p € (0.%), (4.26)
(@© 2014 NSP

Natural Sciences Publishing Cor.



Math. Sci. Lett.3, No. 3, 133-139 (2014)www.naturalspublishing.com/Journals.asp NS = 137
thatis we get
a,B.n a,B.n
IGETI000) < BEIGET Y09 (0] + SIS0 (). eIl CUIC R
(4.27) g5 "hGI] 155 "G ()]

thus we get the result (4.22).

Theorem 8. Suppose that f, g and h be positive and

continuous functions off), ), such that

(0(1)— a(p) (% —%) S0, 1.p[0X) x>0,
(4.28)
then for all x> 0, a >max0,—B},B<1,B-1<n <0,
we have
ISETE ] 189 (0) 2
152 ho] I&f"’[(gh)(x)]

Proof: Sincef, g andh be three positive and continuous
functions on[0, «o[ by (4.28), we can write

x> 0.
(4.30)
Now, multiplying equation (4.30) by(p)h(7), on both
side, we have,

9(n) f(p)h(1) — g(1) f(T)h(p) —g(p) f(P)h(T) +9(p) f (T)h(ﬁ()) > 0,)
4.31
Now multiplying equation (4.31) ba(x, 1), ( T € (0,x),
x> 0), whereG(x, 1) is defined by (3.3). Then integrating
resulting identity with respect to from 0 tox, we have

(D) 1B +9(p) H — 9(P) Bl — 9(T) i > 0; 7,0 € (0,%),

—a—B  rx
(0) gy ) O 0 Moaa + B -niait - D) lg(m(r)r

—a—B ,x
(o) F gy [, 0 1 Rl B I (Dg(nar
x—a-B

)

/O(x 1) R (a+B,—n;a; 17—)[f( )dT >0,
(4.32)

+1(p)a(p)

T / (x=1)°LoFy(a+ B,—n;a;1— ) ()JdT
a-B

we get

()16 [(gh) (9] + a(p)h(p)Ig [ (x)]

~g(0) f () Th(x)] —h(p)IgF (g F)(x)] =
(4 33)

Again multiplying (4.33) byG(x,p), ( p € (0,x), X > 0),
where G(x,p) is defined by (3.3). Then integrating
resulting identity with respect to from 0 tox, we have

P E NG (gh) (9] — 182 M Th( g (g F) (x)]
18P (@H X1 h(x)]
) >

(
HISEM G (NG (0] >

VO
<

(4.34

which implies that

BTN (g (0] = 1552 ThNSE (g ) (0],

(4.35)

This completes the proof.

Theorem 9. Suppose that f, g and h be positive and
continuous functions oj, «), such that

9090 (12 - 1) z0rpe 00 >0
(4.37)
then for all x> 0, a > maxX0,—B}, ¢ > maxo0,—¢},
B<1,B-1<n<0,p<1l,9p-1<<0,

P IE2C (g 1HEPC [F NP (gh) (0]

>1,
152N () 1+ hoond P e h (0] —
(4.38)
hold.
Proof:  Multiplying ~ equation  (4.33) by
X (= P LR (W 4 0, -G w1 - B) (p € (0),

x > 0), which (in view of the argument mentioned above
in proof of theorem 5 ) remain positive. Then integrating
resulting identity with respect to from 0 tox, we have,

18 TE NG (gh) (9] — 18,2 InIg (g F) ()]
— 182U H NS h(x)]
| >

182G (NI ()
(4.39

9
~

we get,

15 [E NG M [ ()] + 18 [(ah) NG [ (x)]

> 188N (@ H )] + 18 @ H XN h(x),
(4.40)

this gives the required inequality (4.38).

RemarkFor o = ¢, B = ¢ and n = ¢, in theorem 9
directly we reduces to the theorem 8.

Theorem 10. Suppose that f and h are two positive
continuous function such that € h on [0,c). If
decreasing and f is increasing 0, ), then for any
p>0 For al x>0, a> max0,—-8}, B < 1,
B—1<n <O0then

LI TR
lox TThO)] g3 MThP(X)]
Proof: We takeg = fP~1in theorem 8
a.Bn a B n
IRl ) w4
lox " [(x)] ‘”3 Mhte-H(x)]

(@© 2014 NSP
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Sincef <hon|[0,), then we can write,

hfP~1(x) <hP. (4.43)
Multiplying equation (4.43) byG(x,1), ( T € (0,x),
x> 0), whereG(x, 1) is defined by (3.3). Then integrating
resulting identity with respect to from 0 tox, we have,

—a-B  x
);-(—a)/o (X—T)GflgFl(a—i—B,—r];a;l_;pr—lh(r)]dr
SX_U—ﬁl—(a)/ox(xfT)G—12F1(0+B,*n;a;l—;)[hp(r)]dt.
(4.44)
implies that

ISP 0] < ISP RP(K)], (4.45)
and so we have,
hP(D)[(F£P1)(x)] o PPO)[FP(X)] (4.46)

he(7)[(hfP=1)(x)] — hP(7)[hP(x)]”
then from equation (4.42) and (4.46), we obtain (4.41).

Theorem 11. Suppose that f and h are two positive
continuous function such that € h on [0,). If | is
decreasing and f is increasing d@,)[, then for any
p > 1 for al x > 0 a > maxX0,—f},

Y >max{0,—g}B <1 B-1<n<0 o<1
p—1<{ <0,

BN PI0] + 18524 TF NI P()]

> 1.
12N £P0] + 1854 Th(TI ST £ P ()]

(4.47)

Proof: We takeg = fP~1in theorem 9, then we obtain

IS IEEE NP L1 [ G (h P2 (x)]

> 1,
loxe TGS TFPOOTHE eollgs [P
(4.48)
then by hypothesis, < hon [0, ), which implies that
hfP~ < hP. (4.49)
Now, multiplying both side of (4.49) by
XL x— PV LR+ 0.~ wi1— 2) (p € (0%),

hence by (4.50) and (4.51), we obtain

1P NG NP L) + 18 [F (0GP h TP (x)]

ISP PO0] + 18524 TE NI INP().
(4.52)

By (4.48) and (4.52), we complete the proof of this
theorem.

Theorem 12. Suppose that f, g and h be positive and
continuous functions o}, »), such that

(f(1) = f(p))(9(1) = 9(p))(h(T) + h(p)) = 0; T,p € (0,X) (Z>52)
thenforallx>0,a >max0,—B},8<1,B-1<n < 0,
we have

B (Fgh) (OS2 + 1527 ((F) 0N SE ()]

> 18P NPT (0] + 152 TE OISR (gh) (1)
(4.54)

Proof: By the assumption for any, p, we have

f(T)g()h(r) + f(1)g(p)h(p) — F(1)g(P)h(T) — F(T)a(P)h(p)
— f(P)a(D)h(r) — f(pP)a()h(p) + f(p)a(p)N(T) + f(p)g(p)h(&)r %g)

multiplying equation (4.55) byG(x,1), ( T € (0,X),

x> 0), whereG(x, 1) is defined by (3.3). Then integrating

resulting identity with respect to from 0 tox, we have

152 M[(Fgh) (0] +h(P)IgE M(F) (] + F(P)a(P)IgE ()

+1(P)a(P)n(R)Ig 2] = g(P)Igs (T ()] +g(P)h(p)Igs [ ()]
(p)h

+1(0)lg "1(@h) ()] + F(p)h(p)Igi " [g(X)].

(4.56)
Again multiplying (4.56) byG(x,p), ( p € (0,x), x > 0),
where G(x,p) is defined by (3.3). Then integrating
resulting identity with respect to from 0 tox, we have

ISEMANGE(Fgh) (0] + 152 NS (Fg) ()]
FISP OIS (F) (0] + 1552 [(Fah) (16 [4]
> 162G NgsE () 001+ 182 M 1) (NS [ (%))

HISPM G NG ()] + 162 T (PR ()11 a0
(4.57)

which gives the equation (4.54). This proves the Theorem.

x> 0), which (in view of the argument mentioned above Theorem 13. Suppose that f, g and h be positive and
in proof of theorem 5 ) remain positive. Then integrating -ontinuous functions 0f, »), such that

resulting identity with respect to from 0 tox, we have,

I3 P 0) < 1G24 IP), (4.50)
multiplying on both side of (4.50) by“B Tt(x)] , we
obtain

ISP NG EP L)) <162 [F 0N gE 4 hP ()],

(4.51)

(f(1) = f(p))(9(1) +9(p))(h(T) +h(p)) = 0; T,p € (0,X) (Z>53)
thenforallx>0,a >max0,—B},8<1,B-1<n < 0,
we have

1500l LG (0] + 165" [(F) ()15 [(X)]
f

> 152 (gh) (NS T (0] + 1552 Th(o]! "“[(fg)( X)].
(4.59)
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Proof: For anyt, p, we have

(T)g(m)h(t) + f(1)g(p)h(p) + f(1)a(p)h(T) + f(T)g(p)h(p)
> f(p)g(m)h(t) + f(P)g(T)h(p) + f(P)g(p)h(T) + f(p)g(p()h(p);

—

Similar to the proof theorem 12, we have,

152 (Fgh) ()] +h(p)Ig " [(9) ()] +a(p) g3 M[(Fh) (x)]
+a(P)h(P)IE T ()] > f(P)a(p)Ig " h(x)] + f(P)h(p)Ig M [g(x)]

+ IS TGN ()] + F(p)a(p)h(p) 16, 4],
(4.61)
Again similar to proof of theorem 12, we obtain,

18P ANGE M (Fgh) ()] + 1657 IhIG M (Fg) (%))
HISE M GOONSE ()] + 1652 [(gh) (x)]165E 7 (%))
> Igsc "[(F9) 0I5 hG9] + 15 () ()G 9]

FISE(Fg) (NG MTh)] + 1652 [(Fah) ())1g5F "),
(4.62)

we get equation (4.59), this complete the proof of theore
13.
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