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In this paper we study the entropy of a two-level atom driven by a detuned monochro-
matic laser field and damped by a squeezed vacuum. We obtain an exactly analytic
solution of the model, by means of which we identify and numerically demonstrate the
region of parameters where significantly large entanglement can be obtained. Also, the

marginal distribution of the atomic Wehrl density is studied.
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1 Introduction

The interaction between a two-level atom and the radiation field is a quantum opti-
cal problem that lies at the heart of many problems in laser physics and quantum optics
[1—3]. The fundamental difference between quantum and classical physics is the possi-
ble existence of nonclassical correlations between distinct quantum systems. The physical
property responsible for the nonclassical correlations is called entanglement. From the be-
ginning of the nineties, the field of quantum information theory opened up and expanded
rapidly.

Quantum entanglement began to be seen not only as a puzzle, but also as a resource
to be manipulated for communication, information processing and quantum computing,
such as in the investigation of quantum teleportation, dense coding, decoherence in quan-
tum computers and the evaluation of quantum cryptographic schemes [4—8]. A number
of entanglement measures have been discussed in the literature, such as the von Neumann
reduced entropy, the relative entropy of entanglement [9—11], the so-called entanglement
of distillation and the entanglement of formation [12]. Several authors proposed physically
motivated postulates to characterize entanglement measures [9—11], [13—17]. These pos-

tulates (although they vary from author to author in the details) are based on the concepts of
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the operational formulation of quantum mechanics [18]. A method using quantum mutual
entropy to measure the degree of entanglement in the time development of the Jaynes-
Cummings model has been adopted in [19], which is called DEM (degree of entanglement
due to mutual entropy). The entanglement in the time development of the JC-model with
squeezed state has been investigated [20], where it was shown that the entanglement can be
controlled by means of squeezing.

In this paper, we aim at extending the previously cited treatment to study the problem
of a two-level atom interacting with a single-mode including acceptable kinds of nonlin-
earities of both the field and the intensity-dependent atom-field coupling. We suppose that,
inside the cavity a single-mode is coupled with both the atom as well as the nonlinear
medium. The organization of this paper is as follows: in section 2 we introduce our Hamil-
tonian model and give exact expression for the density matrix operator p(¢). In section 3 we
employ the analytical results obtained in section 2 to investigate the entanglement degree
due to the quantum field entropy followed by a summary in section 4.

2 The Model

We consider here a general situation of the interaction between a two-level atom in a
squeezed vacuum with a broad bandwidth, in which arbitrary values of both the Rabi fre-
quency and the detuning are considered. The model of Hamiltonian consists of a two-level
atom driven by a detuned monochromatic laser field and damped by a squeezed vacuum
with a broad bandwidth is given by

H=H,+Hp+H,+Hj. 2.1

The atomic part of the Hamiltonian has the following form

. h h h
Hjy=— =—-A — 2.2
A= 5wa0: =g oz + WL (2.2)
is the Hamiltonian of the atom,
Hp=h / wb'(w) b(w)dw, (2.3)
0

where b(w) and b (w), respectively, are the annihilation and the creation operators for the
field mode.

- h$2
HL:7

is the interaction between the atom and the classical laser field,

[Stexp(—iwp — i) + S—exp(iwy + idL)]

H; =ih /O b K(w) [p'(w)S_ — S;b(w)]dw (2.4)
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is the interaction between the atom with the reservoir. In the above equations, K (w) is the
coupling of the atom to the vacuum modes, A = w4 — wy, is the detuning parameter of the
driving laser field frequency wy, and S;, S_ and S, are the Pauli pseudo-spin operators
describing the two-level atom and satisfy the relations [S4, S.] = F5_,[S+,S5_] = 25,.
We assume that the reservoir is in a squeezed vacuum state in which the operators b(w) and
bf(w) satisfy the relations

Trpb(w)bt ()] = [N+1]6(w—w'),
Trp[bT(w)b(w')] = Né(w-u'), (2.5)
Tra[b(w)bw)] = Mw)e?§(2ws —w—u'),

where wy is the carrier frequency of the squeezed vacuum and the squeezed phase ¢,. For
a broadband squeezed vacuum, N and M are the independent of frequency w and obey the
following relation M =ny/N(N +1) (0<n<1).

The quantity 1 measures the degree of the two-photon correlation in the squeezed vac-
uum. The value n = 1 indicates an ideal squeezed vacuum, i.e., one which shows the
maximum degree of squeezing possible for a given IV, whilst = 0 corresponds to no
squeezing at all (a chaotic field). Theory predicts that the squeezed output of an ideal
parametric oscillator is characterized by n = 1.

In order to derive the master equation we perform a two unitary transform. We use
the atomic Hamiltonian (2.2) and the free field Hamiltonian (2.3) to transform to the frame
rotating with the laser frequency wy, and the interaction picture with respect to the reservoir
modes. The rotating frame is also shifted in phase by ¢;, i.e., the raising and lowering

operators which absorbs the phase factor according to the relations

S_exp(i¢y) — S—, Syewp(—igy) — Sy.

The total Hamiltonian takes the form

H,+ H(t),
where
h hQ2
HO:§AUZ+7(S++57)7 (26)
and

H(t)= ih/ {K(w)&rb(w)ei‘bb“(“_‘”)t - bT(w)S_e_w_i(“’L_‘”)}dw. 2.7
0

The master equation of the reduced density operator for the atom in a frame rotating with
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the laser frequency wy, is of the form,

d AL Q
d{? = —i| 55+ 5 (S +5-p) | - g(N +1)(S45_p+ pS.S_ —25_pSy)

%N(S_Ser 4 pS_Si — 28, pS_) — 4| M]|ei¢s e=2ilws—wr)t (§_ Q)
— y|M|e7i0s 2@ (S, pS ), (2.8)

where 7 is the spontaneous decay rate of the atom into the standard vacuum modes, wg is
the carrier frequency of squeezed vacuum, ST = |e >< g|and S~ = |g >< e| are the
atomic raising and lowering operators, respectively, with |e > and |g > are the excited and
ground state of the atom, respectively. For simplicity, we assume that the carrier frequency
is coincident with the laser frequency wy,.

The master equation (2.8) leads to a closed set of three equations of motion for the

expectation values of the atomic operators (optical Bloch equations), which are given by

dp .

d; = &0, — [A+yMsin®]p, ,

doy - _ A — yMsin®]p, — 2.9

E - _gypy + [ — 4l s ]pac T3Py, (2.9)

dp

2 = Qp —

& §.p.+Qpy — 7,

where
Pz = Peg + Pges Py = Pge — Peg and Pz = Pee — Pgg (210)

with

§o =T +yMcos®, £, =T —vMcos®, §,=¢,+¢,=2T,

where T' = y(N 4+ 1/2) and S, = $(le >< e| — |g >< g|) is the atomic inversion. We
denote by (2 is Rabi frequency and ¢, is the laser phase. We also denote by .S, = %(S_ +
S ) the in-phase (X) and S,, = (:/2)(S- — S+) out-phase (Y) quadrature components
of the atomic polarization, respectively. & = 2¢; — ¢4 is the relative phase between laser
field and squeezed vacuum modes. The modified decay rates of the X and Y components
of the atomic polarization are £, and §,, respectively, whilst £, is the decay rate of the
atomic population inversion. After a tedious algebraic calculations, the solution of optical
Bloch equation can be written as

pe = |Ru(t) = ER2(t) — (€5 — aﬁ)%s(t)]f)z(o) +a [(fm +&,)R3(t) = Ra(2) | p, (0)

t
+ aQRs(t)p, (0) — ayQ / R (t)dt, 2.11)
0
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by = B[Ralt) — (6 + €00 (0
+ |10 - Relt) + € - 08— 2 Ra(0)] ,0

" [mgﬁ@mg(t)—%(t)} .00 | t [m@) e, + R0 at,212)

p. = Ra(t)2p, (0) + Q[w) e, +§z>ére3<t>]py<o>
n [(si S ORa(t) — € R(0) + %(t)] p.(0)

o k o 2_ 2
' [w) £ Rall) + (& Q)%S(t)} dt, 2.13)

where R4 (t), R2(¢) and R3(¢) are given by

Ri(t) ) potts(ts — po) gy — ps) apa(pe — 1)\ [exp(py(t))
Ko@) | =5 | m—n ui = n3 13— it cap(pa(1) |
R3 (t) M3 — Ho gy — p3 Mo — My exp(,ug)(t))
(2.14)
where
D = (g — po)(po 7#3)(#37:“1)’
a = A+v|M|sin®, =A-~v|M|sind,
X
— A1/3 Bl/3 _ 71
/,Ll + 3 9
s = @Yy ey

where A and B are given by

q ¢  p? q ¢?  p? X?
s TV T 2 1L T PR

XXy 2X}
= X3-— =L X, =4r
q 3 3 =+ o7 1 )
Xy = 5?4+ 0%+ A% -2 M|?,
X3 = 2I'(T? + A% — 2| M|*) + Q*(T + yM cos ®) .

3 Entanglement

The entanglement can be described by the linear entropy or the von-Neumann entropy.

The most prominent choice of pure state entanglement measures is the von-Neumann en-
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tropy

S (pA(F)) = —tr (pA(F)) In pA(F)) )

of the reduced density matrix, often simply called the entanglement E(a) = S (p A F))
of the pure state |a >. We work with the linear entropy which is convenient to calculate,

which is given by

Sa(t)=1—tra (p5()) , 3.0

which ranges from O for a pure state to 1 for a maximally entangled state and ¢4 denotes
the trace over the subsystem A. The linear entropy is generally a simpler quantity to cal-
culate than the von-Noumann entropy as there is no need for diagonalization and can be
considered as a very useful operational measure of the atomic state purity.

Supplemental to the analytical solution presented in the above section for the quantum
entropy, we shall devote the present section to analyze the numerical results of the quantum
entanglement. Here we would like to point out that in order to ensure an excellent accu-
racy, the behavior of the function S4(t) has been determined with great precision, where
a resolution of 103 point per unit of scaled time has been employed for regions exhibiting
strong fluctuation. For the case A\t = 0, we get almost zero values for the quantum entropy

which means a pure state (see figure 3.1). Experimentally it is well known that the quantity

Figure 3.1: The quantum entropy S (t) as a function of the scaled time At.

which is often measured; is the probability of the atom staying in its initial state such as the
system is detuned from exact resonance. In figure 3.2 we have plotted the linear entropy
for the present system. It is remarkable to point out that, the first maximum of the linear
entropy at t > 0 is achieved in oscillating way. Also it is noticed that in different values of

N, we see a gradual decrease in the amplitudes of the Rabi oscillations.
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An alternative approach, if we wish to discuss the temporal behavior of the atomic
Wehrl density S, (w/2,m/4,t) associated with a particular preparation of the initial state
of the atom and the field, we must compare its behavior with the temporal behavior of the
linear entropy.

Figure 3.1 displays the evolution of the linear entropy when the mean photon number
7 = 25. In this case the maximum value of the linear entropy S4 is given by 1, in general
we can say 0 < S4 < 1 and the maximum value is achieved just after the onset of the
interaction time goes on, then the linear entropy attains its minimum value, so the field and
the atom return to the pure state.
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Figure 3.2: The marginal distribution of the atomic Wehrl density S against scaled time At and ®
of a two-level atom interacting with field initially in correlated two-mode squeezed vacuum state for
A=x=0@0=¢=pg=0,0)0=0¢=0,05=7/3, ()0 =7/2,¢p =7/4, o5 =0 and
DO=7/2,p=7/4, pg =7/3

In figure 3.2, the marginal distribution of the atomic Wehrl density S¢ against the scaled
time At and ®. We consider the initial state of the field is a two-mode squeezed vacuum
states. The effcet of the parameter (g is observed in figure 3.2b. The symmetric spliting
observed in figure 3.2a is no longer exist once the superposition parameters 6 and ¢ are
taken into account (see figures 3.2c and 3.2d).
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4 Summary

The quantum linear entropy has been calculated and examined computationally for the
model of a single two-level driven by an off-resonant driving laser field and in the presence
of a broadband squeezed vacuum reservoir. Regions of entanglements clue are identified
for some parameters.
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