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Abstract: We obtain the bound energy spectrum and the correspondingrajezed hypergeometric wave functions of the Dirac
equation for modified-Hylleraas potential under spin arelpgespin symmetry limits within the framework of the Alhaidformalism.
This is accomplished by approximating the spin-orbitahten the Dirac equation rather than the orbital term in theultew
Schr?dinger-like equation using the modified parametmegaization of the Nikiforovmethod.
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1 Introduction potential including Coulomb-like tensor potential under
spin symmetry for any spin-orbit and the wave functions

Within the frame work of the relativistic Dirac equation, and the corresponding energy eigenvalue have been

the concepts of exactpseudospin symmetry occurs whenalculated using the improved approximation scheme for

the Lorentz scalar potentialSr) and the vector the centrifugal terrd®L2 . Different authors have found
potential/(r) are equal but opposite in sign 5)=-V(r).  the bound state energy spectrum of some physical
However, approximate pseudo spin symmetry is when thequantities whose behaviour depends on the behaviour of
sum of the potential IS the system near the singularityq]. The energy spectrum
2(r)=8r)+V(r)=Cps=Cons. #0  [1,2]. = The  for instance, depends strongly on the angular momentum
pseudospinsymmetry is used to establish effective shellesulting from-3 singularity of the orbital term even for
model Bl. On the olther hand, exact spin symmetry ar'seshigh excited ;tatesl[?]. However, becausel is too

If thescalar potential(r) and vectorV(r) are equal i.e singular, the validity of such approximation is limited to

=V .However, in nuclei the difference very few of the lowest energy states. In order to extend

goitr?nstlarﬁrge)ztr: \i/s(rr)el_eiggt:incsm:es%%??l‘é gen[ill]. nIQr? the approximation to higher energy states, Alhaida§ |

pIn sy yist . | : Y Y for the first time evaluated the Dirac equation with
authors have  investigated the Dirac eq'.“'at'oncoupling to 1 singular potential for all angular
approxmately V.V'th spin and pseudospin symmetries f.ormomenta.Novvr the solution of Dirac equation with
different po'gentlal models such as the H!Jlthen pOtentlalHyIIeraas potential is very difficult to evaluate because of
[6], generalized Morse potential]j the Dirac-Hulthen . . Vo(ate)

problem PB], Hulthen potential including Coulomb-like the nature of its potentiaV/(r) = ?b+eAr> .wherea, bare
tensor potential&ﬂ, the Woods-Saxonl[0], Relativistic  the Hylleraas parameters with # b Moreover, this
Morse potential 11] and others 12. The bound state potential is singular at = ro , whereb = —e*'0 | and the
solution of the Dirac equation under spin and pseudospirsingularity is r- type which is compatible with
symmetries have been obtain using various methods sucR|hajdari's approach. Nevertheless, with the formalism of
as the supersymmetric quantum mechanics (SU3S) [ pjrac equation proposed by Alhaidariiq and the

the Nikiforov-Uvarov method14] and others 15]. kot generalized parametric Nikiforov-Uvarovmethod, we
[16]has investigated the Dirac equation with Hyperbolical
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attempt to find analytical approximate solution of Dirac where By, is the normalization constant and the weight
equation with Hylleraas potential including the energy functionp(s) satisfy the condition

spectrum and the corresponding wave functions within

spin and pseudospin limits. Since Hylleraas proposed this (a(9p(9) = 1(s)p(9), (8)
potential P5 no much work has been reported on the : )

bound state solution. Recently, we first attempt to report! "€ requirect for the NU method are defined as

on the bound state solution of this potentia6]. In this A=kt (s 9)
paper, we are motivated by this success and attempt to ’

solve the modified Hylleraas potential under spin andThus, the determination &fin Eq. (5) is the necessary step
pseudospin symmetry using the parametric NU methodin the calculation oft(s) for which the discriminant of the

The results obtained in this work whem~ —1 , or  square root in Eq. (5) is set to zero. The new eigenvalues
equivalently,ro = 0 is more accurate over a wider range equation now takes the form

as claimed by Alhaidari 7] The organization of the
paper is as follows. In section 2, we review the NU n(n—l)dzd(S)
method. Bound state solution of Dirac equation is A =A,=—nt'(s)— ds® ,n=0,1,2 (10)
presented in section 3.Finally; we give a brief conclusion 2
in section 4. and its derivative is negative which is the necessary
condition for bound state solutions. The energy
eigenvalue is obtained by comparing Egs. (9) and
2 Parametric Generalization of (10).The parametric generalization of the NU method that
Nikiforov-Uvarov M ethod is valid for both central and non-central exponential-type
potential has been proposetd]. We use the parametric
The concept of NU method #]] was proposed to solve the generalization of the NU method as
second-order linear differential equation by reducingit t P | ar—ars V(S )
a generalized equation of hypergeometric-type of the form—ge™ + si=a2g —as - + S o392 [~ 8157+ &25— &3]W(s) =0,
(11)

d*¥(s) | T(s) d¥(s) , G(9) W(s) =0 (1)  Now comparing Eq. (11) and Eq. (1), we obtain the
ds? o(s) ds 0?(s) ’ following parametric polynomials
where the prime denote the differential with respect to T(s) = a1 — azs, (12)
s,0(s),d(s) are polynomials at most second degree and
7(s) is the first-degree polynomials. The solution of Eq.
(1) is obtain by using a common ansatz for the wave o(s) =s(1—ass), (13)
function as
| ¥(E = (9o 2) 5(9) = &+ &5 &, (14)
Whlch_ reduces Eqg. (2) into a hypergeometrlc-typeSubstituting Egs. (12 - 14) into Eq. (7), we find
equation,
— 1/2
2y (s dya(s 11(S) = a4+ ass=+ [(ag — a3k )S? + (a7 + ki )s+ ag]Y/2,
o9 T2 4 19 sy =0 @ 15)

where

where¢ (s) is defined as a logarithmic derivative [14]
as=3(1—a1),05 = 3(02— 203), ds = 02 + &1, a7 = 20405 — &2, 05 = AZ + &3,

¢'(s) _ m(s) @ | _ o (16)
#(s) o(9)’ We qbtam the parametric. from the condition that the
function under the square root should be square of a
we considert(s) and1(s) for the NU method as polynomial
I_ % r_ % ke = —(a7+ 2a3ag) + 2,/asag, 17
ns) = 02 Ti\/(az T)2_5(3)+k0(s)’ ) + = — (a7 +20a308) + 2,/0g09 (17)
where
Og = Q307+ a§ag+ Og, (18)

1(s) = T(s) +271(s), (6) .
oo , Hence, thet(s) in Eq. (15) becomes
and the other wave function is the hypergeometric type
function whose polynomial solution satisfies the T(S) = a4+ ass— [(v/dg + 03+/0g)s—\/ag],  (19)
Rodriques relation
B gn for the negative_ values
_°on X 40
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Thus, from the relatiorg(s) = 7(s) + 2m1(s) , we have

T(s) = a1+ 204 — (a2 — 205)s— 2[(\/09 + O3,/0lg)S— /0lg),
(21)
whose derivative must be negative beginequation

T'(s) = —2a3— 2(\/dg + 03,/03) < 0, (22)

where o is the Pauli matrices andis the 2 x 2 unitary
matrix. The total angular momentum operaicand spin
orbit K = (o.L+1) , where is orbital angular nucleon
commute with Dirac Hamiltonian. The eigenvalues of
spin-orbit coupling operator ar& = (j + %) > 0 and
K=—(j+ %) < 0 for unaligned spinj = | — % and the
aligned spinj =1 + % respectively. The complete set of

Solving Egs. (8) and (9), we obtain the parametric energyth€ conservative quantities are denoted(as<, j,I,m)

equation as
azn+n(n—1)az— (2n+1)as+ (2n+ 1)[/0g + a3/Tg) + a7 + 20308 + 2,/Ag0lg = 0,
The weight functiorp(s) is obtain as #)
P9 =M (1-am B W (24)
and together with Eqg. (9), we obtain
a8 =R E TV ong (25)
where
010 = 01+ 204+ 2, /0sg, (26)
011 = Oz — 205+ 2(+/0g + 03\/0g), (27)

andP,ﬁ””ﬁ> (s) are the Jacobi polynomials. The other part of

the wave function is obtained from Eq. (4) as

g, 013
¢(s) = s™2(1—ags) M2 (28)
where

O12 = Q4+ /g, (29)
013 = 05— (/09 + 03+/0g), (30)

Thus, the total wave function becomes

a 191 4

W(S) = Nos™2(1— cag) 22 6 B0 0 (1 o0,
(31)

whereN, is the normalization constant.

3 Formulation of the problem

The Dirac equation of a single nucleon of rest mhks
scalar potentialS(r) and vector potentiaV/(r) (in the
relativistic unit(h=c = 1) is [20]

[a.p+B(M+Sr)|¥(r) = [E-V(r)]¥(r),

whereE is the relativistic energy of the system apd=
—il is the three dimensional momentum operatognd
B are the 4 x 4 Dirac matrices defined as

a=(5¢)e=(69).

(32)

(33)

Thus, the Dirac spinors can be written according to the
radial quantum number and spin-orbit coupling number
as follows:

1 F(r)  Y[y(6.9)
”“WZF<mmm ﬁmam> &

whereF (r) is the upper component ar@(r) is the
lower component of the Dirac spinors amd is the
projection of the angular momentum on the z-axis and
I(1+1)=k(k+1),I(1+1) = k(k — 1) . On substituting
Egs. (33)and (34) into Eq. (32), we obtain two coupled
deferential equations for the upper and the lower radial
wave functionFy (r) andGnk (r) as

d «

(a—?)GnK(r): (M —Enk + Z(r))Fnk (1), (35)
d «k
(EJFF)F”K(” = (M+En —A(r))Gnk(r), (36)
where
A(x) =V(x) — S(x), (37)
Z(x) =V(x) + S(x), (38)

EliminatingFnk (r) andGpg (r) from Eq. (35) and (36), we
obtain the following second Schr?dinger-like differehtia
equations for the upper and lower components of the Dirac
wave equation as

o _ Kk o)
{(Gz —=77=) = M+ Enc = A(N]IM — Enx + Z(N)] + w7077 e (1) = 0,

d5(n) ( d

(&~ <50) — M+ Enc — A(MD)]IM — Ene + Z(1)] + ezt }Gue(r) = 0,
(40)
whenZ(r) = 0 (pseudospin symmetry) with,« # M and
when A(r) = 0 (spin symmetry) withEpx # —M .
Equations (39) and (40) are the Schrodinger-like equation
with coupling to ther—lz singular term satisfyindmnx (r)

andGy (r) respectively. For spin symmetﬂf(# =0,.e,
A(r) =Cs=cong., Eqg. (37) turns into

(& — UGY) — (M + Ene — Co)Z(r) + EZ — M2+ Cs(M — Eni) }Fik (1) =0,

—~

Similarly, the pseudospin symmetry requ
i.eZ(r) =Cps=cond., Eq. (40) becomes

& KD (M~ Ene +Cps)A(r) + E3 — M2 — Cps(M + Ene) } G (1) =0,

(42)

{

—
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The Schrodmger like equation of Egs (41) and (42)the positive energy Scbdinger-like equation of Eq. (46)
coupling with 2 singular orbit term under spin and takes the form
pseudospin symmetrles have been studied extensively i in,

recent times [21]. However, the limitation of this equation 'Z;z(s) t 5o d Poisl 71z~ (A £9)F + B’s— CIFnc(s) =0,
is that ther —2 orbital term is too singular and the validity (47)
of such approximation is limited only to very few of the where

lowest energy eigenstate4?. In order to extend the AS = k%4 B2,

approximation to a wider energy spectrum, Alhaidas][ S_ 5.2 . 2

approximate the less singular term distributibrin the B®= 2"~k - p(a+1),

first order Dirac equation (35) and (36). This oS 162 E2, — M? 4 Cs(M — Epk)
approximation of thel orbital term in the first order =klk+1,e7=] n2 J
differential equation is less singular since it goes Iike Vo

and not like4 . Now approximating th spin-orbit term B*= 02 [Enk +M —Cg] (48)

in the Dirac' equation of Egs. (35) and (41) by a singular ) ) ]
function W(r) i.e. W(r) ~ ! resultsin the following ~Comparing Eq. (47) with Eq. (9), we obtain
second-order differential equations for spin and

2
pseudospin adl[] a1 =0,81=A—¢%,
{F_ KW ( ) dr _(M+EnK_CS)V(r)+EnK 032—1,(?3=Cs, (49)
and from Eqgs. (16), (18), (26 - 27) and (29 - 30), we further
~M2+Cs(M —En)}Fuc(r) =0, (43)  3piromEas. (16), (18), (26-27)and (29-30)
and
d dw(r) =1e 8:} CS,a9 = A+ B +C5— €2,
{m— W2 (r) —k ar + (M — Enc +Cps)V (1) + E& AR R
1 1
a10=1+2/>+Cs,a :72+2(m7\/—+03),
~M? = Cps(M + En) } Gk (1) =0, (44) * ano
1 1
respectively. The proper approximation for? is not =5+ 7 +C% 013* — (VA B+ Co -2 \/—+Cs (50)
simply W2(r) but it also involves the derivativ%")  |n addition, the energy eigenvalue equation can be

which gives the supersymmetric foM#(r) =W'(r). The  obtained from Eq. (21) as
proper approximation was introduced recently by

Alhaidari [18, 22] as o n (2n+1)(VAST BS T o g2 /%ﬁcs)

K(k+1)

5 = K2W2(r) 7 kW/(r) (45) L i
—B°—2(Z+C° +2\/(— +Cs)(AS+BS+Cs—¢2) =0,
In this study we considén(r) = % whereb = —1 4 4 (51)
which is a modified form of the Hylleraas potential under By substituting the explicit values ¢@?, €2, AS, BSandCS,
investigation. we obtain the energy spectrum for the deformed Hylleraas
gg;%nggl in the Dirac theory for the spin symmetry limit

4 Results and Discussion EZ, — M2+ Co(M — Eny)

n2

ﬂ/%+K[K+1]7K+V—Z[EHK+M705](a+1)77
The spin symmetry arises from the condm%} =0or
A(r) = Cs = congt. [22] then Eq. (9) becomes +2\/<%+K[K+1])< Vg imocy (B MHGM B

—n 7n+(2n+1)(¢'\7/ [Enk +M—Cg — [ ]

4.1 Spin symmetry Limit

nZ
a2 Kk2n2en 261" V(M +Enx — e : .
{W_E(enrf]—l)?_(gn'z—l)z_ oM+ ('Z;,_Ci))(aJr ) On the other hand, to find the corresponding wave
function, we find from Eq. (31), the functions

+E2, —M? 4+ Cs(M — Enk ) }Fnk (1) = 0,

1,
(46) Fi (1) = N (€77 = 1) 27 FHlkt
o -
We have takeWV (r) = V?é,?j_l)> as the modified Hylleraas 7\/ VOa[EnK+M oy M )
potential. If we define the new variabde= €1" — 1, then (e n?

(@© 2014 NSP
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1 . o . -
2F(=nn+2y/> +K[K+1 Table 1. Energies in the Spin Symmetry Limit fon =
2F1( g Hri+] —0.05fm 1M = 1fm1.Cs = 5fm 1 Vp — —05fm1a —

—1fm1
Voa Eéc — M2 +Cs(M — Enx) T Tnk<0] (] T ' T
_ - _ _ . , ) | Ew(fm™) | nk>0 1 (1)) | Em(fm™)
2\/ n2 [Enc +M -G = n2 I+l Ip; | 0.500496102 11 | 1p; | 0501270302
2| 1-3 | 1ds | 0500546961 1.2 | 1d; | 0501607882
1 _ . 3| 1-4 | 1f; | 0500578667 1,3 | 1fs | 0.501829528
2\[z Tk [K+1]+1;1-¢€") (53) 4 1,5 1g§ 0500600301 1,4 | 1g; | 0501985253
Finally, the lower spinor components of the Dirac equation| © | 272 | 2Py | 05016078821 2.1 | 2p, | 0.502512965
by’ btained f p o (3 g 4 2| 2.3 | 2ds | 0501820528 2.2 | 2d; | 0503152840
can be obtained from Eg. (36) as 3| 2-4 | 2f; | 0501985253 23 | 2fs | 0503619815
1 d 4| 25 | 29, | 0502100386 24 | 2g; | 0.503973169
Gk (r) = B M—Cy [a +KW(r)]Fn(r), (54)
NK -
whereEn« # —M + Cs and only positive energy solutions Voa EZ« — M2 —Cps(M + Enx)
are valid [L1] -2 F[M — Enk +Cpg] — | 72 J+1;
; e 2 }—FK[K—l]—I—l'l—em) (58)
4.2 Pseudospin symmetry limit 4 :

where Npx is the normalization constant. The upper

The Dirac equation for pseudospin symmetry could becomponent of the Dirac spinor can be calculated as

found from equation (44). If we make a change of
variabless = b+ €1" whereb = —1, we can rewrite Eq. . 1 d WG 5
(42) as k(1) = m[a—'( (N]Gnk(r), (59)
2
4G (9) s dGn(s) 1 [—(APS — £2)< whereEn # M + Cps and only negative energy solution
ds? s(s+1) ds s(s+1)2 is valid because negative energy spectrum is obtained in
the pseudospin symmetry limit®. In order to show the

+BPs—CPIGnc(s) =0, (55) improved accuracy of our work, we computed the energy
where levels for different values of the Hylleraas parameters in
APS = k2 — B2, Table 1-4. In Tables (1) and (2) we have portrayed the
ps 2 2 energy eigenvalues for various values of the quantum
BP = —2k“+k+ B (a+1), numbersh andk. As we expect the energy eigenvalues in
E2, — M2 — Cps(M + Eng) the spin symmetry limit is positive and for the pseudospin

CP=klk—1],6%=]

> ], symmetry limit is negative. In Tables (3) and (4), we have
v n reported the energy for some different valuesCgfand

2_ Yo, Cps respectively. We have obtained the relation between
B"=12IM—Enc+Cpd (56) energy and potential parametés for both of the two

psymmetry limits in Tables (5) and (6). Fig. (1) represents

'I{;Qe energy equation for the pseudospin limit can be obtai The relationship between the energy and parametey of

—n’—n+(2n+1) for pseudospin and spin symmetry limits. It is seen that if
ea E2, M2 — oM+ Ene) i the n-parameter increases, the boynd states.become more
(1) 7z M = Bnc +Cos] = 2 =4/ 7 Tklk=1]) bounded both for the pseudospin and spin symmetry
v L limits.In Figs. (2), we obtain the effects afparameter on
+K*n—Z[M7EnK+Cps]<a+l)f§ the bound states in view of the pseudospin and spin
symmetry limits.We can see bound states obtained in
+2\/(%+K[Kfl])(vif[M7EnK+CpS]7[E§K7M27C2pS(M+EnK>]):0., view of sp_in gnd pseudospin symmetries become less
n n bounded with increasing.

(57)
In order to calculate the wave functi@ (r) , we find the
functions as,

GnK(r) _ NnK(er]r _ 1)%-&-\/ %-&-K[K—l]

5 Conclusion

In this paper, we obtained the solution of the Dirac
equation for modified Hylleraas potential under the spin

E%K—Mz—Cps(MJrEnK)]
S W7 opstVEk)

(@) V;°§[M—Enx+cps]—[ p and pseudospin symmetry within the frame work of
Alhaidariformulation using the Nlkiforov-Uvarov method
1 by approximating the less singular spin-orbit angular

2F1(=n,n+2 Z+K[K_1] momentum term? . We obtain explicitly the energy

(@© 2014 NSP
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Table 2: Energies in the Pseudospin Symmetry Limit fpr=
—0.05fm L,M = 1fm1,Cps = -5fm 1 \p = 0.5fm L a=

Table 6: PSS: Energies in Pseudospin Symmetry Limitfoe=
—0.05fm L,M =1fm1,Cps= —5fmta=-1fm?

_1fm*1 Vo lp% 1d% Zf% ZS%
TTnk<0] (L) | Ew(Im D) [ ndk>0] (112]+1) | Em(fm ) -1 | -2.002816466| -2.003205136| -2.006969440| -2.004404230
T 11 | Is; | -0.501270302 0.2 0d; -0.500496102 -0.8 | -1.802559797| -1.802912948| -1.806332000| -1.804002310
2| 1.2 | 1p: | -0.501607882] 03 0fs -0.500546961 -0.6 | -1.602346043| -1.602669636| -1.605801652| -1.603667714
3 1,-3 1d§ -0.501829528 0,4 0gz -0.500578667 -0.4 | -1.402165265| -1.402463873| -1.405353448| -1.403384815
4 1,-4 1f§ -0.501985253 0,5 Oh; -0.500600301 -0.2 | -1.202010372| -1.202287583| -1.204969644| -1.203142478
1| 2-1 | 25 | -0502512965 1,2 1d; -0.501607882 0 | -1.001876173| -1.002134853| -1.004637270| -1.002932554
2| 2.2 | 2ps | -0503152840 1.3 1fs -0.501829528 0.2 | -0.801758779| -0.802001252| -0.804346625| -0.802748944
3| 2.3 | 2. | 0503619815 1.4 19, -0.501985253 0.4 | -0.601655218| -0.601883396| -0.604090305| -0.602586987
4| 2.4 |2t | 0503973160 15 " -0.502100386 0.6 | -0.401563179| -0.401778657| -0.403862563| -0.402443064
2 2 0.8 | -0.201480840| -0.201684958| -0.203658867| -0.202314321
1 | -0.001406745| -0.001600641| -0.003475596| -0.002198474|
Table 3: SS: Energies in Spin Symmetry Limit fon =
—0.05fmIM=1fm i Vy=-05fmia=—1fm1?
Cs lp% ld% Zf% Zg% .
3 | 0.501158302| 0.501277129| 0.504644008] 0.504914058 ‘
3.2 | 0.501021856| 0.501126666| 0.504094831| 0.504332772
3.4 | 0.500914183| 0.501007936| 0.503662029| 0.503874712 <.
3.6 | 0.500827045| 0.500911854| 0.503312102| 0.503504390 :
3.8 | 0.500755079| 0.500832502| 0.503023298| 0.503198770
4 | 0.500694638| 0.500765860| 0.502780871| 0.502942238
4.2 | 0.500643157| 0.500709098| 0.502574471| 0.502723836
4.4 | 0.500598783| 0.500660172| 0.502396617| 0.502535644
4.6 | 0.500560137| 0.500617563| 0.502241765| 0.502371795
4.8 | 0.500526178| 0.500580121| 0.502105721| 0.502227849 Fig. 1: SS: Energy vs.n for Spin Symmetry Limit for
5 | 0.500496102| 0.500546961| 0.501985253| 0.502100386 M=1fm1Cs=5fm1Vy=—-05fm?la=—-1fm?!PSS:

Table 4: PSS: Energies in Pseudospin Symmetry Limitrfoe
—0.05fmIM=1fm1Vy=05fmla=—-1fm1?

Cps lpg 1d§ 2fz 25%

-5 | -0.501607882| -0.501829528| -0.503973169| -0.502512965
-4.8 | -0.501705427| -0.501940535| -0.504214566| -0.502665505
-4.6 | -0.501815580| -0.502065893| -0.504487239| -0.502837779
-4.4 | -0.501940954| -0.502208579| -0.504797698| -0.503033885
-4.2 | -0.502084943| -0.502372455| -0.505154398| -0.503259142

-4 | -0.502252029| -0.502562627| -0.505568526| -0.503520583
-3.8 | -0.502448258| -0.502785983| -0.506055205| -0.503827702
-3.6 | -0.502681997| -0.503052055| -0.506635397| -0.504193642
-3.4 | -0.502965154| -0.503374414| -0.507339036| -0.504637140
-3.2 | -0.503315289| -0.503773080| -0.508210422| -0.505185856

-3 | -0.503759422| -0.504278873| -0.509318089| -0.505882444

Table 5. SS: Energies in Spin Symmetry Limit fon =
—0.05fm I M=1fm1Cs=5fmla=—-1fm1?

Vo

lp%

1ds
2

2f;
2

299

-1
-0.8
-0.6
-0.4

0.000434075
0.200456926
0.400482318
0.600510698
0.800542627
1.000578815
1.200620177
1.400667907
1.600723598
1.800789425
2.000868433

0.000478573
0.200503767
0.400531763
0.600563053
0.800598256
1.000638157
1.200683761
1.400736386
1.600797791
1.800870373
2.000957490

0.001736865
0.201828365
0.401930047
0.602043712
0.802171613
1.002316604
1.202482359
1.402673690
1.602897015
1.803161108
2.003478271

0.001837579
0.201934390
0.402041975
0.602162239
0.802297568
1.002450982
1.202626370
1.402828823
1.603065139
1.803344602
2.003680241

Energy vs.n for Pseudospin Symmetry Limit foM =
1fm1,Cps=—5fm 1 Vp=05fmta=-1fm?

Fig. 22 SS: Energy vs.a for Spin Symmetry Limit for
n = -005fmIM=1fm1Cs=5fmiVy=—-05fm1
PSS: Energy vsa for Pseudospin Symmetry Limit fon =
—0.05fm™1,M = 1fm1,Cps = —5fm1,Vp = 0.5fm™!

eigenvalues and the corresponding wave function for both
the spin and pseudospin symmetries limit. These results
are extensively new and there is no available literature to
compare it. However, with approximate choose on the
Hylleraas parameter, the energy eigenvalues of Eq. (51)
reduces to that of the Woods-SaxotQ[The wave
function  obtained in this work is the
standardhypergeometric functio@4]. Finally, as noted

by Alhaidari [L8] this analytic solution is valid to higher
excitation levels in the spectrum than the traditioral
and this result is a generalized case of the one reported in
Ref. [27].
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