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Abstract: A functional composition of the cumulative distributiomfttion of one probability distribution with the inverse culative
distribution function of another is called the transmwatimap. In this article, we will use the quadratic rank tranttion map
(QRTM) in order to generate a flexible family of probabilitjstiibutions taking Lindley-geometric distribution assthase value
distribution by introducing a new parameter that would offere distributional flexibility. It will be shown that thenalytical results
are applicable to model real world data.
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1 Introduction and M otivation

The Lindley distribution was originally proposed by Lingl23] in the context of Bayesian statistics, as a counter example
of fudicial statistics. More details on the Lindley disuitibn can be found in Ghitany et alL()].
A random variable X is said to have the Lindley distributiothypparamete® if its probability density is defined as

2

fL(x,0) = e+1(1+x)e*9X; x>0,8>0. (1)
The corresponding cumulative distribution function (€)ds:
F(x,0)=1-(1+ ee—_fl)efex,x> 0,6 >0. 2

Many authors gives generalized Linldey distribution liken®aran 27] introduced the discrete Poisson-Lindley,
Mahmoudi and Zakerzadel4] introduced generalized Lindley distribution, Bakouchaét [5] introduced extended
Lindley (EL) distribution, Adamidis and Loukad]introduced exponential geometric (EG) distribution.

Recently, Hojjatollah and Mahmoud29] introduced Lindley-geometric distribution where the @dfd pdf of this
distribution are given by

1— (14 )e

Fe(x0,p) = X>0,0>00<p<l, 3
L6040.0) = T e e p (3)
and
fLa(x,0 )—9—2(1— )(14x)e |1 (1+ﬂ)e—9X -’ (4)
LG(A 7p - 6+1 p p 6+1 ’

respectively. In this paper, we introduce a new lifetimetrisition by transmuted and compounding Lindley and
geometric distributions named transmuted Lindley-geoimeéistribution. The concept of transmuted explained ia th
following subsection.
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1.1 Transmutation Map

In this subsection we demonstrate transmuted probabiltyilution. LetF; and F, be the cumulative distribution
functions, of two distributions with a common sample spdde general rank transmutation is defined as

Graz(U) = Fa(Fy *(U)) andGres(u) = Fa(F; *(u)).
Note that the inverse cumulative distribution functiorodksown as quantile function is defined as
FY(y) = infuer{F(x) >y} fory e [0,1].
The functionsGgi2(u) andGgp1(u) both map the unit intervadl = [0, 1] into itself, and under suitable assumptions are

mutual inverses and they satigBgij(0) = 0 andGrij(0) = 1. A quadratic Rank Transmutation Map (QRTM) is defined
as

Gri2(U) =u+Au(l—u),|A| <1, (5)
from which it follows that the cdf’s satisfy the relationphi
Fa(x) = (14 A)Fa(x) = AF1(x)? (6)
which on differentiation yields,
fa(x) = f1(}) [(1+A) — 2AF(X)] @)

where f1(x) and fy(x) are the corresponding pdfs associated with Egfx) and F,(x) respectively. An extensive
information about the quadratic rank transmutation mapvisrgin Shaw et al.31]. Observe that aA = 0 we have the
distribution of the base random variable. The following feenproved that the functiofy(X) in given (7) satisfies the
property of probability density function.

Lemma: f2(X) given in (7) is a well defined probability density function.

Many authors dealing with the generalization of some wellewn distributions. Aryal and Tsokog][defined the
transmuted generalized extreme value distribution ang #tedied some basic mathematical characteristics of
transmuted Gumbel probability distribution and it has bebserved that the transmuted Gumbel can be used to model
climate data. Also Aryal and Tsokog&][presented a new generalization of Weibull distributioflezhthe transmuted
Weibull distribution. Recently, Aryal (2013) proposed astddied the various structural properties of the transthute
Log-Logistic distribution, and Khan and Kindly] introduced the transmuted modified Weibull distributiomigh
extends recent development on transmuted Weibull digtoibloy Aryal et al. ], Merovci [19],[20],[21]introduced the
transmuted Rayleigh distribution, transmuted generdliRayleigh distribution, transmuted Lindley distributiand they
studied the mathematical properties and maximum likelihestimation of the unknown parameters.

1.2 Transmuted Lindley Geometric Distribution
In this section we studied the transmuted Lindley geomé€fiics) distribution. Now using%)and @) we have the cdf of

transmuted Lindley-geometric (TLG) distribution
1—(1+2)e o
1+/\—/\< U+ 5.0 )] (®)

1— p(1+ 2 )e o

1— (14 g&5)e o
X,0,p,A) = x

whereA is the transmuted parameter. The corresponding probabéinsity function (pdf) of the transmuted Lindley-
geometric is given by

frie(x.0,p,A) = fLa () [(1+A) — 2AFe(X)]
2

_ 62 —Ox 2 — Ox N
= e+1(1—p)(1+x)e [1—p(1+m)e ]
- 1— (142 )e
x{(1+/\) 2A <1—p(1+99—+xl)e9>< , 9)
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respectively.

Figure 1 and figure 2 illustrates some of the possible shafpee pdf and cdf of TLG distribution for selected values
of the parameter8, p andA, respectively.
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Fig. 1: The pdf’s of various TLG distributions.
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Fig. 2: The cdf’s of various TLG distributions.
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The reliability function(RF) of the transmuted Lindley-geometric distribution is dextbby Ry g (x) also known as
the survivor function and is defined as

Rric(X) = 1-Fric(X)
1— (14 g%)e & 1—(1+2Z)e ™
g ey, (0o ) | (10
1- p(1+9—+1)670X 1-— p(1+ 9_+1)679X

Figure 3 illustrates some of the possible shapes of thexalrfuinction of transmuted Lindley geometric distributifam
selected values of the paramet@rg andA, respectively.
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Fig. 3: The survival function of various transmuted Lindely georicatistributions.

It is important to note thaRt c(X) + Fric(X) = 1. One of the characteristic in reliability analysis is the daizrate
function (HF) defined by

= (1)

Figure 4 illustrates some of the possible shapes of the tidaaction of transmuted Lindley-geometric distribution
for selected values of the paramet@rg andA, respectively.
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Fig. 4: The survival function of various transmuted Lindely georeatistributions.

It is important to note that the units fdw_g(X) is the probability of failure per unit of time, distance orctss.
These failure rates are defined with different choices opaters. The cumulative hazard function of the transmuted
Lindley-geometric distribution is denoted b c(x) and is defined as

: [}
M) = _in| - 3Fwne ™ o (1= (rg)e™ 12)
L-p(L+gEy)e ™ T pLs e &

Itis important to note that the units féfr g (x) is the cumulative probability of failure per unit of time sthnce or cycles.
We can show that. For all choice of parameters the distobutias the decreasing patterns of cumulative instantaneous
failure rates.

2 Statistical Properties

This section is devoted to studying statistical propewigbe (TLG) distribution.

2.1 Moments

In this subsection we discuss tihg moment for(TLG) distribution. Moments are necessary and important in any
statistical analysis, especially in applications. It carulsed to study the most important features and charaaterista
distribution (e.g., tendency, dispersion, skewness anib&is).

Theorem (3.1).
If X hasTLG (®,x) ,® = (6, p,A) then thery, moment ofX is given by the following
' rFr+i+1) [ r+i+1}
X) = A : 1 -
H) YO +1) T (8(1+1)

_Bij{(F(H—H—l) {1 (r+i+1] 6(+|+1) [1+(r+i+1}

6(j+1) "+t 8(j+1)) (j+2) 6(j+2)
] rr+i+2) r+i+2
i <(e(j+2))'“+2> [1 81112) H (13)
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where _
62(1+)\ © J 7] i 6 \'
Ao="g31 JZOI <> +1p<6+1>’
and .
262 o \'
. j
o= g3t 933 ()iena2w (gfy)
Pr oof:

Let X be a random variable with density functid®).(Ther, ordinary moment of th€¢T LG) distribution is given by

00

Mw:<w:/wu¢m

2 « -2
_9 1+)‘ / X X H)e o {1— p(1+—ex )eex] dx
0

9+1 6+1
- 2)‘62(1—p)/(x'er”rl)e“’X 1— (1+ﬂ) —0x ) 11— p(1+ﬂ) —Ox _3dx (14)
0+1 J 0+1 6+1 '
using the series expansion
w2 r(k+j)
— (15)
2 Tk
whergz| < 1 andk > 0.
Equation (4) can be demonstrated by
o BN °° [ ity O i et
MO ==grg (=) 3 (1+0p [0 x4 g Te B
B 0
A6? hd
127 - i i
{9+1ﬂ p%:Jr+DU+2m
r r r+1 X j Ox —0x |\ o—0(j+1)x
/(X —+ X )(1+ 9——1—1) 1—(1+6—_’_1)e e dx , (16)
0
also applying the binomial expression {dr+ 9+1)J where
ox . 4 /] 6\
I Nio 7 )
(1+6+1) e (|) <6+1> X (7

substituting from {7) into (16) we get
: {621+A

i -{Eta-n 5 5 (arow (5%)
(Xr+i+Xr+i+1)e—9(j+1)xdx}
{35 io.’ <'> 2w (42)

r+|+xr+|+1 1— g O e—0(j+1)xdx
9+1

= Aigl1 — Bijl2

O ~—z3

o\s
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where
LA CS 7 P L (] (8
M=t ,Z)Z)() Jup (9+1) |
162 ® 6\
Bi=gr11-P ,Zol ) (6+1) ’
I, = /(Xr+i +Xr+i+1)e—6(j+1)xdx
0
Fir+i+1) Fr+i+2)
- (e(j+1))r+i+l (6(j+1))f+i+2
_ M(r+i+1) { r+i+1]
e (G4
and

Iy = /(Xr+i +Xr+i+1) <1_ (1_|_ Ex )e—ex) e—@(j+1)xdx

! 6+1
_ Fr+i+1) [ r+i+1]_ r(r+i+1) [ r+i+1}
(8(j+ 1))+t O(i+1)] (8(j+2)++t 8(j+2))

6 Fir+i+2) r+i+2
o+1 ((G(HZ))”‘*Z) [1+ (8(] +2))} ’

thus thery, moment is given by

X) = Ba? - g(_l)j(l’jn) am% [( +)\)<91 1) 2A (291_1)}

j=0m=0

Which completes the proof .

We notice that if we puh = 0, we get thery, moment of Lindley geometric ( see Hojjatollah and Mahmo@dil2)).
Based on the first four moments of ti€LG) distribution, the measures of skewne§3pP) and kurtosisk(®) of the
(TLG) distribution can obtained as
A(@) — Ha(0) = 311(0)12(0) + 213(60)
[12(8) — pf(8)]

3 )
2

and
 Ha(8) —4ua(8)u3(8) + 6(6) Ua(6) — 3uf(6)
k(@) = L .
[12(8) — pZ(6)]

2.2 Moment Generating function

In this subsection we derived the moment generating funatf@¢TLG) distribution.
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Theorem (3.2): If X has(TLG) distribution, then the moment generating functdg(t) has the following form

Aigl (i+1) [1 i+1 }
6(j+1)—t)*? 0(j+1)-1)

Mx (t) =

. ri+1) i+1

al { (8(j+1) —t)*t [H (6(] +1>—t>}

T+ [+ i+1 }
(8(j+2)—t)*? (B(j+2)—1)

G ri+2 i+2
6+1 <<e<1+2>—t>i+2> [” (6] +2>—t>]} (18)

Pr oof.

We start with the well known definition of the moment genergfiunction given by

M (t) = E(¥) = /OmetxfTLG(x, ®)dx

6%(1+A) i —x(6—1) 0X |\ g] 7’
_W(l—p)o/(H—x)e [1—p(1+9—+1)e ] dx
2162 T e ox N
-~ 11— p)/(1+x)e x(6-1) <1—(1+m)e 9X) [1— Pl+g7)8 O dx. (19)
0

substituting from 15) and (L7) into (19) we get
M (1) = Ag [ (¢ -+ 1)e 00y
0

00

o : Ox
R i i+1\ A~ X[6(j+1)—t] _ —Ox
Bljo/(x +X )e <1 (1+—9+1)e )

Aigl (i+1) { i+1 }
(B(j+1)—t)"? (6(j+1)—1t)

. r(i+1) i+1
B"{(e(jﬂ)—t)”l {H (9(j+1)—t)}

_r(i+y i+1
(6(j+2)—t)i+1[ +(G(J'+2>—tJ

6 r(i+2) i+2
9+1<(9(j+2)—t)i+2> [H(G(HZ)—U” (20)

Which completes the proof.

3 Distribution of the order statistics

In this section, we derive closed form expressions for thfe ptither;, order statistic of th@ LG distribution, also, the
measures of skewness and kurtosis of the distribution aftterder statistic in a sample of sindor different choices of
n;r are presented in this section. L&t Xy, ..., X, be a simple random sample froffiLG) distribution with pdf and cdf
given by @) and @), respectively.
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Let X3, Xo, ..., Xy denote the order statistics obtained from this sample. Wegiee the probability density function
of X;-n, say frn(x, @) and the moments of;n ,r = 1,2,....n. Therefore, the measures of skewness and kurtosis of the
distribution of theX;.,, are presented. The probability density functiorXgf is given by

1

frn(x, @) = Brn—r+1

[F(x, @) 1-F(x ®)" " f(x ®) (21)

whereF (x, @) and f (x, @) are the cdf and pdf of th€T LG) distribution given by 8), (9), respectively, an®(.,.) is the
beta function, since & F(x, ®) < 1, forx > 0, by using the binomial series expansiorfbf F(x, ®)]""", given by

1_|:(x,q>)“*':n_r(_1)j "), 22)
[ ey ( | )[ 1
we have B
fan®) = 5 (-1 (1) [Foo @) (x, @), (23)
2, (")

substituting from ) and @) into (23), we can express the, ordinary moment of they, order statistic$., sayE(XX,,) as
a liner combination of th&, moments of théTLG) distribution with different shape parameters. Thereftire measures
of skewness and kurtosis of the distribution®#, can be calculated.

4 Estimation and I nference

4.1 Least Squares and Weighted Least Squares Estimators

In this subsection we provide the regression based methadagsrs of the unknown parameters of the transmuted
Lindley-geometric distribution, which was originally syested by Swain, Venkatraman and Wilson (1988) to estimate
the parameters of beta distributions. It can be used soneg céises also. Suppoge..., Y, is a random sample of size

from a distribution functiorG(.) and suppos¥(;); i = 1,2,...,n denotes the ordered sample. The proposed method uses
the distribution ofG(Y(;)). For a sample of size, we have

. i1
€ (601))) = gV (60)) = s T
andCov(G(Y(J)),G(Y(k))) = j(n_ K+ 1) for J <k,

(n+1)2(n+2)
see Johnson, Kotz and Balakrishnan (1995). Using the exfi@ts and the variances, two variants of the least squares
methods can be used.

Method 1 (Least Squares Estimators) . Obtain the estimators by minimizing
n J 2
Yiy— —— 24
3 (o0 -7ty) (22

with respect to the unknown parameters. Therefore in ca$& Gfdistribution the least squares estimator®op andA
, say, GLSE, PLse and)\LSE respectively, can be obtained by minimizing

(1+ & )e o [1 r ) < 1—(1+ e 9X>

n
Z ll P(1+ 2% )e b 1— p(1+ g2 )e o

92
]
n+1

with respect ta9, p andA.
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Method 2 (Weighted Least Squares Estimators). The weighted least squares estimators can be obtained by

minimizing
n : 2
J
w (- 1) (25)
gl " nt1
with respect to the unknown parameters, where

1 ~ (n+1)2(n+2)
V(G(Yj))  in—j+1)

Wj =

Therefore, in case AFLG distribution the weighted least squares estimatoi®, gfandA , say, aNLse, ﬁNLSEandXWLSE
respectively , can be obtained by minimizing

(1+ 2% )e [1 A ( 1-(1+4%) “’X)

n |
J
2. [1 Pt e T p(Lt e o

n+1

6+1 6+1

with respect to the unknown parameters only.

4.2 MAximum likelihood estimation

In this subsection we determine the maximum likelihoodneates (MLES) of the parameters of tHELG) distribution
from complete samples only. LE§, X5, ..., X, be a random sample of sirdrom TLG (6, p,A,X).The likelihood function
for the vector of paramete® = (6, p,A ) can be written as

Lf (X(i)v (D) = I'Iinzlf (X(i)v (D)
6 - é Xi 6X| 79Xi -2
5 NS {1 p(1+ )€

2 n
:( +1> (1-p"MLy(1+x)e +1
\ - 1 (1+9+1) o
></7|=1{(1+)\) 2/\<1 p(1+0+1)e_gx'>} ”

Taking the log-likelihood function for the vector of parat@es® = (6, p,A) we get

n

:IogL:2n|og6—n|og(1+9)+n|og(1—p)+§log(1+xa)—621x(i)
=1 i=
—ZZIog{l p(1 96+'1) exi]
1-(1+gpq)e ™
I (1+A)—2A 27
+izlog{ e <1 p(1+9+1)e—9x.>} 0

The log-likelihood can be maximized either directly or bylviieg the nonlinear likelihood equations obtained by
differentiating 7). The components of the score vector are given by

¢  -n n (1+;’f1)e 0%
dp 1-p £ {1 p(ljL )e*9><4}

0x; 0%
(14 8xyebx| | _Utere ™
n |:1 (1+ 9+1)e :| |:(1 p(l+ 23 ) 9Xi)2 _O

6+1

) 0% 6x;
A - (st
1— p(l-’ra—l) 0

(28)
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0 1
ol n Xe- % [(1+ 9+l) (l+9) ]
—_— = — X —2p
06 1+6 zi Zi [1 p(l+ 2% )e79Xi]
- a— 0% 1
n (1_ p) xje~ v |:(1+ 9+1) <1+0> :| B
_2/\-21 1 (14 o e 0% 1 14 6% \a6x 2 =0 29)
i= _ _ IX \a—0X
{(1+/\) 22 <1 pm%)%)} [ P(1+g71)e ]
and . .
B 1 (14 gy )e %
or 2 ' 2<l p(L+g3r)e "X‘)

5_’\:;{(1+)\)—2/\<_1 (L+grp)e % )}:O' (30)

1-p(1+ oy o )~ 6%

We can find the estimates of the unknown parameters by maxiilkalinood method by setting these above non-linear
equations 29)- (30) to zero and solve them simultaneously. Therefore, we hawusé mathematical package to get the
MLE of the unknown parameters. Applying the usual large derapproximation, the MLEP can be treated as being
approximately trivariate normal and variance-covariamedrix equal to the inverse of the expected information matr

ie. Vn(®— @) =N (o,nl 71((1’)) )

whereIA—l(CD) is the limiting variance-covariance matrix df. The elements of the 8 3 matrix| (®) can be estimated
by 1ij(®) = —Lo0p_g, 1, € {1,2,3}.
Approximate two sided 10Q@ — a)% confidence intervals fdd, p and forA are, respectively, given by

G:I:Za/z\/ li1 (é) Fjiza/z |£zl(p)
Aizﬂ/z\/%v

wherez, is the upperrth quantile of the standard normal distribution. UsRgve can easily compute the Hessian
matrix and its inverse and hence the standard errors andpdsiioconfidence intervals.

and

5 Application

In this section, we use a real data set to show that the traesihindley distribution can be a better model than one based

on the Lindley geometric distribution and Lindley distriln. The data set given in Table 1 represents the waitinggim
(in minutes) before service of 100 bank customers.

Table 1. The waiting times (in minutes) before service of 100 bankamers.
0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7
29 31 32 33 35 36 40 41 42 42
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5.0 5.3 55 5.7 5.7 6.1 6.2 6.2 6.2 6.3
6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 109 110 110 111 112 112 115
119 124 125 129 130 131 133 136 13.7 139
14.1 154 154 173 173 181 182 184 189 19.0
199 206 213 214 219 230 270 316 331 385
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Table 2: Estimated parameters of the Lindley, Lindley-geometrid tansmuted Lindley geometric distribution for the waittimes
(in minutes) before service of 100 bank customers.

Model Parameter Estimate  Standard Error£(-;x)
Lindley 6 =0.186 Q013 319.037
Lindley 6 =0.202 Q034 318.913
Geometric p= —0.242 0.5270

Transmuted 6 =0.171 0.0351 317.207
Lindley p=0.657 0.181

Geometric A = —0.954 0.192

The variance covariance matrix of the MLEs under the trarischuindley geometric distribution is computed as

X 0.001 —0.005 Q002
1(6)L= [ —0.005 0032 —0.020
0.002 —0.020 Q037

Thus, the variances of the MLE @& p andA is var(8) = 0.0012 var (p) = 0.0326 var (&) = 0.0368 Therefore, 95%
confidence intervals fof, p andA are[0.102 0.240,[0.302 1], and[—0.577,1] respectively.

Table 3: Criteria for comparison.

Model K-S -2 AIC AlCC
Lindley 0.0677 638.1 640.1 640.1
Lindley Geometric  0.0557 637.8 641.8 642
TLG 0.0017 634.414 640.414 640.664

In order to compare the two distribution models, we considéeria like K-S, —2¢, AIC (Akaike information
criterion)and AICC (corrected Akaike information criten) for the data set. The better distribution corresponds to
smaller K-S,—2¢, AIC and AICC values:

2k(k+1)

AIC =2k—-2¢, and AICC=AIC+ ,
n—-k-1

wherek is the number of parameters in the statistical mod#ie sample size antds the maximized value of the log-
likelihood function under the considered model. Also, Herecalculating the values of KS we use the sample estimates
of 6,a,a,b andc. Table 2 shows the MLEs under both distributions, Table 3wshihhe values of K-S;-2¢, AIC and
AICC values. The values in table 3 indicate that the transchliindley geometric distribution leads to a better fit than
the Lindley geometric distribution and Lindely distribuorti.

A density plot compares the fitted densities of the modelk thié empirical histogram of the observed data (Fig. 4).
The fitted density for the transmuted Linldey geometric masleloser to the empirical histogram than the fits of the
Lindley geometric and Lindley sub-models.
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6 Conclusion

Here we propose a new model, the so-called the transmutetielyigeometric distribution which extends the Lindley
geometric distribution in the analysis of data with real mogh. An obvious reason for generalizing a standard
distribution is because the generalized form provideselafigxibility in modeling real data. We derive expansions fo
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moments and for the moment generating function. The esomaif parameters is approached by the method of
maximum likelihood, also the information matrix is derivein application of the transmuted Lindley geometric

distribution to real data show that the new distribution banused quite effectively to provide better fits than Lindley
geometric and Lindley distribution.
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