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Abstract: The objective of this work is to study the Williamson fluid flavith a chemically reactive species.The governing equation
of Williamson model in two dimensional flows are construclsdusing scaling transformation under a Reynolds and Weliesg
numbers approximation. The analytic solution of the sysbémonlinear ordinary differential equations (ODES) is stwacted in the
series form by using homotopy analysis method (HAM). Théuiess of various physical parameters have been discusaptigally on
flow and concentration profiles.The result came up with theaue that the Reynolds number step up the fluid motion but dlmwvn
the concentration of the fluid. The Weissenberg number shevdistinct effects on the velocity and concentration of\fitiamson
fluid model.
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1 Introduction was demonstrated by Afify [5]. Postelnicu [6] showed the
influence of chemical reaction on heat and mass transfer

The concentration on the effects of chemical reactionby natural convection from vertical surface in porous

in the fluid has been paid to extend the research i media with Soret and Dufour effects. Hayat [7] studied
literature correspond to the chemical and bio engineerin he MHD flow and mass transfer of an upper-convected

industries. There are many investigations on chemica axvv_eII fluid past a porous shrinking sheet_wnh

Irga?::?ion éffects on fluid )q‘low in gdifferent hvsical hemically reactive species. Bhattacharyya [8] studied th

PRYSICAl - hehavior of chemically reactive solute distribution in

contexts. Most of the fluids used in daily life have a :
) . . MHD boundary layer flow over a permeable stretching
non-Newtonian behavior. The study of non'NeWton'ansheetwith suction or blowing.

fluid is important in various fields of sciences such as
biomedical engineering, environmental engineering and In recent decades non-Newtonian fluids become
chemical engineering. Das et al. [1] investigated the &ffec more important than Newtonian fluids. Many researchers
of mass transfer on flow past an impulsively startedare working on different non-Newtonian fluid models.
infinite vertical plate with constant heat flux and in the Khan [9] investigated the exact analytic solutions for the
presence of chemical reaction. Andersson et al. [2]flow of a generalized Burgers fluid induced by an
studied the diffusion of a chemically reactive speciesaccelerated shear stress. The Williamson model of
from a stretching sheet. The similarity solution of mixed non-Newtonian fluid is very much similar to the blood as
convection flow over a horizontal moving plate with it almost completely describes the behavior of blood flow
diffusion of chemically reactive species was obtained bydue to which it captivated the researcher’s attention. The
Fan et al. [3]. Kandasamy [4] studied the effects of valuable works in this dimension have constantly been
temperature dependent fluid viscosity and chemicaladded in recent years. Irene and Scarpi [10] obtained the
reaction on heat and mass transfer with variable streanperturbation solution for pulsatile flow of a
conditions. The MHD free convection flow and mass non-Newtonian Williamson fluid in a rock fracture,
transfer over a stretching sheet with chemical reactiorNadeem et al. [11] investigates the effects of heat and
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mass transfer peristaltic flow of Williamson fluid in a 2 Problem Formulation

vertical annulus, Vajravelu et al. [12] studied peristalti

transport of a Williamson fluid with permeable walls in The theory of rate processes is used to drive the
asymmetric channel, Hayat et al. [13] found the solutionWilliamson fluid model for describing the shear of a
of a Williamson fluid past a porous plate. Akbar et al. [14] non-Newtonian flow. In some cases this model predicts
calculated the influence of heat transfer and chemicathe viscous behavior of polymer solutions and
reactions on Williamson fluid model for blood flow viscoelastic suspension over a wide range of shear rates.
through a tapered artery with a stenosis. Investigatoes alsFor an incompressible fluid, the balance of mass and
investigate the Peristaltic flow of a Williamson fluid in an momentum are given by

inclined asymmetric channel with partial slip and heat
transfer [15]. The Analytical and numerical solutions of
peristaltic flow of Williamson fluid modeling an
endoscope was also obtained by Akbar et al. [16].

In last few years, the flow over a continuous
stretching surface is the significant area of study for the
investigators, as it has extensive applications in polymerpd— =DivS+ pf, (2)
extrusion, manufacturing of glass sheets, chemical t
engineering plants etc. Crane [17] was the first to consider Wherep is the densityy is the velocity vectorSis the
and examine the boundary layer flow of a viscous fluid Cauchy stress tensof,represents the specific body force
over a linearly stretching sheet. Many workers extendedand% represents the material time derivative. The Cauchy
his work in different directions. Gupta and Gupta [18] stress tensor for Williamson fluid is given by
studied the heat and mass transfer in Newtonian boundary
layer flow past a stretching sheet with suction and
blowing. Lakshmisha [19] studied the three-dimensional S=-pl+T, ®3)
unsteady flow with heat and mass transfer over a
continuous stretching surface. Wang [20] studied the
three-dimensional flow due to a stretching flat surface.T = [Lo + (Lo — o) (1— I [Y]) "y 4)
Bujurke [21] investigated the Second order fluid flow past , i i
a stretching sheet with heat transfer. Sajid [22] studied th N Which pl is the spherical part of the stress due to
Influence of thermal radiation on the boundary layer flow CONStraint of incompressibility, is the extra stress tensor,
due to an exponentially stretching sheet. Khan [23]H iS the infinite shear rate viscosifyo is the zero shear
studied the effects of slip factors on unsteady stagnatiorh@t® Viscosity[" is the time constant anglis defined as,
point flow and heat transfer towards a stretching sheet.

Yurusoy and Pakdemirli [24] classified the - 1 . 1
non-Newtonian fluids on the base of their shear stress,|y| /2 ZZV'J Vi = §n ®)
using two different approaches: (1) classical theory and b
(2) equivalence transformations. Both approaches show The 7 is the second invariant strain tensor. We
us identical results. The Lie group analysis can be foundconsider the Eq. (4), the case for whigh, = 0 and
in a simpler way using equivalence transformation. Theyry < 1. The component of extra stress tensor therefore,
investigate the special group transformations (i.e. 8gali can be written as
and spiral group transformations), three-dimensional,
unsteady, boundary layer equations of non-Newtonian _ _
fluids. Yurusoy et al. [25] obtained the Lie group analysist = [to(1— T [y]) 1]y (6)

of creeping flow of a second grade fluid. Steady-state, two dimensional, incompressible

~In this paper, our aim is to study the Williamson equations of motion including mass conservation can be
fluid flow with a chemically reactive species. Using written as

scaling transformation technique viz., Lie group
transformations. Using the symmetry our governing

DivV =0, (1)

gu ov

partial differential equations transformed into nonlinea “= | Z* _ 7
ordinary differential equations. The scaling symmetry is 0X 9y

well known to exist for boundary layer type problems

leading to useful solutions and for this reason, the specific 55 g 0p 0t 0T

form of the scaling symmetry which leaves the equationsp(UF +VF) =% T ox 0—fy (8)
invariant is determined [26-28]. The transformed % y % % y

equations are solved and analyzed with the help of

homotopy analysis method (HAM). p(Udv Jr\_/c?_v) _ 0P Oty n oty )

OX vy 9y Odx | dy

(@© 2014 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.3, No. 3, 199-205 (2014)www.naturalspublishing.com/Journals.asp NS = 201

3 Scaling Transformations

U3_9+v5_?:D(§+32TC) (10) Now, introducing the simplified form of Lie-group

Jx 0y ox%  0y? transformations, namely the scaling group of

transformation as:
WherexX is the spatial coordinate along the surfage,

is vertical to itt andv are the velocity components in the
x and y coordinatesC is the concentrationD is the  x* = &3, y* = &Py, u* = &Cu, v = Edv,U* = U, C* = £IC,
diffusion coefficient. The shear stress components are (29)
inserted into the equations of motion and the usual Substituting Eg. (19) into Egs. (15)-(17) and requiring
boundary layer assumptions are made i.e. the higheghat the equations be invariant under the transformation
order terms are retained and momentum equationyields

become b+c—a—d=0,2c—2—0,a—3b—0,4b—c—a—0 (20)

All parameters are solved in terms of paraméter
du _ou op 0%u Ju d?%u

p(U—— +V—)=——+lo—— + Hooo - (11)
ox 9y ox U0y 0y 9y a=3bc=bd=-be=b =0 21)
The associated equations for this transformation which
9P _ define similarity variables are
0)—/ =0 (12)

dx dy du dv du dC

== =—= — (22)
_@ \—,@_Ddz_é s 33Xy u -v U C
“ax T ay  0y? (13) The similarity variables and functions are
The Egs. (11)-(12) shows that the pressureyois n= X1_>;3 u=x"3f(n),v= 9ln) U=x3.Cc=09(n) (23

eliminated.The dimensional variables are given as: o X .
Substituting all these values of Eqg. (23) into the

boundary layer equations Eqgs. (15)-(17) yields the

x=Fy=fu=8v=¢p=P C- S Re— L:x/_f’we: voy=2 ordinary differential equations
(14)
Wherel is a length,V is a velocity,C, denotes the 3¢ —nf'+f=0 (24)

concentration at the stretching shédt is a Weissenberg
number and Re is a Reynolds number. By using the above

non-dimensionless parametersin Egs. (7), (11), (13) Which3 We

lead to the equations: = 46— f'f +nff —3gf' —f2+1=0 (25)
Re Re

Ju oJv

5+@=0 (15)  3yg'—3g¢ +nfe =0 (26)

The boundary conditions in Eq. (18) reduce to

du du,  dp 1% 2Wez9uc92u 16
PG tVay) = " ax T Reay T 2Reayaye. (18) F(0)=0.f()=1,9(0)=0,9(0) =1, () =0, (27)

aC 9C d%C 4 Solution of the problem
U=y +v0— Y5z (17)
y y For the two dimensional problem presented in Eqgs. (24)-
The classical boundary conditions for the problem are (26). the course of action for the HAM solution, we select

fo=1-e7.go=0,@=e" 28
U(x,0) = 0, v(x,0) = 0, u(x, ) = U(x), C(x,.0) = 1,C(x,0) =0 ° do =5 ’ (28)
(18) The initial approximation offy, go and g in Eq. (28),
For We = 0, the Egs. (15)-(17) reduce to those of satisfy the following linear operator and their boundary
Newtonian fluid. conditions
@© 2014 NSP
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The nth order deformation problems with the
d d2 d 42 corresponding boundary conditions are given by
Ly +1ll,=— 3= ———1, (29)
~dn dn? dr] dn?
L — _1] = ARy [ - 37
such that 1[Om — XmOm-1] 1 fm-1,9m-1] (37)
Ly = [cle’”] =0,L, = [cze’” +C3] =0,L3= [C4en +c5e”7] =0, (30)
wherecy, Cy, ....., csare arbitrary constants. Lo[fm— Xmfm-1] = AR2[fm_1,0m1] (38)
The following nonlinear operators are defined as:
- 20 af(n, ~
(0. ).6n.p) = 32812 2L i) 81) Lol Xnfin1] = R[22 1 (39)
- 3 02f(n,p)
N[ (1. P). 60, P)} = e =52 dm(0) =0, fm(0) = O, fim(0) = 0, An(0) = O, () =0,
= 40)
Weof(n.p) 0?f(n.p) | - 0f(n.p) (
6% an o2 +nf(n,p) an where
- Ri[fm-1,0m-1] =39 1 — N fh 1+ fm1 (41)
_ of , _ 10 Im-1 m-1 m-1
-3g(n, p)% —(f(n,p)?+1 (32)
RZ[fm—lagm—l]_ m 1"’6 f m 1-i
= ~ ~ Re
Na[f(n,p).a(n.p),@(n,p)] =3y—>—5— c;(nnz P Z’
0 _ ag(n, +n'y fifn1i—-3Y gifnai
—3q(n, p) 221 P) +nf(r1,|o)M (33) i; i;
an an
and then construct theeroth order deformation m-1
equations (42)

(1— p)L4[d(n, P) — 9o} — PAN[F (N, P),5(n, p)] =0 (34)

(1—p)L2[f(n,p) — fo] — PAN:[F (N, p),§(n, )] =0 (35)

(1— p)Ls[e(n, p) — @] — PANs[F(n, p),&(n, P), @(n,p)] =0

g(ov p) = 07 i:v(o p) = 07 F(oov p) = 1> a(ooy p) = 07 (}3(0 p) = 1»

In which p € [0,1] is the embedding parameter and is
the auxiliary non zero parameter.

20 fm(7) P,
Z)gm ;

f(n.p) =

gn,p) =

(36)

g;mmm+wﬂw

Ra[fm-1,Om-1, @n-1] = 3y 1 — 3370 0 1 i+ N 30 fidh 1
(43)
where
/0, m<1
Xm=131 m>2

According to the process defined above, it is easy to
solve the linear Eqgs. (39)-(41), one after the other in the
orderm, especially by means of any computation software,
such as MATHEMATICA.

5 Results and Discussions

The numerical computations are performed for various
values of physical parameters involved in the Eqgs. (31)-
(33). The Reynolds numbéte, Weissenberg numbé&ye
and the reaction rate paramejgrave been encountered in
this problem.

In Fig. 1 and Fig. 2,f function is related to the
horizontal-component of the velocity. Fig. 1 shows the
changes on functiorf at different values of Reynolds
number. The boundary layer becomes thicker when
increase the values of Reynolds number. Fig. 2 also shows
the similar behavior. But when we increase the
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Fig. 1: The velocity profilesf (n) for various values oRe (We = Fig. 2: The velocity profilesf (n) for various values ofVe (Re =
2) 0.3)

Weissenberg number, the change in boundary layel
thickness is minute as compare to Fig. 1.

In Fig. 3 and Fig. 4, functiorg is related to the
vertical-component of velocity. From Fig. 3 we observed
that the increase in the values of Reynolds number alsc
increases the vertical-component of velocity in domain.
Similarly Fig. 4 shows that an increase in Weissenberg
number give rise to the vertical-component of velocity in

domain, but this increase is minute as compare to the Fig e s e E
3' 0 2 4 6 8 10

Fig. (5)-(7), shows the variation of concentration !
profiles for various values ofy, Re and We The
concentration profiles for different values pkeepingRe
and We constantan can be observed from Fig. 5, an
increase iny increasees the boundary layer thickness of _ _ _
concentration profiles. Fig. 6, shows that the an increasé&i9- 3: The velocity profilegy(n) for various values oRe (We =
in Re decreases the boundary layer thickness of2)
concentration profiles. Similarly Fig. 7 shows the same
behavior as compare to the Fig. 6. It is also evident of the
decrease in the boundary layer thickndsandWe both
show the decrease in concentration profile because the
both are not directly involved in the Eq. (26).

For the solution of Williamson fluid model with
chemical reaction and to certify the convergence of the o
series solutions, the most suitable valuehds required.

Fig. 8 shows that the velocity profileign) converges at
—0.3< h< 04 . Fig. 9 expresses the velocity profiles
g(n) converges at-0.1 < h < 0.3. Fig. 10 displays the
concentration profileg(n) converges at-0.1 < h < 0.3.

6 Conclusions

The present paper is modeled the chemically reacting
Williamson fluid flow over a stretching sheet. The Fig 4 The velocity profileg(n) for various values oiVe (Re =
governing equations are transformed to ordinary0~3)
differential equations with the help of scaling
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Fig. 5: Concentration profileg(n) for various values of (Re=
0.1,We=1)
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Fig. 6: Concentration profileg(n) for various values oRe (y =
LWe=2)
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Fig. 7: Concentration profilegp(n) for various values ofVe
(Re=03,y=1)
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Fig. 8: Theh curves for the velocity profile$(n)
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Fig. 9: Theh curves for the velocity profileg(n)
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Fig. 10: Theh curves for the velocity profileg(n)
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transformation. The homotopy analysis method has beefe2] M. Sajid, T. Hayat, International Communications inatle
employed to obtain the analytical solution of the and Mass Transfed5(3), 347-356 (2008).

governing problem. The influences of the pertinent[23] N.A. Khan, M. Jamil, N.A. Khan, Heat Transfer Research
parameters are investigated on the velocity and  43(8), 779-794 (2012).

concentration. The investigation came up with the[24] M. Yurusoy, M. Pakdemirli, International Journal of No
following results. Linear Mechanics4, 341-346 (1999).

e The Reynolds number accelerates the fluid motion buf25] M Yurusoy, M.. Pakdemirli, International Journal of ho
decelerates the concentration of the Williamson fluid. Linear Mechanics6, 955-960 (2001). _

e The Weissenberg number has the diverse effects on th@G] M. Pakdemlrll, International Journal of Non-Linear
velocity and concentration of the fluid as it decreases thei27] me%h;’ggizr'li7?;’19f0ﬁ1r22|2)6f Avolied Mathematicad
horizontal component of velocity(n) and increases the 133-148 (1993') PP ’
\q/;’r;l)cal velocity functiorg(n) and concentration function [28] M. Pakdemirli, International Journal of Engineering&hce

e The concentration of the fluid is enhanced due to 32, 141-154 (1994).

reaction rate parametgr
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