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Abstract: The objective of this work is to study the Williamson fluid flowwith a chemically reactive species.The governing equations
of Williamson model in two dimensional flows are constructedby using scaling transformation under a Reynolds and Weissenberg
numbers approximation. The analytic solution of the systemof nonlinear ordinary differential equations (ODEs) is constructed in the
series form by using homotopy analysis method (HAM). The features of various physical parameters have been discussed graphically on
flow and concentration profiles.The result came up with the outcome that the Reynolds number step up the fluid motion but slow down
the concentration of the fluid. The Weissenberg number show the distinct effects on the velocity and concentration of theWilliamson
fluid model.
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1 Introduction

The concentration on the effects of chemical reaction
in the fluid has been paid to extend the research in
literature correspond to the chemical and bio engineering
industries. There are many investigations on chemical
reaction effects on fluid flow in different physical
contexts. Most of the fluids used in daily life have a
non-Newtonian behavior. The study of non-Newtonian
fluid is important in various fields of sciences such as
biomedical engineering, environmental engineering and
chemical engineering. Das et al. [1] investigated the effect
of mass transfer on flow past an impulsively started
infinite vertical plate with constant heat flux and in the
presence of chemical reaction. Andersson et al. [2]
studied the diffusion of a chemically reactive species
from a stretching sheet. The similarity solution of mixed
convection flow over a horizontal moving plate with
diffusion of chemically reactive species was obtained by
Fan et al. [3]. Kandasamy [4] studied the effects of
temperature dependent fluid viscosity and chemical
reaction on heat and mass transfer with variable stream
conditions. The MHD free convection flow and mass
transfer over a stretching sheet with chemical reaction

was demonstrated by Afify [5]. Postelnicu [6] showed the
influence of chemical reaction on heat and mass transfer
by natural convection from vertical surface in porous
media with Soret and Dufour effects. Hayat [7] studied
the MHD flow and mass transfer of an upper-convected
Maxwell fluid past a porous shrinking sheet with
chemically reactive species. Bhattacharyya [8] studied the
behavior of chemically reactive solute distribution in
MHD boundary layer flow over a permeable stretching
sheet with suction or blowing.

In recent decades non-Newtonian fluids become
more important than Newtonian fluids. Many researchers
are working on different non-Newtonian fluid models.
Khan [9] investigated the exact analytic solutions for the
flow of a generalized Burgers fluid induced by an
accelerated shear stress. The Williamson model of
non-Newtonian fluid is very much similar to the blood as
it almost completely describes the behavior of blood flow
due to which it captivated the researcher’s attention. The
valuable works in this dimension have constantly been
added in recent years. Irene and Scarpi [10] obtained the
perturbation solution for pulsatile flow of a
non-Newtonian Williamson fluid in a rock fracture,
Nadeem et al. [11] investigates the effects of heat and
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mass transfer peristaltic flow of Williamson fluid in a
vertical annulus, Vajravelu et al. [12] studied peristaltic
transport of a Williamson fluid with permeable walls in
asymmetric channel, Hayat et al. [13] found the solution
of a Williamson fluid past a porous plate. Akbar et al. [14]
calculated the influence of heat transfer and chemical
reactions on Williamson fluid model for blood flow
through a tapered artery with a stenosis. Investigators also
investigate the Peristaltic flow of a Williamson fluid in an
inclined asymmetric channel with partial slip and heat
transfer [15]. The Analytical and numerical solutions of
peristaltic flow of Williamson fluid modeling an
endoscope was also obtained by Akbar et al. [16].

In last few years, the flow over a continuous
stretching surface is the significant area of study for the
investigators, as it has extensive applications in polymer
extrusion, manufacturing of glass sheets, chemical
engineering plants etc. Crane [17] was the first to consider
and examine the boundary layer flow of a viscous fluid
over a linearly stretching sheet. Many workers extended
his work in different directions. Gupta and Gupta [18]
studied the heat and mass transfer in Newtonian boundary
layer flow past a stretching sheet with suction and
blowing. Lakshmisha [19] studied the three-dimensional
unsteady flow with heat and mass transfer over a
continuous stretching surface. Wang [20] studied the
three-dimensional flow due to a stretching flat surface.
Bujurke [21] investigated the Second order fluid flow past
a stretching sheet with heat transfer. Sajid [22] studied the
Influence of thermal radiation on the boundary layer flow
due to an exponentially stretching sheet. Khan [23]
studied the effects of slip factors on unsteady stagnation
point flow and heat transfer towards a stretching sheet.

Yurusoy and Pakdemirli [24] classified the
non-Newtonian fluids on the base of their shear stress,
using two different approaches: (1) classical theory and
(2) equivalence transformations. Both approaches show
us identical results. The Lie group analysis can be found
in a simpler way using equivalence transformation. They
investigate the special group transformations (i.e. scaling
and spiral group transformations), three-dimensional,
unsteady, boundary layer equations of non-Newtonian
fluids. Yurusoy et al. [25] obtained the Lie group analysis
of creeping flow of a second grade fluid.

In this paper, our aim is to study the Williamson
fluid flow with a chemically reactive species. Using
scaling transformation technique viz., Lie group
transformations. Using the symmetry our governing
partial differential equations transformed into nonlinear
ordinary differential equations. The scaling symmetry is
well known to exist for boundary layer type problems
leading to useful solutions and for this reason, the specific
form of the scaling symmetry which leaves the equations
invariant is determined [26-28]. The transformed
equations are solved and analyzed with the help of
homotopy analysis method (HAM).

2 Problem Formulation

The theory of rate processes is used to drive the
Williamson fluid model for describing the shear of a
non-Newtonian flow. In some cases this model predicts
the viscous behavior of polymer solutions and
viscoelastic suspension over a wide range of shear rates.
For an incompressible fluid, the balance of mass and
momentum are given by

DivV = 0, (1)

ρ
dV
dt

= DivS+ρ f , (2)

Whereρ is the density,V is the velocity vector,S is the
Cauchy stress tensor,f represents the specific body force
and d

dt represents the material time derivative. The Cauchy
stress tensor for Williamson fluid is given by

S =−pI+T, (3)

T = [µ∞ +(µ0− µ∞)(1−Γ |γ̇|)−1]γ̇ (4)

In which pI is the spherical part of the stress due to
constraint of incompressibility,T is the extra stress tensor,
µ∞ is the infinite shear rate viscosity,µ0 is the zero shear
rate viscosity,Γ is the time constant anḋγ is defined as,

|γ̇|=
√

1
2 ∑

i
∑

j
γ̇i j γ̇ ji =

√
1
2

Π (5)

The Π is the second invariant strain tensor. We
consider the Eq. (4), the case for whichµ∞ = 0 and
Γ γ̇ < 1. The component of extra stress tensor therefore,
can be written as

t = [µ0(1−Γ |γ̇|)−1]γ̇ (6)

Steady-state, two dimensional, incompressible
equations of motion including mass conservation can be
written as

∂u
∂x

+
∂v
∂y

= 0 (7)

ρ(u
∂u
∂x

+ v
∂u
∂y

) =−
∂ p
∂x

+
∂τxx

∂x
+

∂τxy

∂y
(8)

ρ(u
∂v
∂x

+ v
∂v
∂y

) =−
∂ p
∂y

+
∂τyx

∂x
+

∂τyy

∂y
(9)
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u
∂C
∂x

+ v
∂C
∂y

= D(
∂ 2C

∂x2 +
∂ 2C

∂y2 ) (10)

Wherex is the spatial coordinate along the surface,y
is vertical to itu andv are the velocity components in the
x and y coordinates,C is the concentration,D is the
diffusion coefficient. The shear stress components are
inserted into the equations of motion and the usual
boundary layer assumptions are made i.e. the highest
order terms are retained and momentum equations
become

ρ(u
∂u
∂x

+ v
∂u
∂y

) =−
∂ p
∂x

+ µ0
∂ 2u

∂y2 + µ0
∂u
∂y

∂ 2u

∂y2 (11)

∂ p
∂y

= 0 (12)

u
∂C
∂x

+ v
∂C
∂y

= D
∂ 2C

∂y2 (13)

The Eqs. (11)-(12) shows that the pressure ony is
eliminated.The dimensional variables are given as:

x = x
L ,y =

y
L ,u = u

V ,v =
v
V , p = p

ρV 2 ,C = C
Cw

,Re = LV ρ
µ0

,We = ΓV
L ,γ = D

LV

(14)
WhereL is a length,V is a velocity,Cw denotes the

concentration at the stretching sheet.We is a Weissenberg
number and Re is a Reynolds number. By using the above
non-dimensionless parameters in Eqs. (7), (11), (13) which
lead to the equations:

∂u
∂x

+
∂v
∂y

= 0 (15)

ρ(u
∂u
∂x

+ v
∂u
∂y

) =−
∂ p
∂x

+
1

Re
∂ 2u
∂y2 +2

We
Re

∂u
∂y

∂ 2u
∂y2 (16)

u
∂C
∂x

+ v
∂C
∂y

= γ
∂ 2C
∂y2 (17)

The classical boundary conditions for the problem are

u(x,0) = 0, v(x,0) = 0, u(x,∞) =U(x),C(x,0) = 1,C(x,∞) = 0
(18)

For We = 0, the Eqs. (15)-(17) reduce to those of
Newtonian fluid.

3 Scaling Transformations

Now, introducing the simplified form of Lie-group
transformations, namely the scaling group of
transformation as:

x∗ = ξ ax, y∗ = ξ by, u∗ = ξ cu, v∗ = ξ dv,U∗ = ξ eU,C∗ = ξ jC,
(19)

Substituting Eq. (19) into Eqs. (15)-(17) and requiring
that the equations be invariant under the transformation
yields

b+c−a−d = 0, 2c−2e = 0, a−3b = 0, 4b−c−a = 0 (20)

All parameters are solved in terms of parameterb

a = 3b, c = b, d =−b, e = b, j = 0 (21)

The associated equations for this transformation which
define similarity variables are

dx
3x

=
dy
y

=
du
u

=
dv
−v

=
dU
U

=
dC
C

(22)

The similarity variables and functions are

η =
y

x1/3
, u = x1/3 f (η), v =

g(η)
x1/3

,U = x1/3,C = φ(η) (23)

Substituting all these values of Eq. (23) into the
boundary layer equations Eqs. (15)-(17) yields the
ordinary differential equations

3g′−η f ′+ f = 0 (24)

3
Re

f ′′+6
We
Re

f ′ f ′′+η f f ′−3g f ′− f 2+1= 0 (25)

3γφ ′′−3gφ ′+η f φ ′ = 0 (26)

The boundary conditions in Eq. (18) reduce to

f (0) = 0, f (∞) = 1, g(0) = 0, φ(0) = 1, φ(∞) = 0, (27)

4 Solution of the problem

For the two dimensional problem presented in Eqs. (24)-
(26), the course of action for the HAM solution, we select

f0 = 1− e−η ,g0 = 0,φ0 = e−η , (28)

The initial approximation off0, g0 andφ0 in Eq. (28),
satisfy the following linear operator and their boundary
conditions
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L1 =
d

dη
+1,L2 =

d2

dη2 +
d

dη
,L3 =

d2

dη2 −1, (29)

such that
L1 = [c1e−η ] = 0,L2 = [c2e−η + c3] = 0,L3 = [c4eη + c5e−η ] = 0, (30)

wherec1,c2, .....,c5are arbitrary constants.
The following nonlinear operators are defined as:

N1[ f̃ (η, p), g̃(η, p)] = 3
∂ g̃(η, p)

∂η
−η

∂ f̃ (η, p)
∂η

+ f̃ (η, p) (31)

N2[ f̃ (η, p), g̃(η, p)] =
3

Re
∂ 2 f̃ (η, p)

∂η2

+6
We
Re

∂ f̃ (η, p)
∂η

∂ 2 f̃ (η, p)

∂η2 +η f̃ (η, p)
∂ f̃ (η, p)

∂η

−3g̃(η , p)
∂ f̃ (η , p)

∂η
− ( f̃ (η , p))2+1 (32)

N3[ f̃ (η , p), g̃(η , p), φ̃ (η , p)] = 3γ
∂ 2φ̃(η , p)

∂η2

−3g̃(η , p)
∂ φ̃ (η , p)

∂η
+η f̃ (η , p)

∂ φ̃ (η , p)
∂η

(33)

and then construct thezeroth order deformation
equations

(1− p)L1[g̃(η , p)− g0]− ph̄N1[ f̃ (η , p), g̃(η , p)] = 0 (34)

(1− p)L2[ f̃ (η , p)− f0]− ph̄N2[ f̃ (η , p), g̃(η , p)] = 0 (35)

(1− p)L3[φ̃ (η , p)−φ0]− ph̄N3[ f̃ (η , p), g̃(η , p), φ̃ (η , p)] = 0

g̃(0, p) = 0, f̃ (0, p) = 0, f̃ (∞, p) = 1, φ̃(∞, p) = 0, φ̃(0, p) = 1,

In which p ∈ [0,1] is the embedding parameter and is
the auxiliary non zero parameter.

f̃ (η , p) = f0(η)+
m−1

∑
i=0

fm(η)pm,

g̃(η , p) = g0(η)+
m−1

∑
i=0

gm(η)pm,

φ̃(η , p) = φ0(η)+
m−1

∑
i=0

φm(η)pm (36)

The mth order deformation problems with the
corresponding boundary conditions are given by

L1[gm − χmgm−1] = h̄R1[ fm−1,gm−1] (37)

L2[ fm − χm fm−1] = h̄R2[ fm−1,gm−1] (38)

L3[φm − χmφm−1] = h̄R3[ fm−1,gm−1,φm−1] (39)

gm(0) = 0, fm(0) = 0, fm(∞) = 0,φm(0) = 0,φm(∞) = 0,
(40)

where

R1[ fm−1,gm−1] = 3g′m−1−η f ′m−1+ fm−1 (41)

R2[ fm−1,gm−1] =
3

Re
f ′′m−1+6

We
Re

m−1

∑
i=0

f ′i f ′′m−1−i

+η
m−1

∑
i=0

fi f ′m−1−i −3
m−1

∑
i=0

gi f ′m−1−i

−
m−1

∑
i=0

fi fm−1−i +(1− χm) (42)

R3[ fm−1,gm−1,φm−1] = 3γφ ′′
m−1−3∑m−1

i=0 giφ ′
m−1−i +η ∑m−1

i=0 fiφ ′
m−1−i

(43)
where

χm =

{
0, m ≤ 1
1, m ≥ 2

According to the process defined above, it is easy to
solve the linear Eqs. (39)-(41), one after the other in the
orderm, especially by means of any computation software,
such as MATHEMATICA.

5 Results and Discussions

The numerical computations are performed for various
values of physical parameters involved in the Eqs. (31)-
(33). The Reynolds numberRe, Weissenberg numberWe
and the reaction rate parameterγ have been encountered in
this problem.

In Fig. 1 and Fig. 2, f function is related to the
horizontal-component of the velocity. Fig. 1 shows the
changes on functionf at different values of Reynolds
number. The boundary layer becomes thicker when
increase the values of Reynolds number. Fig. 2 also shows
the similar behavior. But when we increase the
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Fig. 1: The velocity profilesf (η) for various values ofRe (We =
2)

Weissenberg number, the change in boundary layer
thickness is minute as compare to Fig. 1.

In Fig. 3 and Fig. 4, functiong is related to the
vertical-component of velocity. From Fig. 3 we observed
that the increase in the values of Reynolds number also
increases the vertical-component of velocity in domain.
Similarly Fig. 4 shows that an increase in Weissenberg
number give rise to the vertical-component of velocity in
domain, but this increase is minute as compare to the Fig.
3.

Fig. (5)-(7), shows the variation of concentration
profiles for various values ofγ, Re and We The
concentration profiles for different values ofγ keepingRe
and We constantan can be observed from Fig. 5, an
increase inγ increasees the boundary layer thickness of
concentration profiles. Fig. 6, shows that the an increase
in Re decreases the boundary layer thickness of
concentration profiles. Similarly Fig. 7 shows the same
behavior as compare to the Fig. 6. It is also evident of the
decrease in the boundary layer thickness.Re andWe both
show the decrease in concentration profile because they
both are not directly involved in the Eq. (26).

For the solution of Williamson fluid model with
chemical reaction and to certify the convergence of the
series solutions, the most suitable value ofh̄ is required.
Fig. 8 shows that the velocity profilesf (η) converges at
−0.3 < h̄ < 0.4 . Fig. 9 expresses the velocity profiles
g(η) converges at−0.1 < h̄ < 0.3. Fig. 10 displays the
concentration profilesφ(η) converges at−0.1< h̄ < 0.3.

6 Conclusions

The present paper is modeled the chemically reacting
Williamson fluid flow over a stretching sheet. The
governing equations are transformed to ordinary
differential equations with the help of scaling

Fig. 2: The velocity profilesf (η) for various values ofWe (Re =
0.3)

Fig. 3: The velocity profilesg(η) for various values ofRe (We =
2)

Fig. 4: The velocity profilesg(η) for various values ofWe (Re =
0.3)
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Fig. 5: Concentration profilesφ(η) for various values ofγ (Re =
0.1,We = 1)

Fig. 6: Concentration profilesφ(η) for various values ofRe (γ =
1,We = 2)

Fig. 7: Concentration profilesφ(η) for various values ofWe
(Re = 0.3,γ = 1)

Fig. 8: The h̄ curves for the velocity profilesf (η)

Fig. 9: Theh̄ curves for the velocity profilesg(η)

Fig. 10: The h̄ curves for the velocity profilesφ(η)
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transformation. The homotopy analysis method has been
employed to obtain the analytical solution of the
governing problem. The influences of the pertinent
parameters are investigated on the velocity and
concentration. The investigation came up with the
following results.
• The Reynolds number accelerates the fluid motion but
decelerates the concentration of the Williamson fluid.
• The Weissenberg number has the diverse effects on the
velocity and concentration of the fluid as it decreases the
horizontal component of velocityf (η) and increases the
vertical velocity functiong(η) and concentration function
φ(η).
• The concentration of the fluid is enhanced due to
reaction rate parameterγ.
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