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Using the methods of mathematical analysis and computer algebra, we developed a
new reliable algorithm of initial-value method for solving nonlinear singular perturba-
tion problems. To mechanize the algorithm a MatLab procedure called IVPHZ was
established. The IVPHZ can handle problems with one or two boundary layers as well
as problems with an internal shock layer. Testing of the IVPHZ was made by solv-
ing numerous linear and nonlinear problems to demonstrate the implementation and
efficiency of the procedure.
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1 Introduction

Singular perturbation problems (SPPs) appear in many branches of applied mathemat-
ics [1] such as fluid dynamics, elasticity, optimal control, chemical reactor theory etc. The
presence of the perturbation parameter leads to difficulties when numerical techniques are
used to solve such problems. So SPPs have received a significant amount of attention in
the past and recently. Some valid methods for solving these problems have been developed
recently [2]– [22]. The difficulty in solving such problems lies on the huge amount of cal-
culations involved and the high complexity in practice. Fortunately the rapid development
of computer algebra systems can handle these difficulties besides its impact on the math-
ematical research [18]– [22]. Recently Wang et al. [21]– [23], Chen et al. [20], Zhenqing
Li et al. [19], and Habib and El-Zahar [18] presented algorithms for solving many math-
ematical problems. These algorithms depend upon the progress of mathematical theories
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and computer algebra. The authors [18, 19] presented Matlab and Maple algorithms, re-
spectively, to obtain the solution of linear SPPs with one boundary shock layer in different
methods. The objective of this paper is to establish a promising algorithm which can solve
nonlinear SPPs with one or two boundary shock layers as well as problems with an internal
shock layer.

2 Initial Value Method

Consider the nonlinear two-point singularly-perturbed boundary-value problem

εy′′ + p(x, y)y′ − q(x, y) = 0, x ∈ I = [0, 1] , (2.1)

with conditions y(0) = A and y(1) = B. Here ε is a small positive parameter (0 <

ε ¿ 1), Aand B are given constants, p(x, y) and q(x, y) are assumed to be sufficiently
continuously differentiable functions satisfying the following conditions:

p(x, y), q(x, y) ∈ C2 ([0, 1],R) , (2.2)

px(x, y) + qy(x, y) ≥ −β2/4ε x ∈ I, y ∈ R , (2.3)

where p(x, y) ≥ β > 0.
These conditions guarantee the existence of a unique solution y ∈ C4[0, 1] of (2.1),

see [4]. In general (2.1) has a boundary shock layer near the origin, see [4, 5]. Also under
these assumptions the reduced problem (corresponding to ε = 0 in Eq. (2.1)) becomes

p(x, u) u′ − q(x, u) = 0, u(1) = B , (2.4)

which has a unique solution u ∈ C3[0, 1].
Equation (2.1) is given globally, i.e., for y ∈ R. If we can find a priori bounded domain

to which y belongs, then Eq. (2.1) can be restricted to that domain.
Equation (2.1) can be rewritten in the conservative form

εy′′ + f(x, y)′ − g(x, y) = 0, x ∈ [0, 1] , (2.5)

with
fy(x, y) = p(x, y) , g(x, y) = q(x, y) + fx(x, y) . (2.6)

Theorem 2.1. The singular perturbation problem (2.1) can be converted to the following
alternative approximate forms:





f(x, u)
du

dx
− g(x, u)u = 0, u(1) = B,

ε
dy

dx
+ f(x, y) = f(x, u), y(0) = A,

(2.7)
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or in the form of layer correction problem




f(x, u)
du

dx
− g(x, u)u = 0, u(0) = B,

dv

dt
= f(0, u(0))− f(0, v + u(0)), v(0) = A− u(0),

(2.8)

where t = x/ε and y(x) = u(x) + v(t).

Proof. Equation (2.1) can be rewritten in the conservative form (2.5). If u(x) is the solution
of the reduced problem (2.4), we can simply replace y by u in the g(x, y) of Eq. (2.5) to
obtain the approximate equation

εy′′ + f ′(x, y)− g(x, u) = 0, x ∈ [0, 1]. (2.9)

Integrating Eq. (2.9) w.r.t. x we get an approximate equation with order ε [6].

εy′ + f(x, y) =
∫ x

g(t, u(t)) dt + K, (2.10)

where K is the constant of integration.
Substituting Eq. (2.4) and Eq. (2.6) into Eq. (2.10) we get

εy′ + f(x, y) =
∫ x

[q(t, u(t)) + ft(t, u(t))] dt + K

=
∫ x [

p(y, u(t))
du(t)

dt
+ ft(t, u(t))

]
dt + K

=
∫ x [

fu(t, u(t))
du(t)

dt
+ ft(t, u(t))

]
dt + K

=
∫ x df(t, u(t))

dt
dt + K

or
εy′ + f(x, y) = f(x, u) + K. (2.11)

In order to determine K we impose the condition that the reduced equation of (2.11)
should satisfy the boundary condition y(1) = B. i.e.,

f(1, B) = f(1, B) + K.

Thus K = 0. Setting
y(x) = u(x) + v(t), t = x/ε,

in Eq. (2.11), we obtain the boundary layer corrected equation

dv

dt
= f(εt, u(εt))− f(εt, u(εt) + v(t)), (2.12)

with the boundary condition u(0) + v(0) = A.
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Letting ε = 0 we have

dv

dt
= f(0, u(0))− f(0, v(t) + u(0)) (2.13)

with boundary condition v(0) = A− u(0).
Obviously Eq (2.13) has a unique solution v = v(t) with boundary layer behavior.

Solving system (2.7) or (2.8) we get the approximate analytical solution of (2.1) as function
of x and ε.

Remark 2.2. The algorithm presented in [19] in the environment of Maple replaces the
problem (2.1) in a special form (linear) with three equivalent (IVPs). In this work we get
an equivalent (IVP) to the same problem (2.1) in the general form (quasilinear). Moreover,
the proposed method can be used to solve problems with two boundary layers in addition
to problems with internal layers which cannot be handled by the algorithm in [19].

3 A New Algorithm for Solving Nonlinear Stationary Shock Problems
with Mechanization

Doing mathematics by computer is typical in the field of mathematics [7,8]. MatLab is
a good mathematical environment to solve system (2.7) or (2.8) because of its great ability
to perform both symbolic and numerical operations as well as manipulate graphics. Its
powerful function library provides scientific calculation and programming with a friendly
platform. Note that system (2.7) has independent initial conditions while system (2.8) has
dependent ones. Hence system (2.7) can be solved directly using one statement in Matlab.

[u, y] = dsolve (’f (x, u)*Du-g(x, u)*u’, ’epsilon*Dy + f(x, y)*y = f(x, u) u’, ’u(1) =B’,
’y(0) =A’, ’x’);

If f(x, y) is linear or not highly nonlinear, or p(x, y) = p(x), system (2.7) is simplified
to [9] 




p(x)
du

dx
− q(x, u)u = 0, u(1) = B,

ε
dy

dx
+ p(x)y = p(x)u, y(0) = A,

(3.1)

which can be solved using one statement in Matlab:

[u, y] = dsolve (’p (x)*Du-q(x, u)*u’, ’epsilon*Dy + p(x)*y = p(x) u’, ’u(1) =B’, ’y(0)=A’,
’x’);

Note that the layer correction problem form (2.8) is more flexible for developing a
general algorithm for solving problem (2.1) than (2.7). The main algorithm developed next
called IVPHZ is based on system (2.8).

Function [Ysol, u, v] = IVPHZ (p, q, ab, AB, N, epsl)
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if nargin < 4, error(’IVPHZ requires at least FOUR input arguments’); end
a=ab(1); b=ab(2); A=AB(1); B=AB(2);
syms x y v ep Dy Dv; clc
X0=x*(b-a) +a; % coordinate transformation from a domain [a, b] to the domain [0, 1]
p= (b-a)*subs (p,’x’, x0); q= (b-a) ˆ2*subs (q,’x’, x0); % coordinate transformation of p
and q
s1=simplify(x/x*q/p);
sys1=str2mat (Dy-s1); iv1=str2mat (subs (’y (1) =B’,’B’, B));
If s1==0; u=B; else; u=simplify (dsolve (sys1, iv1,’x’)); end;
u0=subs (u,’x’,’0’);
f=subs (int (x*p/x, ’y’),’x’,’0’);
Fl=subs (f,’y’, u0+v);
Fr=subs (f,’y’, u0);
s2=simplify (Fl-Fr);
sys2=str2mat (Dv+s2); iv2=str2mat (subs (’v (0) =k’,’k’, A-u0));
v=simplify (dsolve (sys2, iv2,’t’));
v=subs (v,’t’, (x-a)/ (b-a)/epsilon);
Ysol = simplify (subs (u, ’x’, (x-a)/ (b-a)) +v);
If nargin =6; Y=subs (Ysol, ’x’, [a :( b-a)/N: b]);
Y=subs(Y, ’epsl’, ep); Plot ([a :( b-a)/N: b], Y);
else; error(’analytical output solution recommended with no graph’); end

IVPHZ is stored as an M-file in Matlab environment. Upon calling IVPHZ from the
command line, Matlab passes the function and stores it in memory to be executed. This can
be done by the following one command line:

[Y, u, v] =IVPHZ (p, q, [a, b], [A, B], N, epsl),

where

p = p(x, y), q = q(x, y),;
[a,b] : the end-points of the problem domain [a, b] where we always consider the
shock layer at x = a and b is the other end point;
[A,B ] : the boundary conditions y(a) = A , y(b) = B;
u: the analytical solution of the reduced problem (at ε = 0);
v: the analytical solution of the correction problem;
Y: the analytical solution of the original problem (2.1) where Y = u + v;
N: the number of grid points at which the graph of the output solution is plotted;
epsl: the ε value at which the graph of the output solution is plotted.

Note that IVPHZ does not plot the output solution if the values of N or ε are not given.
The following message appears: “analytical output solution recommended with no graph”.



36 H. M. Habib and E. R. El-Zahar

Moreover, if the input data to the algorithm is not complete, the program gives the error
message: “ ‘IVPHZ requires at least FOUR input arguments’ ”.

The following examples illustrate the mechanized process and efficiency of the algo-
rithm.

4 Examples with One Boundary Shock

Example 4.1. Consider the variable coefficient SPP [1]

εy′′(x) +
(
1− x

2

)
y′(x)− 1

2
y(x) = 0, x ∈ [0, 1],

y(0) = 0 and y(1) = 1.
(4.1)

A uniformly valid approximation is given by Nayfeh [10]

y(x) =
1

2− x
− 1

2
e−(x−x2/4)/ε.

The solution of this problem using IVPHZ is an easy matter. The user should input an
one-line command:

[Y, u, v] = IVPHZ (’1-x/2’, ’y/2’, [0, 1], [0, 1], 1000, 1e-3).

The output is

y(x) =
1

2− x
− 1

2
e−x/ε, u(x) =

1
2− x

, v(x) = −1
2
e−x/ε.

Since p(x, y) = p(x), system (2.7) is reduced to (3.1) and the problem can be solved using
the MatLab line command

[u,Y] = dsolve (’(1-x/2)*Du-1/2*u’, ’e*Dy+ (1-x/2)*y-1/2’,’u(1) =1’,’y(0) =0’,’x’).

The output results are

u(x) =
1

2− x
, y(x) = 0.5

√
π/ε e(x2−4x+4)/2ε

(
erf

(
x− 2
2
√

ε

)
+ erf

(
1√
ε

))
.

It is clear that the results obtained using the IVPHZ algorithm are simpler formulas than
those obtained through system (2.7).

Example 4.2. Consider the linear SPP with boundary shock to the right given by [10]

εy′′(x)− y′(x) = 0 x ∈ [0, 1],

y(0) = 1 and y(1) = 0.
(4.2)

The exact solution is given by

y(x) =
(e(x−1)/ε − 1)
(e−1/ε − 1)

.
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Figure 4.1: Approximate solution of example 4.1 at N = 1000, ε = 10−3using IVPHZ algorithm

Since the boundary shock is at x = 1, we should input the boundary condition in the reverse
order form,

ab = [1, 0] , AB = [y(1), y(0)]
[Y, u, v] = IVPHZ (’-1’, ’0’, [1, 0], [0, 1]).

The output solution is
y(x) = 1− e−(1−x)/ε.

Example 4.3. Consider the nonlinear SPP [11] given by

εy′′(x) + 2y′y(x) = 0 x ∈ [0, 1],

y(0) = 0 and y(1) = 0.
(4.3)

A uniformly valid approximation is given by

y(x) = loge(2/(1 + x))− (loge 2)e−2x/ε.

Use the following command to invoke IVPHZ:

[u, v] = IVPHZ (’2’, ’-exp(y)’, [0, 1], [0, 0]).

The output solution is

y(x) = loge

(
2

x + 1

)
− loge(2)e−2x/ε.

Example 4.4. Consider the nonlinear SPP [5] given by

εy′′(x)− y(x)y′(x) = 0 x ∈ [−1, 1],

y(−1) = 0 and y(1) = −1.
(4.4)

A uniformly valid approximation is given by

y(x) = −(1− e−(x+1)/ε)/(1 + e−(x+1)/ε).
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Use the following command to invoke IVPHZ:

[Y, u, v] = IVPHZ (’-y’, ’0’, [-1, 1], [0,-1]).

The output solution is

y(x) = −1 +
2

1 + e(x+1)/ε
,

or simply

y(x) = −1− e−(x+1)/ε

1 + e−(x+1)/ε
.

Example 4.5. Consider the nonlinear SPP [12] given by

εy′′y(x)y′(x)− π

2
sin(πx/2)e2y(x) = 0 x ∈ [0, 1],

y(0) = 0 and y(1) = 0.
(4.5)

A uniformly valid approximation is given by

y(x) = − loge

[
(1 + cos(πx/2))(1− 0.5e−x/2ε)

]
.

Use the following command to invoke IVPHZ:

[Y, u, v] = IVPHZ (’exp(y)’, ’pi/2*sin (pi*x/2)*exp (2*y)’, [0, 1], [0, 0]).

The output solution is

y(x) = − loge(1 + cos(πx/2))− log
[
−1 + 2ex/2ε

]
+

x

2ε
+ log(2).

Example 4.6. Consider the nonlinear SPP [13] given by

εy′′(x) + y′(x) + (y(x))2 = 0, x ∈ [0, 1],

y(0) = 0 and y(1) = 0.5.
(4.6)

A two-term asymptotic approximation was obtained [13] for comparison

y(x) =
1

1 + x
− (1 + x)2 e−x/ε.

Input the command

[Y, u, v] = IVPHZ (’1’, ’-yˆ2’, [0, 1], [0, 1/2]).

The output solution is

y(x) =
1

x + 1
− e−x/ε.

Example 4.7. Consider the nonlinear SPP [13] given by

εy′′2y)y′2 = 0 x ∈ [0, 1],

y(0) = 1 and y(1) = 0.
(4.7)
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A uniformly valid approximation is given by

y(x) =
(1− 2ε2)e−x/ε

(x2 + 2ε(x + ε)e−x/ε + 1
.

Input the command

[Y, u, v] = IVPHZ (’1-2*xˆ2*y’, ’2*x*yˆ2’, [0, 1], [1, 0]).

The output solution is
y(x) = e−x/ε.

Example 4.8. Consider the nonlinear SPP [13] given by

εy′′ +
[

x + 2y + 2xy

(x + 2)(x + 1)2

]
y′ +

[
(y + 1)(2x2y + x(5y − 3) + 3y − 5

(x + 2)2(x + 1)3

]
= 0,

x ∈ [0, 1], y(0) = 0.5 and y(1) = 1.

(4.8)

The solution as an asymptotic expansion is given by [13]

y(x) =
3− e−x/ε

3 + e−x/ε
.

Using the IVPHZ algorithm, the output solution is

y(x) = 1− 2
1 + 3ex/ε

,

or simply

y(x) =
3− e−x/ε

3 + e−x/ε
.

5 Examples with Two–Boundary Shock

The algorithm is extended to include problems with two boundary shock layers. Con-
sider problem (2.1) with

p(x∗, y) = 0, px(x∗, y) < 0, x∗ ∈ (0, 1) , x ∈ I, y ∈ R. (5.1)

There is a turning point at x = x∗. In addition, under certain additional conditions [14] the
solution y(x) has an exponential boundary shock layer at each end.

Theorem 5.1. The singular perturbation problem (2.1) with conditions (5.1) and with the
aid of [14] can be converted to the approximate form:





f(x, u)
du

dx
− g(x, u)u = 0, u(x∗) = y∗,

ε
dy±
dx±

+ f(x±, y±) = f(x±, u), y−(0) = A, y+(1) = B,
(5.2)

where

x− ∈ I− = [0, x∗], x+ ∈ I+ = [x∗, 1], y− = y(x−), y+ = y(x+).
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Therefore the IVPHZ algorithm can be applied to turning-point problems with a two-
boundary shock layers by considering the original problem as two SPPs, each with single
boundary layer/shock.

Example 5.1. Consider the singular perturbation problem [15] given by

εy′′ − 2(2x− 1)y′ − 4y = 4(4x− 1), x ∈ [0, 1],

y(0) = 1 and y(1) = 1.
(5.3)

The solution to the problem is given by

y(x) = −2x + exp(−2x/ε) + 3 exp(−2(1− x)/ε) + O(ε).

The problem has a turning point at x∗ = 1/2 and y(x∗) = 0.
Since the shock layer is at x = 0, we should use ab = [0, x∗], AB = [y(0), y(x∗)],

and the following command to obtain the solution y−(x−), x− ∈ [0, 1/2]:

[Y, u, v] = IVPHZ (’-2*(2*x-1)’, ’4*y+4*(4*x-1)’, [0, 1/2], [1, 0]).

The output results are

y− = −2x + e−2x−/ε, u(x) = −2x, v− = e−2x−/ε.

Since the shock layer is at x = 1, we should use ab = [1, x∗], AB = [y(1), y(x∗)] and
the next command to obtain the solution y+(x+), x+ ∈ [1/2, 1].

[Y, u, v] = IVPHZ (’-2*(2*x-1)’, ’4*y+4*(4*x-1)’, [1, 1/2], [1, 0]).

The output results are

y+ = −2x + 3e−2(1−x+)/ε, u(x) = −2x, v+ = 3e−2(1−x+)/ε.

Example 5.2. Consider the nonlinear singular perturbation problem [14] given by

εy′′2 + 1)y′2 + 1) = 0, x ∈ [−1, 1],

y(−1) = 1 and y(1) = 1.
(5.4)

The asymptotic expansion solution is given by

y(x) =
√

3 exp((x2 − 1)/(2ε))√
4− exp((x2 − 1)/ε)

.

The above solution can be simplified for comparison in the form

y(x) =
√

3√
−1 + 4 exp((1− x2)/ε)

.

The problem has a turning point at x∗ = 0, and y(x∗) = 0.
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Since the shock layer is at x = −1, we should input ab = [−1, x∗], AB = [y(−1), y(x∗)]
and the following command to obtain the solution at y−(x−), x− ∈ [−1, 0]:

[Y, u, v] = IVPHZ (’-x*(yˆ2+1)’, ’y*(yˆ2+1)’, [-1, 0], [1, 0]).

The solution is

y− =
√

3√−1 + 4exp(2(1 + x−)/ε)
.

Since the shock layer is at x = 1, we should input ab = [1, x∗], AB = [y(1), y(x∗)] and
use the following command to obtain the solution at y+(x+), x+ ∈ [0, 1]:

[Y, u, v] = IVPHZ (’-x*(yˆ2+1)’, ’y*(yˆ2+1)’, [1, 0], [1, 0]).

The solution is

y+ =
√

3√−1 + 4exp(2(1− x+)/ε)
.

6 Examples with Interior Boundary Shock

The algorithm can be extended to solve internal layer/shock problems as well. Consider
problem (2.1) with

p(x, y) = p(y), p(y∗) = 0 , qy(x, y) ≥ q∗ > 0, x ∈ I, y ∈ R. (6.1)

Under certain additional conditions [16] the solution has a shock layer at x = x∗, where
x∗ ∈ (0, 1).

For any m = 0, 1, 2, . . ., we have

m + 1 ≥ 1. (6.2)

Theorem 6.1. The singular perturbation problem (2.1) with conditions (6.1) and with the
aid of [16] can be converted to the following form:





f(x±, u±)
du±
dx±

− g(x±, u±)u± = 0, u−(0) = A, u+(1) = B,

ε
dy±
dx±

+ f(x±, y±) = f(x±, u), y−(x∗) = y+(x∗) = y∗,
(6.3)

where x− ∈ I− = [0, x∗], x+ ∈ I+ = [x∗, 1], y− = y(x−), y+ = y(x+), u− =
u(x−), u+ = u(x+).

Example 6.1. Consider the nonlinear singular perturbation problem [17] given by

εy′′ + yy′ − y = 0, x ∈ [0, 1],

y(0) = −1/2 and y(1) = 1.
(6.4)
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with at turning point at x∗ = 1/4 and y∗ = 0.
The problem has approximate solutions [17] of the form

y+ = u+ − u+ [1 + tanh(−u+(x+ − 1/4)/2ε)] ,

y− = u− − u− [1 + tanh(−u−(x− − 1/4)/2ε)] .

Since the shock layer is located at x∗ = 1/4, we should input ab = [x∗, 0],
AB = [y(x∗),y(0)] and use the following command to obtain the solution at
y−(x−), x− ∈ [0, 1/4]:

[Y, u, v] = IVPHZ (’y’, ’y’, [1/4, 0], [0, -1/2]).

The results are

y− =
1
2

(
2x− 1 +

1
1 + e(−4x−+1)/16ε

)
, u−(x−) = x− − 1/2,

v−(x−) =
1

2 + 2e(−4x−+1)/16ε
.

Since the shock layer is located at
x∗ = 1/4,

we should input ab = [x∗, 1], AB = [y(x∗),y(1)] and use the following command to ob-
tain the solution y+(x+), x+ ∈ [1/4, 1]:

[Y, u, v] = IVPHZ (’y’, ’y’, [1/4, 1], [0, 1]).

The output results are

y+ =
(

x+ +
1

1 + e(4x+−1)/16ε

)
, u+(x+) = x+, v+(x+) =

1
2 + 2e(4x+−1)/16ε

.

Table 6.1 lists the maximum numerical errors of the obtained solutions using IVPHZ algo-
rithm for different values of ε.

Table 6.1 indicates that the obtained approximate analytical solutions using IVPHZ
approximates the given problems solution very well. In some cases the given solution of
the problems were retrieved.

7 Conclusion

A new reliable algorithm, IVPHZ, based upon the initial-value method and designed
for solving nonlinear singular perturbation problems with stationary shock is developed.
The IVPHZ based on the deduced equivalent (IVP) can give the solution to SPP and to the
reduced problem as well as to the layer correction problem in a single statement. IVPHZ not
only gives the solution of SPP with one boundary layer but also the solution of turning-point
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Table 6.1: Maximum error of the obtained approximate analytical solution using IVPHZ algorithm

Test Problem Maximum Error at different values of ε for each test problem
ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

4.1 6.7207e-005 6.7181e-006 6.7179e-007 6.7179e-008 6.7179e-009

4.2 0 0 0 0 0

4.3 2.2204e-016 2.2204e-016 2.2204e-016 2.2204e-016 2.2204e-016

4.4 0 0 0 0 0

4.5 1.8874e-015 1.8874e-015 1.8874e-015 1.8874e-015 1.8874e-015

4.6 7.3524e-004 7.3489e-005 7.3486e-006 7.3486e-007 7.3486e-007

4.7 8.8820e-008 8.8820e-010 8.8820e-012 8.8735e-014 8.3267e-016

4.8 0 0 0 0 0

5.1 0 0 0 0 0

5.2 2.3627e-004 2.3627e-005 2.3603e-006 2.3627e-007 2.3627e-008

6.1 2.1089e-003 2.1089e-004 2.1139e-005 2.0083e-006 2.1103e-008

problems exhibiting internal layer or two boundary layers. The results of the examples
indicate that IVPHZ has many advantages including easy handling, efficiency, excellent
property for operation and powerful competence.
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