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Abstract: We study the dynamics of the atomic inversion, scaled atomic Wehrl entnoghynarginal atomic Q-function of a single
two-level atom interacting witU(1, 1) quantum system. We obtain the wave function and system density matrixspsniic initial
conditions. We examine the effects of different parameters on thedsatdenic Wehrl entropy, atomic Q-function and their marginal
distribution. We observe an interesting monotonic relation between theeatiffehysical quantities for different values of the initial
atomic position and detuning parameter.
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1 Introduction wherew is the frequency of the systeiimy is the energy
difference between the atomic levels ahds a coupling
The most important problems in quantum optics are theconstant.
studies of different systems interaction such as field-atom
atom-atom and the field-field interaction. These problems
have considerd the subject of great deal of research works
during the last decades. In this way, there are numerou
papers on these problems. For example the atom-fiel

interaction has been consideredliq[11], but field-field the von Neumann entropy4@], linear entropy, and

interaction [L2]-[24], while atom-atom interaction Shannon information entro

: . o py¥1] have been frequently
[25]-[37]. These interactions has been classified from the, 5o i entanglement-discussions concerning a variety of
point of view of Lie algebra depending on the nature of

. . L - quantum systems. Some problem appear with some of
the Interaction. For gxample, the Ham|lton_|an Wh'.Ch gese measures such as the SE involves only the diagonal
represents the interaction between two fields is describegoments of the density matrix so in can gives information
In the form of the parametric frequency converter is of giniar to that obtained from the NE. On the other hand,
SU(2) Lie algebra type. While the Hamiltonian WhIChof

. ..~ there is an additional entropic quantity, namely, the
represents the non-degenerate parametric amplifier IS ofgmiciassical, atomic phase-space atomic Wehrl entropy
SU(1,1) Lie algebra type. On the other hand, the

. . . o T~ (AWE) [42]. This measure has been successfully applied
degenerate parametric amplifier, which contains in |ts( ) 142 Yy app

. . . . . fals entanglement quantifier in the JCM. For example,
interaction term the second harmonic generation, is o

SU(1,1) Lie algebra type . In this context a system whichAWE of the modes are initially prepared in a finite

) - . . dimensional trio-coherent state (FTCS) has discussed
describes the interaction between SU(2) and SU(1,1) Li : .
algebra has been consider&d][ in which a Hamiltonian 6[43]' Also, the dynamical properties of the AWE for a

. single two-level trapped ion interacting with a laser field
of the following from was treated has been investigated4]. It is shown that the AWE gives
wo quantitative (qualitative) information on the entangleme
H= h_{ wkz+ =0z +A (k-0 + k+0—)} : of the bipartite system.

Recently, much attention has been focused on
formation entropies as a measure or quantifier the
ntanglement in quantum informatioB89. In this way
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In this article, we consider the extension of the
problem by considering which is called the scaled atomic K,
Wehrl entropy associated with the reduced atomic densﬂyf [kz, H]
operator as an entanglement quantifier between SU(1, 1)
and SU(2) quantum system. We focus on the effect of the = —A (k-Si2—k:S1), @)
excitation number, intial atomic state and detuning
parameter on the evolution of the atomic inversion, scaled

atomic Wehrl entropy and marginal atomic Q-function. d
Z'd*if[z = -2 (k-S12— k1)
The paper is organized as follows: In Sec. 2, the, dS_u dSzz i dk, _0
system Hamiltonian of the interaction between SU(1,1)' gr ~'qt "% at
and SU(2) is introduced, followed by a discussion of the 1 )
method to calculate the scaled atomic Wehrl entropy and 5 (S11—S22) +k; = constant of motion 8

marginal atomic Q-function in Sec. 3. Numerical results
of the calculated scaled atomic Wehrl entropy arefrom the above equation, we can see that
presented and compared with the marginal atomicN = 3(Si1— S2) +k; is constant of motion, therefore, the
Q-function in Sec. 4, We conclude in Sec. 5, with a Hamiltonian takes the following form
summary and an outlook.

H=wN+C, 9)

2 The System Hamiltonian where C = %(Sﬂ = S2) + A(k-0s +kio-) with

A = Q1 — Q. We note that[N,C] = 0, therefore
The Hamiltonian which describe the interaction between[N,H] = [H,C] =0, i.e. N and C are the constants of
a single two-level atom and SU(1,1) quantum system takdnotion, where the time evolution operator is defined as
the following form

U (t) = exp(—iHt), (10)
H = wko+ Q1811+ QS+ A (k. (1 thus
2t Q1S+ QoS+ A St S, (1) U (t) = exp(—iwNt) exp(—iCt). (11)
wherew is the frequency of the systert; is the energy  \\here
and §; are elements of th&U(1,1) group obeying the
following commutation relation _  [exp[—iw (k. + 3)t] 0
exp(—iwNt) = { 0 exp[—iow (k, — %)t]] ’
Sj, Sa] = Si & — &, 2) (12)
while ki andk; satisfy the following commutation relation A 2
+ z C— { 2 MX} c?= {“1 02} ; (13)
Ak = 0 w3

ke ke] = ki, [k, k] =2k and [Sj, ke ] =0. (3)  where
2

T_he Heisenberg equation of motion for any oper&ds =2 Vi, =12 v — A%k, and vo =A%k k_
given by 174
(14)
do we note that
5 = [OH], (A=1), 4) k_p2 = p2k_ (15)
thus, the equations of motion &; andk; are given by also
Ky pif = pgk, (16)
dS_Ll B
e [S11.H] [ %ul uf)\k } o4 {uf 04} 17)
= A (k-S12—k:S1), (5) S5 0 w3
. —ict (—ict)? (-ict)®
dS, exp(—iCt) =1+ — +( |) +( |) +....
i——= =[Sy, H] 1! 2! 3!
dt _ c2t2 c33
= <A (K-Si2— k1), (6) B i TR TR (18)
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then, one can write the time evolution operator as

Fii F
v = |BrE). 9
where
1 iA sinpuqt
Fi1 = exp[ |w(kz+ 2>t} cospit — 5 Iflll ),
1

Fio = —iA exp[ iw <k2+

NI

(
o
2)

Fgli/\exp[i ( ! ]S'”“Zt

Fzz—exp{ (kz 2> } <cosuzt+'§s'r;l“2t) (20)

The time evolution for the expectation value of any
operator can be calculated through the following relation

(O) = (YoM [w(1)

= (Y(0)|UT(1)O(0)U (1) [+(0)) - (21)

Let us assume the initial state of the system can beg, (1)) =

written as

|#(0)) = |#(0))su2) 1¥(0)g1,)

= (cosg\e>+sing\g>)\m,k>, (22)
where
kz|m,k) = (m—+k)|m, k),
ki Imk) = v/(m+1) (m+2k) |m+1,k),
koimk) = vm(m+2k—1)|m—1,k). (23)
|P(t) =U()|%(0))
F11 Fi2] [cosd
- [ E [mgime
= (HlCOSg +F12$|n6) Im.k) |e)
(chose + Fyosin— )|m k) |g). (24)

Substituting from Eqgs.20) in Eq.@4), then the final
form of the wave function can be written as

W) = {e’”"("”%)1 (cosplt - % sir;ult ) cosg} |m, k) |e)

{ e olter oAy 2 }\mk>\e>
+{ ine ‘w tSInuztk1L cos> }\mk )
+{e,.w (ke-% (cosugtJr%S";“Zt)sin }\mk 9). (25)
>

Then, the wave function can be written in the form

W) = At) [m k) |e) +B(t)[m k) |g),  (26)

and consequently the density matrix
p(t) = |¥(t)) (¥(t)| becomes
p(t) = {At)ImK)[€) (el (k, m| A (t) + B(t) [m. k) |g) (gl (k, m[ B (t)

+ B(t) Im.k) |g) (el (k, m[A(t) + A(t) Im/ k) [€) (g] ¢k, m|B" (1)}, (27)
where
Alt) = e’""(kﬁz%)t { (cosult - % Slz‘illt ) cos—

2] I)\smulth n6}7
2 H1
iA sinppt . 0
)SI 3

2

B(t) = e"“("f%)'{(cosmH? L )sing —iA S'Z‘;Ztmco 5} (28)
one can easily cheek that
A2+ [B(t)* =1 (29)

Thus, the expectation value for any operator can be
calculated through the following equation

(O()) = (¥(0)[O(1)|#(0)) = (Y([1)|O(0)|#(t)), (30)

where|¥(0)) and|¥(t)) are defined by Eqs2@) and @6).
Therefore, the expectation values of the atomic

operatorsoy andoy can be obtained as follows

% { (cos(/,tlt)cos(/,tzt) - ATZ 79”(#1:&1”(“20

) (sin(ult)coswzt) n 005<u1t>sin<uzt>)sim}sme 31)
2 Uy Hz ’

) coswt

2 .
(oy(t)) = % { (cos(ult)cos(uzt) - AT W) sinwt

A (sin(ult)cos(yzt) cos(pt) sin(pat)
+5 +
2 Ha H

coswt psinB,  (32)
oo

Now, we close this section by presenting the concept of
the atomic population inversiorp,(t) which is the
simplest important quantity to be calculated. It is related
to the difference between the probabilities of finding the
atom in the upper and lower state.

palt) = 52 +/\2{m(m+2k— 1) %“%‘sinzg — (m+1) (m+2k) %“rﬂcosz%},
(33)
where

Up = \/%2 +A2m(m+2k—1).
(34)
Now, we are in a position to use the results obtained
in this section to discuss the dynamical behavior of the
atomic inversion, marginal atomic Q-function and scaled
AWE in the following sections.

b1 = /2 4 A2(m+ 1) (m+ 2%),

2.1 Scaled atomic Wehrl entropy, marginal
distribution and entanglement quantifiers

In this section: we investigate the marginal atomic
Q-function and atomic Wehrl entropy AWE. We start our
investigation by defining the atomic Q-function 4% [

1 n
—(0,®|p11(1)|©, D),

QA(O7 q)at) = o

(35)

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

18 1~y S r> M. M. A. Ahmed et al : Dynamics of Scaled Atomic Phase Entropy of a l8ing
a) b) a)
0.5 05 0.5
g, 0 g, 0 2 o
a Q (=N
0% 1 05 5 10 15 20 25 03 1 2 3
t t t
°) d) <)
0.5 0.5 0.5
S = 0
a )
(=N
0% 1 % 5 10 15 20 25 0% 1 2 3

t

Fig. 1: Time evolution of the atomic inversiop,(t), for A =
0,A =05, k= %and with different values of the excitation

numberm and intial atomic positior® and relative phase = —

where: Fig. (a\m, 8) = (10,0), Fig. (b)(m, 8) = (10, g) Fig.

t

Fig. 2: Time evolution of the atomic inversiop,(t), for A =
20,A = 0.5, k= % and with different values of the excitation

_ . . . 6
numberm and intial atomic positio® and relative phase = >

where: Fig. (a\m,8) = (10,0), Fig. (b)(m,0) = (10, g) Fig.

() (M, 8) = (20,0) and Fig. (d)(m, §) = (20, g) () (m,8) = (20,0) and Fig. (d)(m, §) = (20, g)

wherep(t) is the density matrix which is given in equation ~ °®

(27) and|O©, @) is the atomic coherent state expressed as

|©,®) = cos(0/2)|e) +sin(©/2)€®|g),  (36)  4os

where 0< © < 1,0 < @ < 21t the definition 85) means 02
that two different spin coherent states overlap unless the
directed into two antipodal points on the spheik [ % 05 1 15
The scaled atomic Wehrl entropy can be written in :)
terms of the atomic Q- function a$]{ o
0.6
SSwit) = 13';?:()2) {8 [ Qa(©, ®,1)InQa(0, @, 1) sinoded® + In(2my/@) | . 0s

(37) v? 0.4
One can easily check that theaQs normalized. By 03

0.2
0.1
integrating the atomic Q-function Qover the atomic 0
variable @, we obtain the marginal atomic Q-function as
follows

05 1 15 0 5 10 15 20
t t

(38) Fig. 3: Time evolution of the scaled atomic Wehrl entropy
SSw(t), for A=0,A =05 k= % and for different values of
the excitation numbemn and intial atomic positio® and relative

phasep = g where: Fig. (a)m, 8) = (10,0), Fig. (b) (m,08) =

(10 g) Fig. (¢)(m,6) = (20,0) and Fig. (d)m.6) = (20, g)

T
Qo = / Qasin@do.
0

3 Numerical results

The population inversion of the atom is one of the
important atomic dynamic variables of the system. This in
fact would give us information about the behavior of the
atom state during interaction time. In figure (1), we have
plotted the dynamical behavior for different values of the

© 2014 NSP
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Fig. 4. Time evolution of the scaled atomic Wehrl entropy
SSw(t), for A =20,A =0.5 k= % and for different values of
the excitation numbemn and intial atomic positio® and relative

phasep = g where: Fig. (am, 8) = (10,0), Fig. (b) (m,6) =
<1o, g) Fig. (c)(m, 8) = (20,0) and Fig. (d)Ym, 8) = (20, g)

c) 7 . d)

024 saadd A A AN
!
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Fig. 5: The surface plot of the marginal atomic Q-functi@ag (t)
versus the timéand the phase space parama&edor A =0,A =
0.5 k= %and with different values of the excitation number

and intial atomic positiol® and relative phasg = g where: Fig.
(2) (. 8) = (10,0), Fig. (5)(m,6) = (10, ), Fig. (c) (. 6) =
(20,0) and Fig. (d(m.6) = (20 g)

involved parameters. We concentrate on the variation of
the initial atomic position@ from the excited state i.e.

6 = 0 to the superposition state i@~ 11/2 as well as on
the excitation numbem, which is in analogy with the
usual Jaynes—Cummings model, corresponding to the
number of photons. Firstly, we consider that the system is
initially in the excited staté® = 0 and the absence of the
detuning parameteft = 0. It is observed that the atomic
population inversion has a regular and periodic osciltatio
where the amplitude of oscillation is decrease by
increasing the number of photon excitation. The structure
of the atomic inversion oscillations is changed when the
atom is initially in the superposition state see Fig. 1(b,d)
The number of oscillation is increased when the effect of
the atomic inversion is taken into account (see Fig. 2).

The scaled atomic phase space entropy as a quantifier
of the entanglement between two-level atom and SU(1,1)
quantum field is plotted in Figs. 3 and 4. As seen from
Fig. 3 SSw(t) has a periodic behavior and regular
oscillation. The system returns to its separable state
(SSw(t) = 0) atts = 0.45m wherem=0,1,2,... On the
other hand the system is maximally entangled state
(SSw(t) = In(2)) at the middle of the time interval
0 <t <ts Fig. 3 (d), depicts that the entanglement is
gradually decreases by increases the number of photon
excitation when the atom is initially in the superposition
state.

Now, we are going to answer the question “What is
the impact of the detuning parameter on the atom-SU(1,1)
field entanglement for different values of the number of
photon excitation and initial atomic position?” As
presented in Fig. 4, where tHf®Sw(t) was plotted as a
function of the time when the atom is initially in the
excited and superposition state. It is interesting to noge t
high amount of the quantum entanglement can be
obtained in the presence of the detuning parameter during
the time evolution.

Fig. 5 depicts the evolution of &t) as a function of
the time and atomic phase space parameterfor
different modes of excitations. It is interesting to mentio
here that the behavior @q(t) for different values of the
non-fluctuating components of Rabi frequency. It is
observed thatQq(t) oscillates between minimum and
maximum peaks. The distribution of the marginal atomic
Q-function peaks in depending the initial state setting of
the two-level atom. On the other hand the number of
peaks is increased by increasing the atomic Q-function
peaks.

4 Conclusion

We have disscused the dynamical behaviour of the
problem of the interaction between two-level atom and
SU(1,1) quantum system. We the two-level atom is
initially in a superposition state and obtaine the general
solution of the wave function analytically. Using the

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

20 N SS 2=

M. M. A. Ahmed et al : Dynamics of Scaled Atomic Phase Entropy of a l8ing

scaled atomic phase space entropy

the systenB1] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P.

entanglement has been investigated. The analysis herein DiVincenzo, D. Loss, M. Sherwin, A.Small, Phys. Rev.

has been carried out at two distinct considerations of the

Lett., 83, 4204 (1999).

detuning parameters and number of photon excitation. A432] G.-F. Zhang, S.-S. Li, Eur. Phys. J. B7, 123 (2006).
the deteuning parameter is neglected, the scaled atomi@3] Z.-N. Hu, S. H. Youn, K. Kang, C. S. Kim, J. Phys. A: Math.
phase space entropy has a regular oscillations between 0 Gen.,39, 10523 (2006).

and In2) during the time evolution. There is some

monotonic correlation between the behavior of the atomic

[34] M. S. Abdalla, E. Lashin, G. Sadiek, J. Phys. B: At. Mol.
Opt. Phys.41, 0155028 (2008).

inversion, scaled atomic phase space entropy and thE®! G- Sadiek, E. Lashin, M. S. Abdalla, Phy&,404, 1719

marginal atomic Q-function. Finaly it is shown that the

SU(1,1) quantum field—atom interaction considering the
effect of the number of photons excitation and detuning

parameter have much richer structure.
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