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Abstract: In this paper, we present an example of control system design based on negative imaginary (NI) system theory. The system
under consideration is an optical cavity system. A dynamical model of thecavity system is obtained through system identification of
applied to experimental input output frequency response data obtainedusing a digital signal analyzer (DSA). The identified model
satisfies NI property. An integral resonant controller is designed based on the NI system theory.
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1 Introduction

In many modern quantum physics experiments, the use of
an optical cavity has become an important tool for
enhancement in detection sensitivity [1,2,3], nonlinear
interactions, and quantum dynamics [4], quantum
information theory, quantum teleportation [5], coding and
quantum cryptography [6]. An important application of
optical cavities is in laser physics itself. However, there
are many applications of external optical cavities
(independent from lasers) that take advantage of the
common physical properties associated with resonator
physics. For example, cavity locking arises in the
frequency stabilization of semiconductor lasers [7],
cavity-enhanced spectroscopic techniques [1,2,3], cavity
quantum electrodynamics [8], microcavities [9,10], as
well as in general atomic, molecular, and optical physics
[4]. Also, optical cavities are used in spectroscopy in
what is called Cavity ring-down spectroscopy (CRDS).
CRDS is a highly sensitive spectroscopy technique that
allows measurement of absolute optical extinction by
material that scatter and absorb light. CRDS technique
has been widely used to study gaseous which absorb light
at specific wavelengths, and in turn to determine mole
fractions down to the parts per trillion level. The

technique is also known as cavity ring-down laser
absorption spectroscopy (CRLAS).

The structure of optical cavities involves an
arrangement of mirrors that forms a standing wave in the
cavity resonator. The light source is usually a continuous
or discrete laser source. To form the standing wave inside
the cavity, the resonant frequency of the cavity must
match the input laser frequency. In this case, the cavity is
said to be inlock with the input laser frequency. Indeed,
the characteristic of the optical cavity allow physicists to
study the interaction between matter and the applied field
[11]. Also, a cavity allows one to impose a well-defined
mode structure on the electromagnetic field [12] and to
study manifestly quantum mechanical behavior
associated with the modified vacuum structure and/or the
large field associated with a single photon confined to a
small volume[4].

Feedback control has been playing an important role in
controlling the cavity locking. For example, in [13,14,15,
16], feedback control is used to stabilize an optical cavity
in order to build maximum energy inside these cavities.

The meaning of stability here, is to keep the cavity in
lock with the frequency of the input laser.

The difference between the resonant frequency of the
cavity and the input laser frequency is characterized in
terms of adetuning parameter∆ . The control goal is to
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keep this detuning parameter∆ = 0. Since the cavity
resonant frequency is directly dependent on the distance
between the cavity mirrors, it is possible to force the
detuning parameter∆ to zero by varying the distance
between these mirrors. The use of piezo-electic transducer
(PZT) material can play an important role in moving the
cavity mirrors to achieve the required resonant frequency.
The control methodology here is to measure the detuning
parameter∆ , then using this measured∆ for feedback
through a controller to generate voltage applied to a PZT
actuator attached to one of the cavity mirrors; see Fig.1.
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Fig. 1: Locking scheme for a three-mirror ring cavity: The optical
signals are represented by dash-dot lines and the electrical signals
are represented as solid lines.

The representation of a cavity system in Fig.1
involves a collocated force actuator (the PZT actuator)
combined with a position sensor (the cavity itself). This
implies that the cavity system under consideration can be
considered using the recently developed theory called
negative imaginary systems theory [17,18,19,20].

Lanzon and Petersen introduced a notion of negative
imaginary (NI) systems in [17,18] for the robust control
of flexible structures with force actuators combined with
position or acceleration sensors. In the single-input
single-output (SISO) case, NI systems are defined by
considering the properties of the imaginary part of the
system frequency responseG( jω) and requiring the
condition j (G( jω)−G( jω)∗)≥ 0 for all ω ∈ (0,∞). The
NI property arises in many practical systems. For
example, such systems arise when considering the
transfer function from a force actuator to a corresponding
colocated position sensor (for instance, a piezoelectric
sensor) in a lightly damped structure [21,18,22,23,24].
Another area where the underlying system dynamics are
NI, are nano-positioning systems; see e.g., [22,25,26,27,
28,29,30,31,32,33]. Also, the positive-position feedback
control scheme in [21,34], can be considered using the NI
framework. Furthermore, other control methodologies in
the literatures such as integral resonant control (IRC) [35]
and resonant feedback control [36,37], fit into the NI
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Fig. 2: A negative-imaginary feedback control system. If the
plant transfer function matrixG(s) is NI and the controller
transfer function matrixḠ(s) is SNI, then the positive-feedback
interconnection is internally stable if and only if the DC gain
condition,λmax(G(0)Ḡ(0))< 1, is satisfied.

framework and their stability robustness properties can be
explained by NI systems theory.

The stability robustness of interconnected NI systems
has been studied in [17,18]. In these papers, it is shown
that a necessary and sufficient condition for the internal
stability of a positive-feedback control system (see Fig.2)
consisting of an NI plant with transfer function matrix
G(s) and a strictly negative imaginary (SNI) controller
with transfer function matrixḠ(s) is given by the DC
gain condition

λmax(G(0)Ḡ(0))< 1, (1)

where the notationλmax(·) denotes the maximum
eigenvalue of a matrix with only real eigenvalues. This
stability result has been used in a number of practical
applications. For example in [24], this stability result is
applied to the problem of decentralized control of large
vehicle platoons. In [22,38], the NI stability result is
applied to nanopositioning in an atomic force microscope.
A positive position feedback control scheme based on the
NI stability result provided in [17,18] is used to design a
novel compensation method for a coupled fuselage-rotor
mode of a rotary wing unmanned aerial vehicle in [39]. In
[33], an IRC scheme based on the stability results
provided in [17,18] is used to design an active vibration
control system for the mitigation of human induced
vibrations in light-weight civil engineering structures,
such as floors and footbridges via proof-mass actuators.
An identification algorithm which enforces the NI
constraint is proposed in [40] for estimating model
parameters, following which an Integral resonant
controller is designed for damping vibrations in flexible
structures. In addition, it is shown in [41] that the class of
linear systems having NI transfer function matrices is
closely related to the class of linear Hamiltonian
input-output systems. Also, an extension of the NI
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systems theory to infinite-dimensional systems is
presented in [42].

The NI framework presented in [17,18] considers
systems with poles in the open left half of the complex
plane. This theory has been extended in [19] to include NI
systems with poles in the closed left half of the complex
plane, except at the origin. Also, further extensions to NI
systems theory include the study of NI controller
synthesis [43,44], connections between NI systems
analysis andµ-analysis [45], and conditions for robust
stability analysis of mixed NI and bounded-real classes of
uncertainties [46]. Furthermore, the concept of lossless
NI transfer functions is introduced in [47], and an
algebraic approach to the realization of a lossless NI
behavior is presented in [48]. The NI systems theory can
be extended to nonlinear systems using the concept of
counter-clockwise input-output dynamics as presented in
[49,50,51]. In [51], a sufficient conditions under which a
semilinear Duhem model is counter-clockwise is given,
where the counter-clockwise input-output system is
restricted to periodic input signals

In this paper, we apply the stability results presented
in [17,19] to design a controller for the cavity system
shown in Fig.1. Experimental frequency response data
for the cavity system is recorded using a digital signal
analyzer and a state space model is obtained using the
System Identification Toolboxfrom MatlabR©. Then, an
integral resonant controller is designed to damp the PZT
resonance.

According to the results in [17,19], the
positive-feedback interconnection of an NI system and an
SNI system is internally stable if and only if the DC gain
is less than one. The identified model for the cavity
satisfies the NI property.

Unlike the control techniques applied to experimental
quantum optics presented in [13,14,15,16], where the
linear quadratic Gaussian (LQG) controller synthesis was
discussed, the proposed NI technique guarantees the
robustness of the closed-loop with respect to changes in
the plant resonant frequencies.

The rest of the paper is organized as follows: Section
2 discusses the structure of the three-mirror ring cavity.
Section3 describes the process of obtaining a state space
model for the cavity system, starting with the
experimental frequency response data and shows that the
system model is NI. The design of an integral resonant
controller for the cavity system is discussed in Section4.
The paper is concluded with final remarks in Section5.

2 Cavity System

The cavity system under consideration is a three-mirror
open-air ring cavity as shown in Fig.1, a PZT is mounted
on mirror m1 which is used to vary the length of the
cavity hence the resonant frequency of the cavity. The
laser source in this experiment is continuous-wave 1550
nm diode laser. Before coupling the light into the cavity, it

is modified using optics such as isolators, mode matching
optics, half wave plates, and beam splitters. Then the light
is propagated to the mirror m3. There are two outputs of
this cavity, the first output is the transmitted beam, which
is detected at the transmitted port by a photodetector at
the output of mirror m2. This output is not used for cavity
locking. The second output is the error signal which is
detected at mirror m3 using homodyne detection; see e.g.,
[15,16]. This error signal, detected using a homodyne
detection, is fed to the integral resonant controller and
then to a high voltage amplifier (HVA) before providing
the necessary control signal to the PZT actuator.

The control objective is to drive the error signal to
zero so as to achieve cavity locking (∆ ≈ 0) while
maintaining the transmitted signal at a maximum. This
ensures that the cavity operates in a linear region as
depicted in the calculated plot for the error signal in Fig.
3.
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Fig. 3: Calculated variation of the error signal (output of
homodyne detector) with the detuning parameter∆ .

3 Cavity Model and System Identification

To obtain a dynamic model for the cavity system, a
system identification method is used to determine a
state-space model from the experimental input output
frequency response data. We record the frequency
response of the cavity system using a digital signal
analyzer as shown in Fig.4. The cavity was held in lock
using a manually tuned analog PI controller when the
frequency response data was collected as shown in Fig.4.

The identified state space model of the cavity system
is given as following;

ẋ(t) = Ax(t)+Bu(t), (2)

y(t) =Cx(t)+Du(t). (3)

This model can be written as a sum of a second order
systems as following;

G(s) =
3

∑
i=1

ki

s2+2ζ ωi +ω2
i

, (4)
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Fig. 4: Block diagram of the the digital signal analyzer setup used
to obtain the frequency response data for the plant.
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Fig. 5: The solid line is the frequency response data for the plant
obtained from the DSA, and the dashed line is the identified
model.

where the parametersζi ,ωi andki are given in the Table1.

Table 1: Model parameters
i 1 2 3
ζi 25×10−3 40.2×10−3 99.2×10−2

ωi 22×102 26.3×102 51×102

ki 3×105 11×104 14×106

The state space model (2)-(3) is satisfies the NI
property. This can be verified from the Bode plot of the
model in Fig.6, since the phase lies between 0 and−π
for all ω > 0, see [18].

Also, the imaginary part of the model transfer function
is plotted in Fig.7, which shows that it is negative over the
bandwidth of interest.
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Fig. 6: Bode plot of identified cavity model which shows that the
phase lies between 0 and−π for all ω > 0.
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Fig. 7: The imaginary part of the model transfer function, which
shows that it is negative over the bandwidth of interest.
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Fig. 8: Integral resonant controller with the cavity model.

4 Controller Design

In this paper, an integral resonant controller [52,18] with
a feed-through is used, which has a transfer function as
follows:

C(s) =
Γ

s+ΦΓ
−D. (5)

The controller in (5) is SNI for anyΓ > 0 andΦ > 0.
The proposed integral resonant control scheme is

shown diagrammatically in Fig.8. According to the
stability results in [17,19,20], the closed loop system for
the cavity system and the integral resonant controller in
(5) is internally stable providing the DC gain condition
λmax(C(0)G(0))< 1 is satisfied.

The DC gain conditionλmax(C(0)G(0)) < 1 can be
guaranteed with the feed-through gainD. Also, the large

c© 2014 NSP
Natural Sciences Publishing Cor.



Quant. Inf. Rev.2, No. 1, 1-8 (2014) /www.naturalspublishing.com/Journals.asp 5

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

−20 −10 0 10 20 30 40 50
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
Phase Margin: 13.9 deg

Fig. 9: Nyquist plot of−C(0)G(s) which shows that the phase
margin is 14◦.

D is used to reduce the steady state error. The controller
(5) can be considered as a lead compensator since it have
one pole and one zero in the left half of the complex
plane.

The integral resonant controller design process that we
used can be summarized as following:

–Determine the DC gain that required to give the
desired steady state error, whereerorr = 1

1−G(0)C(0)

andC(0) = 1
Φ −D.

–Using Nyquist plot to determine the phase margin of
the loop gain−C(0)G(s).

–Choose the location of the zero and the pole of the
controller such that the phase margin is greater that
30◦ and the maximum phase lead of the controller
occurs at the gain crossover frequency.

In our case, we chose the steady state error to be less than
0.06 and to achieve that, a DC gain for the controller is
chosen to beC(0) = −30 dB. The resulting phase margin
of the loop-gain−C(0)G(s) is 14◦ as shown in the Nyqust
plot given in Fig.9.

Then, the controller parameters were chosen such that
the controller has a maximum phase shift 35◦ as shown
Bode plot given in Fig.10.

Finally, to verify the performance of the closed loop
system, the step response and Bode plot of the closed loop
are plotted in Fig.11and Fig.12 respectively.

5 Conclusion

In this paper, a dynamical model of a cavity system is
obtained through system identification applied to
experimental input output frequency response data. The
data was recorded using a digital signal analyzer. The
system model is shown to be negative imaginary (NI)
system. An integral resonant controller is designed based
on the NI system theory. Simulation results for the
closed-loop have been provided. Future research will be
directed towards implementing this controller
experimentally.
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Fig. 10: Bode plot of the integral resonant controller with a
transfer functionC(s) = Γ
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