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Abstract: In this article, Differential transform method is presented for solving Duffing equations.We apply these method to three
examples. First Duffing equation has been converted to power series by one-dimensional differential transformation,Then the numerical
solution of equation was put into Multivariate Pad series form.Thus, we have obtained numerical solution differential equation of
Duffing. These examples are prepared to show the efficiency and simplicity of the method.
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1 Introduction

The Duffing equation describes by second order ordinary
differential equation with the common form

x
′′
+ px

′
+ p1x+ p2x3 = f (t), (1.1)

x(0) = α,x′(0) = β , (1.2)

Where p, p1, p2,α and β are real constants.
Mathematical modeling of many frontier physical
systems leads to nonlinear ordinary differential equations
(NODE). One of the most common physical NODE’s,
governs many oscillative systems, is the Duffing
equations. The Duffing equations can be found in a wide
variety of engineering and scientific applications. In
recent years, numerous works have focused on the
development of more advanced and efficient methods for
Duffing equations such as Laplace decomposition
algorithm [2], Restarted Adomian decomposition method
[1]. Differential transform method (DTM) is based on
Taylor series expansion [5] and [6]. In 1986, the
differential transform method (DTM) was first introduced
by Zhou [7] to solve linear and nonlinear initial value
problems associated with electrical circuit analysis. The
differential transform method obtains an analytical
solution in the form of a polynomial. It is different from
the traditional high order Taylor’s series method, which

requires symbolic competition of the necessary
derivatives of the data functions. All of the previous
applications of the differential transform method deal
with solutions without discontinuity. As the DTM is more
effective than the other methods, we further apply it to
solve the The Duffing equations. In this paper, we apply
these method to three examples. First, differential
equation of Duffing has been converted to power series by
one-dimensional differential transformation Then the
numerical solution of equation was put into Pade series
form [10]. The Pade approximation method was used to
accelerate the convergence of the power series solution.
Thus, we obtain numerical solution differential equation
of Duffing.

2 One-Dimensional Differential Transform

Differential transform of functiony(x) is defined as
follows:

Y (k) =
1
k!

[

dky(x)
dxk

]

x=0
, (2.1)

In equation (2.1),y(x) is the original function andY (k) is
the transformed function, which is called the T-function.
Differential inverse transform ofY (k) is defined as
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y(x) =
∞

∑
k=0

xkY (k), (2.2)

from equation (2.1) and (2.2), we obtain

y(x) =
∞

∑
k=0

xk

k!

[

dky(x)
dxk

]

x=0
, (2.3)

Equation (2.3) implies that the concept of differential
transform is derived from Taylor series expansion, but the
method does not evaluate the derivatives symbolically.
However, relative derivatives are calculated by an iterative
way which are described by the transformed equations of
the original functions. In this study we use the lower case
letter to represent the original function and upper case
letter represent the transformed function. From the
definitions of equations (2.1) and (2.2), it is easily proven
that the transformed functions comply with the basic
mathematics operations shown in Table 1. In actual
applications, the functiony(x) is expressed by a finite
series and equation (2.2) can be written as

y(x) =
m

∑
k=0

xkY (k), (2.4)

Equation (2.3) implies thaty(x) = ∑∞
k=m+1 xkY (k) is

negligibly small. In fact,m is decided by the convergence
of natural frequency in this study.

Theorem 1. if

y(t) = u1(t)u2(t)...un−1(t)un(t),

then

Y (k) =
k

∑
ln−1=0

ln−1

∑
ln−2=0

...
l3

∑
l2=0

l2

∑
l1=0

U1(l1)

U2(l2− l1)...Un−1(ln−1− ln−2)Un(k− ln−1),

Table 1 The fundamental operations of one-dimensional DTM

Original function Transformed function

y(x) = u(x)± v(x) Y (k) =U(k)±V (k)

y(x) = exp(x) Y (k) = 1
k!

y(x) = d jw(x)
dx j Y (k) = (k+1)...(k+ j)W (k+ j)

y(x) = u(x)v(x) Y (k) = ∑k
r=0U(r)V (k− r)

y(x) = cos(wx+α) wk

k! cos( kπ
2 +α)

3 Pade Approximation

Suppose that we are given a power series∑∞
i=0 aixi,

representing a functionf (x), so that

f (x) =
∞

∑
i=0

aix
i, (3.1)

A Pade approximation is a rational fraction

[L/M] =
p0+ p1x+ ...+ pLxL

q0+q1x+ ...+qMxM , (3.2)

which has a Maclaurin expansion which agress with (3.1)
as for as possible, Notice that in (3.2) there areL + 1
numerator coefficients and M + 1 denominator
coefficients. There is a more or less irrelevant common
factor between them, and for definitenees we takeq0 = 1.
This choice turns out to be an essential part of the precise
definition and (3.2) is our conventional notation with this
choice forq0. So there areL+ 1 independent numerator
coefficients andM independent numerator coefficients,
making L + M + 1 unknown coefficients in all. This
number suggest that normally the[L/M] ought to fit the
power series (3.1) through the orders 1,x,x2, ...,xL+M in
the notation of formal power series.

∞

∑
i=0

aix
i =

p0+p1x+ ...+pLxL

q0+q1x+ ...+qMxM +O(xL+M+1). (3.3)

Multiply the both side of (3.3) by the denominator of
right side in (3.3) and compare the coefficients of both
sides (3.3 ), we have

al +
M

∑
k=1

al−kqk = pl , (l = 0, ...,M), (3.4)

al +
L

∑
k=1

al−kqk = pl , (l = M+1, ...,M+L). (3.5)

Solve the linear equation in (3.5), we have
qk,(k = 1, ...,L). And substituteqk into (3.4), we have
pl ,(L = 0, ...,M). Therefore, we have constructed a
[L \M] Pade approximation, which agress with∑∞

i=0 aixi

through orderxL+M. if M ≤ L ≤ M+2, whereM and L
are the degree of numerator and denominator in Pade
series, respectively, then Pade series gives an A-stable
formula for an ordinary differential equation.
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4 Applications

Example 1. (see Table 2 and Figure 1). We first
considered the Duffing equation

x
′′
+ x

′
+ x+ x3 = cos3(t)− sin(t), (4.1)

with initial values

x(0) = 1,x′(0) = 0, (4.2)

With the exact solutionx(t) = cos(t). the Duffing
equation Considering the Maclaurin series of the
excitation term

cos3(t)− sin(t)≈ 1− t −
3t2

2
+

t3

6
+

7t4

8
−

t5

120
−

61t6

240
.

(4.3)

Substituting equation (4.3) into equation (4.1), we get

x
′′
+ x

′
+ x+ x3 = 1− t −

3t2

2
+

t3

6
+7

t4

8
−

t5

120
−

61t6

240
.

(4.4)

By using the fundamental operations of differential
transformation method in Table 1, we obtained the
following recurrence relation for equation (4.4):

X(k+2) =
1

(k+1)(k+2)
[−(k+1)X(k+1)−X(k)

(4.5)

−
k

∑
k2=0

k2

∑
k1=0

X(k1)X(k2− k1)X(k− k1)

+δ (k)−δ (k−1)−
3
2

δ (k−2)+
1
6

δ (k−3)

+
7
8

δ (k−4)−
1

120
δ (k−5)−

61
240

δ (k−6)],

From the initial condition (4.2), we have

X(0) = 1,X(1) = 0, (4.6)

The valuesX(k), in k = 0,1,2,3, ... of equation (4.5) and

(4.6) can be evaluated as follows:

X(2) =
−1
2

,X(3) = 0,X(4) =
1
24

,X(5) = 0,X(6) =
−1
720

,

(4.7)

X(7) = 0,X(8) =
1

40320
,X(9) = 0,X(10) =

−1
3628800

, ...

By using the inverse transformation rule for one
dimensional in equation (2.2), the following solution can
be obtained:

x(t) =
∞

∑
k=0

tkX(k) = X(0)+ tX(1)+ t2X(2)+ t3X(3)+ t4X(4)+ ...

(4.8)

= 1−
1
2

t2+
1
24

t4−
1

720
t6+

1
40320

t8−
1

3628800
t10+ ...

= 1−
1
2!

t2+
1
4!

t4−
1
6!

t6+
1
8!

t8−
1

10!
t10+ ...= cos(t).

Which x(t) is exact solution. Power seriesx(t) can be
transformed into Pade series

P[5/4] = 1−0.4563492063492063t2+0.0207010582010582t4

1+0.0436507936507937t2+8.597883597883598×10−4t4 ,
(4.9)

Table 2 Comparison of numerical solution ofx(t) and Pade
ApproximationP[5/4]

t x(t) P[5/4] |x(t)−P[5/4]|
0.1 0.9950041653 0.9950041652 1×10−10

0.2 0.9800665779 0.9800665773 6×10−10

0.3 0.9553364891 0.9553364898 7×10−10

0.4 0.9210609941 0.9210609937 4×10−10

0.5 0.8775825619 0.8775825624 5×10−10

0.6 0.8253356149 0.8253356166 1.7×10−9

0.7 0.7648421873 0.7648421979 1.06×10−8

0.8 0.6967067093 0.6967067492 3.99×10−8

0.9 0.6216099683 0.6216100956 1.273×10−7

1.0 0.5403023059 0.5403026658 3.599×10−7
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Figure 1. Values ofx(t) and itsP[5/4] Pade approximant.

Example 2. (see Table 3 and Figure 2). Now, we consider
a further version of Duffing equation as follows:

x
′′
+2x

′
+ x+8x3 = e−3t , (4.10)

with initial values

x(0) =
1
2
,x′(0) =

−1
2

, (4.11)

the exact solutionx(t) = 1
2e−t .

Taking the one dimensional differential transform of
(4.10), we can obtain:

X(k+2) =
1

(k+1)(k+2)
[−2(k+1)X(k+1)−X(k)

(4.12)

−8
k

∑
k2=0

k2

∑
k1=0

X(k1)X(k2− k1)X(k− k1)+
(−3)k

k!
],

From the initial condition (4.11), we have

X(0) =
1
2
,X(1) =

−1
2

, (4.13)

For eachk, substituting equation(4.13)into equation
(4.12), and via the recursive method,the valuesX(k), can
be evaluated as follows:

X(2) =
1
4
,X(3) =

−1
12

,X(4) =
1
48

,X(5) =
−1
240

,

X(6) =
1

1440
,X(7) =

−1
10080

, ...,

(4.14)

By using the inverse transformation rule for one
dimensional in equation (2.2), the following solution can
be obtained:

On rearranging the solution, we get the following closed
form solution:

∞

∑
k=0

tkX(k) =X(0)+ tX(1)+ t2X(2)+ t3X(3)+ t4X(4)+
1
48

t4

(4.15)

+t5X(5)+ t6X(6)+ ...=
1
2
−

1
2

t +
1
4

t2−
1
12

t3

−
1

240
t5+

1
1440

t6−
1

10080
t7+ ...=

1
2
(1− t

+
1
2!

t2−
1
3!

t3+
1
4!

t4−
1
5!

t5+
1
6!

t6−
1
7!

t7+ ...),

That is,

x(t) =
1
2

e−t . (4.16)

Which x(t) is exact solution. Power seriesx(t) can be
transformed into Pade series

P[5/4] = (0.5−0.2777777777777778t +0.0694444444444444t2

(4.17)

−0.0099206349206349t3+8.267195767195767×10−4t4

−3.306878306878307×10−5t5)/(1+0.4444444444444444t

+0.0833333333333333t2+0.0079365079365079t3

+3.306878306878307×10−4t4),

Figure 2. Values ofx(t) and itsP[5/4] Pade approximant.
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Table 3 Comparison of numerical solution ofx(t) and Pade
ApproximationP[5/4]

t x(t) P[5/4] |x(t)−P[5/4]|
0.1 0.4524187090 0.4524187092 2×10−10

0.2 0.4093653764 0.4093653767 3×10−10

0.3 0.3704091103 0.3704091102 1×10−10

0.4 0.3351600229 0.3351600228 1×10−10

0.5 0.3032653301 0.3032653298 3×10−10

0.6 0.2744058181 0.2744058180 1×10−10

0.7 0.2482926519 0.2482926520 1×10−10

0.8 0.2246644819 0.2246644819 0
0.9 0.2032848295 0.2032848297 2×10−7

1.0 0.1839397196 0.1839397202 6×10−7

Example 3. (see Table 4 and Figure 3).Consider the
non dimensional Duffing equation[9]

x
′′
+ kx+ εx3 = |k−1|cos(t), (4.18)

with initial values

x(0) = 0,x′(0) = 0, (4.19)

The solution depends on the two dimensionless
parametersk andε .

For the casek = 30, ε = 0 we have

x
′′
+30x = 29cos(t), (4.20)

By using the fundamental operations of differential
transformation method in Table 1, we obtained the
following recurrence relation for equation (4.20):

X(k+2) =
1

(k+1)(k+2)

[

−30X(k)+
29
k!

cos

(

kπ
2

)]

,

(4.21)

From the initial condition (4.19), we have

X(0) = 0,X(1) = 0, (4.22)

The valuesX(k), in k = 0,1,2,3, ... of
equation(4.21)and(4.22)can be evaluated as follows:

X(2) =
29
2
,X(3) = 0,X(4) =

−899
24

,X(5) = 0, (4.23)

X(6) =
26999
720

,X(7) = 0,X(8) =
−809999

40320
,X(9) = 0,

X(10) =
24299999
3628800

,X(11) = 0,X(12) =
−104142857

68428800
,

X(13) =0,X(14) =
21869999999
87178291200

,X(15) = 0,

X(16) =
−656099999999
20922789888000

,X(17) = 0,

X(18) =
401693877551

130660687872000
,X(19) = 0, ...

By using the inverse transformation rule for one
dimensional in equation (2.2), the following solution can
be obtained:

x(t) =
∞

∑
k=0

tkX(k) = X(0)+ tX(1)+ t2X(2)+ t3X(3)+ t4X(4)+ ...

(4.24)

=
29
2

t2−
899
24

t4+
26999
720

t6−
809999
40320

t8+
24299999
3628800

t10

−
104142857
68428800

t12+
21869999999
87178291200

t14−
656099999999

20922789888000
t16

+
401693877551

130660687872000
t18− ....

Power seriesx(t) can be transformed into Pade series

P[5/4] = 14.5t2−18.67370920505477t4

1+1.295491319191625t2+0.7605747968005868t4 ,
(4.25)
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Table 4 Comparison of numerical solution ofx(t) and Pade
ApproximationP[5/4]

t x(t) P[5/4] |x(t)−P[5/4]|
0.1 0.1412914651 0.1412914643 8×10−10

0.2 0.5224158288 0.5224149658 8.630×10−7

0.3 1.027644677 1.027600040 0.000044637
0.4 1.502172577 1.501490977 0.000681600
0.5 1.797479057 1.792239670 0.005239387
0.6 1.814878675 1.789125527 0.025753148
0.7 1.534516826 1.442409794 0.092107032
0.8 1.021328053 0.7620357587 0.2592922943
0.9 0.4062256777 −0.1988810030 0.6051066807
1.0 −0.1518890375 −1.365712996 1.213823958

Figure 3. Values ofx(t) and itsP[5/4] Pade approximant.

5 Conclusion

In this study, the differential transform method is
successfully expanded for the solution of Duffing
equations. Since the Differential transform method
(DTM) gives rapidly converging series solutions, the
differential transform method is more effective than other
methods. The accuracy of the obtained solution can be
improved by taking more terms in the solution. Exact
closed form solution is obtained for all examples
presented in this paper.
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