
Appl. Math. Inf. Sci. 6 No. 2S pp. 479S-488S (2012)

An Architecture-Centered Method for Rapid Software

Development

Chaoyu Lin
1
 , Jyhjong Lin

2
 and Weipang Yang

1

1
 Department of Information Management, National Dong Hwa University, Hualien, Taiwan

2
 Department of Information Management, Ming Chuan University, Taoyuan, Taiwan

Corresponding author: Email: d9732010@ems.ndhu.edu.tw; jlin@mail.mcu.edu.tw; wpyang@mail.ndhu.edu.tw

Received Dec. 22, 2010; Revised Feb. 21, 2011; Accepted Apr. 23, 2011
Published online: 1 June 2012

Abstract: An architecture-centered method for rapid software development is presented in this paper.

It basically follows the guidelines suggested by extreme programming that require highly expressive

programming languages (i.e., Java) and CASE tools. As in extreme programming, this method

addresses on rapid software development for small- or medium-sized projects. Further, for effective
guidance on the development, it directs the construction of system components by imposing an

architecture-based concept of layered specification and construction of these components through its

activities. Since the method follows the guidelines suggested by extreme programming and supports
effective guidance by a layered development of architectural components, team productivities can be

greatly enhanced by less (but effective) overhead on specification work. The method uses UML and

Petri nets as its modeling tool; for illustration, an example application is presented that specifies and
directs the development of a software system with business-oriented Internet services.

Keywords: Software System, Development Method, Architecture-Centered, UML, Petri Nets.

1 Introduction

Properly identifying required activities and

directing the completion of these activities for
constructing relevant artifacts/deliverables are key

issues for the successful development of a software

system. For these needs, it has become a great deal
of concerns for a software project team to impose a

suitable development method because such a

method can help to figure out required activities
/artifacts and more importantly can provide

information to assist on directing the completion

/construction of these activities/artifacts. Although
there are already plenty of software development

methods in the literature and also as a common

recognition there are no methods that are prefect to
employ all sound features for effective

development specification and guidance, a desired

method that is suitable for a software development
project can still be expected with the following

features:(1) It can define the structural and dynamic

aspects of the development work; (2) It is featured

by proper mechanisms to support effective

guidance on the development work; (3) The defined
activities can be concerned in a leveled manner

such that team members can participate in the

execution by providing/monitoring respective
information about the specification and completion

of concerned activities/artifacts; and (4) It can

support rapid development for small- or medium-
sized projects by less but effective overhead on

completing/constructing defined activities/

artifacts; automatic tools should also be generated
to facilitate its practical applications.

As mentioned earlier, there are already plenty of

software development methods in the literature.
Among them, for instances, Waterfall model,

Evolutionary Development, and Component-based

Software Engineering are three traditional generic
models [1-8] that are not mutually exclusive but

often used together for development of large

systems; Rational Unified Process [9,10] and Spiral

Applied Mathematics & Information Sciences

 An International Journal
© 2012 NSP

 @ 2012 NSP
 Natural Sciences Publishing Cor.

mailto:d9732010@ems.ndhu.edu.tw
mailto:jlin@mail.mcu.edu.tw
mailto:wpyang@mail.ndhu.edu.tw

 Chaoyu Lin et al: An Architecture-Centered Method for Rapid …

084

model [11,12] give an illustration that employs
elements of these three models. Some formal

approaches like B method and Cleanroom model

can be found in [13-16] that emphasize on the
mathematical specification for the software system

and its mapping directly into an implementation.

With respect to these design-oriented (more
analysis and design work) models, many

alternatives that criticize the overhead on design

have been proposed (e.g., less or even no analysis
and design work) such as Agile Development [17-

19], Rapid Application Development (RAD) [20]

and Extreme Programming (XP) [21,22] where
code work (i.e., implementation, testing, and

refactoring) are focused. Whereas such design- or

code-oriented models try to get an extreme in very
different spectrums, some compromised

considerations can be found in [23,24] that employ

simplified design and code work through rapid
engineering ways where specific platforms and

CASE tools are imposed on their development

processes.
In general, these existing approaches provide

sound mechanisms for development specification

and guidance; some drawbacks with respect to the
above desired features can still be found among

them: (1) For the two kinds (design- or code-

oriented) of models, each one gets an extreme in its
concerning spectrums, so the advantages for one

kind would become the opposites for the other; (2)

For the comprised approach that takes advantage of
the two extreme kinds, its less overhead on design

work and associated rapid engineering way make it

good for the rapid development for small- or
medium- sized projects. However, such less design

work on the other hand makes it lack sufficient

mechanisms for supporting effective guidance on
the development work; and (3) Among these

existing approaches, they essentially focus on the

specification and completion of defined activities
/artifacts; in contrast, few considerations about the

management of these tasks can be found in their

statements. In our knowledge, however, such
management issues should not be negligible since

they play a critical role for the success of these

tasks.
To address these deficiencies, we present in this

paper an architecture-centered method that supports

rapid software development for small- or medium-
sized projects. This method in general follows the

guidelines suggested by XP that require highly

expressive programming languages (i.e., Java) and
CASE tools. As in XP, this method asks less design

work for speeding software development. However,

for providing guidance on the development work, it
focuses on the construction of system components

by imposing an architecture-based concept of

layered specification and construction of these
components on its activities; this makes it easy to

direct the development work by concerning the

executions of these activities about their effects on
these components for realizing desired user

requirements. Since the method follows the

guidelines in XP and supports effective guidance
by a layered development of architectural

components, team productivities can be greatly

enhanced by less (but effective) overhead on
specification work. Finally, the concept of

developing architectural components in a layered

manner assists also in the management issues since
various activities can be concerned in a

corresponding layered manner such that responsible

team members can participate in the project by
providing information or monitoring status about

the specification and completion of these activities

(e.g., determining and analyzing the status of these
activities). For practical applications, the method

uses UML [25,26] and extends Petri nets (PN) [27-

29] as its modeling mechanisms, and, a prototype
CASE tool is constructed to support the layered

development of system components and the

guidance and monitoring of the development work.
This paper is organized as follows. Section 2

presents the method and its corresponding models

in UML and extended PN. For illustration, an
example application is presented in Section 3 that

specifies and directs the development of a Web

software system with business-oriented services.
Finally, Section 4 has the conclusions.

2 The Development Method
As shown in Figure 1, the method is architecture

-based with six steps:

1. use case identification, described in an UML

use case diagram, that clarifies user
requirements to be satisfied in the system;

2. conceptual components identification,

described in an UML robustness diagram, that
identifies conceptual components with each one

playing a specific role in the realization of a

desired use case;

3. components development order

determination, described in an extended PN

diagram, that determines the specification and
construction order of conceptual components

through an iterative process of steps 4 – 6

Chaoyu Lin et al: An Architecture-Centered Method for Rapid Software Development

084

according to a designated order of the three

(Model, View, and Control) layers in the MVC
architecture.

4. architectural components specification,

described in two UML (class and sequence)
diagrams, that imposes such architectural

considerations as the MVC architecture and

relevant supportive design patterns on
conceptual components such that formal

architectural components can be derived to

effectively support the realization of the desired
use case;

5. system components design, described in two

(UML class and sequence) diagrams, that
employs platform specific features into

architectural components such that each

resultant system component has a specific
implementation code on the chosen platform

and hence its construction can be easily

achieved by a direct transformation from its
design work;

6. system components construction, described in

Java code, that implements and tests platform
specific components for realizing the desired

use case;

Note that steps 4 to 6 are an iterative process
that proceeds the development of system

components (via conceptual and architectural

versions) under a prescribed order of MVC
architectural layers and such a layered development

process is particularly specified in an extended PN

diagram that takes advantage of its formal
semantics to support the guidance and monitoring

of the development work.

2.1 The use case identification

The first step is to identify user requirements of
the system. As in many existing approaches, all

desired user requirements can be identified by

various techniques like interviewing, questionnaire,
observation, etc. and the identified requirements are

represented by means of use cases in a UML use

case diagram. Note that the reader is referred to
[25] for more detail about use cases and their

representation in UML.

After identifying desired use cases, it is time to
perform development work for constructing them in

an incremental manner; that is, based on available

resources and functional/non-functional
considerations, these use cases can be constructed

in an incremental plan where they are prescribed

into a set of increments for design and construction
into a controlled series of deliverable releases. The

following describes the remaining steps for design

Figure 1: the architecture-centered development method

and construction of each use case or increment.

2.2 The conceptual components identification
With a use case desired, its design work could

begin by identifying an architectural partitioning of

conceptual components that each plays a specific
role in achieving this use case. In our best

knowledge, clarifying conceptual components and

their participant roles is a most suitable incentive to
ensure the achievement of a desired use case

[30,31]. For this purpose, robustness analysis with

scenarios by [24] is used that first identifies
possible scenarios to describe those behaviors

expected in the use case. For description, each

scenario is presented as a flow of events (or an
equivalent UML activity diagram) where each

event (or activity) represents a behavior needed to

realize the use case and hence is composed of three
parts expressed from left to right: an actor, an

action that the actor takes, and entities on which the

 Chaoyu Lin et al: An Architecture-Centered Method for Rapid …

084

Figure 2: robustness diagram with three

types of conceptual components

action is taken. Then, such a flow of events is

traced in order to identify three (boundary, control,

and entity) types of conceptual components that
each plays a specific role in realizing the use case;

for description, these components are described in

an UML robustness diagram as shown in Figure 2
(The reader is referred to [24] for detail about the

transformation from use cases into robustness

diagrams).

2.3 The components development order

determination
With conceptual components that each plays a

specific role in the realization of a desired use case,

it is good time to determine the specification and
construction order of these conceptual components

in a layered manner. This is because under a

layered concept these conceptual components are
categorized into three (boundary, control, and

entity) types which match exactly those three

respective layers in the most commonly recognized
MVC architecture [32-35], their specification and

construction can thus be proceed in such a layered

manner. That is, conceptual components can be
specified/ constructed through an iterative series of

transformations into Java code according to some

designated order of the three MVC (Model, View,
and Control) layers. For example, components may

be developed under such an order as V -> M -> C

or M -> C -> V; in fact these orders can be
determined by referencing the characteristics of the

use cases being realized where each MVC layer

addresses certain aspects of these characteristics
(e.g., for interaction- or process- or data-oriented

use cases, various development orders may be

applied due to their different focuses).
The remaining steps 2.4 – 2.6 are therefore an

iterative process for components in each MVC
layer according to the designated order, and an

extended PN diagram [36] is used to specify the

process that supports particularly two advantages:
(1) its architecture-centered design and layered

development supports effective guidance on the
development work (e.g., the design/code activities

can be proceeded and directed under a designated

order of their effects on system components toward
the realization of desired use cases); (2) its layered

development helps also the management of the

development work by facilitating the participation
of team members in a corresponding layered

manner where these members may provide

information about the executions of the design/code
activities or their accessed components (e.g., the

execution status of these activities or the versions

of their accessed components) and then to monitor
them by analyzing the PN process diagram based

on its formal semantics (e.g., traversing the

reachability graph derived from its behavioral
semantics).

2.4 The architectural components specification
With conceptual components and their

participant roles in achieving a desired use case, the

next is to impose such architectural considerations
as architectural frameworks and design patterns on

these conceptual components to derive formal

architectural ones that support the realization of the
use case. In the context of architectural

frameworks, many well-known approaches can be

found such as MVC [32-35], MFC [37,38], and
PCMEF [39]. Among them, nonetheless, MVC

(Model, View, Control) is most commonly chosen

for development of small- or medium-sized projects
due to its well-recognized role-based concept, a

classic use of separation of concerns in object-

oriented design, and a most number of supportive
design patterns [40]. Hence, MVC is applied herein

in a layered manner such that components are

allocated respectively at its three layers and
developed layer by layer (e.g., View -> Control ->

Model) according to some designated order. Note

that with the chosen MVC architectural framework,
supportive design patterns [33] can be used at each

layer to enhance the effectiveness of these

components on realizing the use case.
While architectural components are identified,

two UML diagrams are used to specify these

components and their behaviors: (1) a class diagram
that describes these components and their

dependent relationships; and (2) a sequence

diagram that describes how these components
interact with each other to achieve the use case. The

following provide rules for the transformation from

robustness diagrams into class and sequence ones:
(1) For each robustness diagram and its originating

scenarios, two initial class and sequence diagrams

Chaoyu Lin et al: An Architecture-Centered Method for Rapid Software Development

084

in the context of the MVC architecture can be

derived by the following mapping rules:

(2) For these two class and sequence diagrams,

consider supportive design patterns [33] and
their applicability to determine if there are

suitable design patterns to be imposed on either

of the three MVC layers such that in
collaboration with those architectural

components in the class/sequence diagrams, the

effectiveness of these architectural components
on the realization of the use case can be

enhanced. For instance, for flexibility in

designing operational calls from view to
control components or from control to model

ones, a CMD (Command) design pattern may

be imposed on the View and Control layers in
MVC, while for flexibility in designing data

access mechanisms, a DAO (Data Access

Object) design pattern may be used in the
Model layer.

2.5 The system components design
With architectural components that have

platform independent features, the next step is to

employ platform specific features into these
components such that each resultant system

component has a specific implementation code on

the chosen platform and hence its construction can

be easily achieved by a direct transformation from

its design work. Since there are many existing
platforms available for implementation and

execution, for illustration Java JEE technologies

[41] are used illustratively into architectural
components to create JEE specific system

components that support the realization of the use

case (for illustration, Web services are provided).
In Web software systems, functions are presented

and accessed in Web pages where (1)

(input/output/action types of) AWT or Swing
widgets are allocated in containers (e.g., forms or

tables) to provide interfaces between users and

systems; (2) JSP or Servlet or EJB is used in system
sites to provide services for users; and (3) Java

Bean or EJB is used in system sites to support

access and storage of databases. In our knowledge,
these types of JEE components support well the

implementation and execution of Web software

systems and thus the following provide rules for the
transformation from architectural components into

JEE specific system ones:

2.6 The system components construction

With system components that have platform

specific features, the next step is to implement
these components in Java code that collaboratively

provide the desired Web services. This is a trivial

work because each system component has become
a JEE one and its implementation can be easily

achieved by constructing its code structure and

executable structural/behavioral statements for
providing the desired Web services.

3 The Illustration for Book Publishing

 Chaoyu Lin et al: An Architecture-Centered Method for Rapid …

080

Legend : design and construction sequence

Increment 1 Increment 2 Increment 3

use case use case

search books

view books

order books

share writing
experiences

share organizing
thoughts

organize
new books

write
new books

 Figure 3: use cases and increments for book publishing

3.1 The use case identification for book

publishing
As in many book publishing companies that

offer various services such as (1) searching/viewing

/ordering of books; (2) sharing of writing
experiences or organizing thoughts; and (3) writing

or organizing of new books, seven use cases can

therefore be identified and prescribed into three
increments for further design and construction as

shown in Figure 3.

3.2 The conceptual components identification for

book publishing

For each use case, its design work begins by
identifying conceptual components that each plays

a specific role in is achievement. For this purpose,

robustness analysis with scenarios is used to
identify three (boundary, control, and entity) types

of components that each plays a specific role in

realizing the use case. For our example, Figure 4 is
a robustness diagram with conceptual components

and relevant dependent relationships transformed

from the „share writing experiences‟ use case.

3.3 determine components development order

for book publishing
With conceptual components identified, their

development order is then determined in terms of

some designated order of the three MVC layers.
For the example, since the „share writing

experiences‟ use case focuses on the interactions

among customers for sharing experiences where
interaction and data models play critical roles for its

realization, conceptual components in Figure 4 can

thus be specified and constructed through an
iterative process with the order View->Model-

>Control to address such characteristics. The steps

3.4 – 3.6 are therefore iterative for components in
each MVC layer according to this order and an

extended PN diagram in Figure 5 is used to specify

this process where its analysis can be achieved by
traversing its reachability graph as in Figure 6.

3.4 The architectural components specification

for book publishing

The next step is to impose the MVC
architectural framework and relevant supportive

design patterns on conceptual components to derive

formal architectural components that effectively
support the realization of the desired use case. For

the example, Figure 7 has class and sequence

diagrams mapped from the robustness diagram in
Figure 4 for realizing the „share writing

experiences‟ use case. In particular, while

designing architectural components at each MVC
layer, (1) for providing flexible operational calls, a

CMD (Command) design pattern is imposed on the

Control layer; and (2) for providing flexible data
access mechanisms, a DAO (Data Access Object)

design pattern is used in the Model layer.

3.5 The system components design for book

publishing

With architectural components that have
platform independent features, the next is to

employ platform specific features into these

components. For the example, Figure 8 has class
and sequence diagrams transformed from Figure 7

for realizing the Scenario #1 (view experiences

shared from other users) of the „share writing
experiences‟ use case. In particular, (1) Swing

widgets (i.e., Text Field and Button) are allocated

Figure 4: robustness diagram from robustness analysis with scenarios

for realizing the „share writing experiences‟ use case

Chaoyu Lin et al: An Architecture-Centered Method for Rapid Software Development

084

in Forms to provide interfaces for users to insert

topics about experiences; (2) Servlet and JSP (with
Table/Text Field to hold and display shared

experiences) is used at the Control layer to provide

services for users; (3) Java Bean is used at the
Model layer to support retrieval of shared

experiences; (4) EJB is used at the model layer to

support storage of shared experiences under
specific topics and (5) these system components

interact with each other via operational calls to

provide the desired “view experiences shared from
other users “ of the „share writing experiences‟ use

case.

3.6 The system components construction for

book publishing

With system components that have JEE features
for implementation of Web services, the next step

is to implement and test these components in Java

code that collaboratively provide the desired Web
services. This is a trivial work by constructing its

code structure and executable structural and

behavioral statements for providing these services.

4 Conclusions
In this paper, we present an architecture-

centered method that supports rapid software
development for small- or medium-sized projects.

This method follows the guidelines in XP for

modeling design diagrams and mapping into
executable Java code. For providing development

guidance, it employs a layered specification/

construction of system components based on the
well recognized MVC architectural framework. To

illustrate, it is applied to the development of a Web

software system with services for book publishing.
More specifically, the „share writing experiences‟

use case is illustrated by first identifying its

conceptual components and then specifying
/constructing them through a View -> Model ->

Control order.

With less overhead on specifying and
constructing system components and effective

guidance on the management of these activities, the

method can support a rapid development for small-
or medium- sized projects. Currently, a prototype

CASE tool accompanied with the method is being

constructed that will support the specification and
construction of conceptual components at the three

MVC layers respectively, via steps 3.4 – 3.6 with a

series of transformations from conceptual
specification to architectural specification to system

design to code.

Finally, since the method supports the
management of the development work by

facilitating team members to provide information

about the executions of the design/code works or
their accessed components and then to monitor

them by analyzing the extended PN diagram based

on its formal semantics, we will therefore explore
further its effects on the management of the

development work where the provision and/or

monitoring of information about the executions of
the design/code works or their accessed

components may be realized by certain useful Java

documentation tools such as Annotations and
Javadoc.

Legend:

produce/consume

developing
View layer
components

start development end development

developing
Model layer
components

start development end development

developing
Control layer
components

start developmentend development

Transition
(activity starts/ends) reference

conceptual
components

components
after View layer

development

components
after Model layer

development

components
after Control layer

development

restart developmentrestart development

restart development

restart

restart restart

developed
components

activity
controller Place

development
steps 3.4 - 3.6

Figure 5: development process of layered components for use case - share writing experiences

 Chaoyu Lin et al: An Architecture-Centered Method for Rapid …

084

View Layer Control Layer Model Layer

displaying HCI

responding HCI

insertion HCI

CTRL invoker

displaying CTRL

responding CTRL

insertion CTRL

data access helper

insertion manager

retrieval manager

topics manager

experiences manager

topics

comments

experiences

invoke(topics)
invoke(comments)

invoke(experiences)

display(topics)

respond(comments)

insert(experiences)

access(topics)
access(comments)

access(experiences)

insert(comments)
insert(experiences)

retrieve(topics)

topics, comments

shared experiences

retrieve(topics)
insert(comments)

insert(experiences)

retrieve(topics)
insert(experiences)

fetch(topics)

fetch(comments)

fetch(experiences)

insertion HCIuser responding HCI displaying HCI
control
invoker

insertion CTRL responding CTRL displaying CTRL data access
helper

insertion mgr retrieval mgr
experiences

manager
topics mgr

or

or

or
fetch(topics)

fetch(comments)

fetch
(experiences)

invoke
(experiences)

invoke(topics)

invoke
(comments)

insert
(experiences)

display(topics)

respond(comments)

access
(experiences)

access(topics)

access
(comments)

insert
(experiences)

insert
(comments)

retrieve(topics)

insert(comments)
insert(experiences)

retrieve(topics)

retrieve(topics)

insert
(experiences)

shared
experiences

shared
experiences

shared
experiences

shared
experiences

shared
experiences

shared
experiences

Model LayerControl LayerView Layer

View Layer Control Layer Model Layer

<<HTML>>
displaying HCI

<<Form>>

<<Button>>

<<Servlet>>
CTRL invoker

<<Java Bean>>
data access helper

topics

doPost(topics)

access(topics)

put()

submit()

<<Text Field>>
topics

<<JSP>>
displaying CTRL

<<Table>>

<<Text Field>>

experiences

displaying(topics)

<<Java Bean>>
retrieval manager

retrieve(topics)

<<EJB>>
topics manager

topics, comments

retrieve(topics)

<<EJB>>
experiences manager

shared experiences

retrieve(topics)

experiences

experiences

user

user
experiences

topics

1

 Node 1 : before the development process

 Node 2 : developing components at View layer

 Node 3 : components at View layer identified

 Node 4 : developing components at Model layer

 Node 5 : components at Model layer identified

 Node 6 : developing components at Control layer

 Node 7 : components at Control layer identified

2

67

3 4 5

Figure 6: state reachability graph derived from the iterative development process in Figure 5

Figure 7.a: architectural class diagram from robustness diagram for realizing the „share writing experiences‟ use

case

Figure 7.b: architectural sequence diagram from robustness diagram for realizing the „share writing experiences‟

use casecase

Figure 8.a: system class diagram from architectural one for viewing experiences shared from other users of the

„share writing experiences‟ use case

Chaoyu Lin et al: An Architecture-Centered Method for Rapid Software Development

084

References
[1] W. Royce, “Managing The Development of Large

Software Systems: Concepts and Techniques,” Proc. of

the 9th international conference on Software

Engineering, (1970), 328-338.

[2] D. Graham, Incremental Development and Delivery for

Large Software Systems, Proc. of IEE Colloquium on

Software Prototyping and Evolutionary Development,

(1992), 2/1-2/9.

[3] J. Crinnion, The Evolutionary Development of Business

Systems, Proc. of IEE Colloquium on Software

Prototyping and Evolutionary Development, (1992), 3/1-

3/11.

[4] J. Ning, Component-based Software Engineering, Proc.

of 5th IEEE International Symposium on Assessment of

Software Tools and Technologies, (1997), 34-43.

[5] J. Highsmith, Adaptive Software Development: A

Collaborative Approach to Managing Complex Systems,

Dorset House (2000).

[6] X. Cai, et al., Component-based Software Engineering:

Technologies, Development Frameworks, and QA

Schemes, Proc. of IEEE APSEC, (2000), 372-379.

[7] A. Kleppe, et al., MDA Explained: The Model Driven

Architecture: Practice and Promise, Addison Wesley

(2003).

[8] X. Zhang, et al., The Research of The Component-based

Software Engineering, Proc. of 6th IEEE International

Conference on Information Technology, (2009), 1590-

1591.

[9] P. Kruchten, The Rational Unified Process, Addison

Wesley (1999).

[10] P. Kruchten, The Rational Unified Process: An

Introduction, Addison Wesley (2000).

[11] B. Boehm, A Spiral Model of Software Development

and Enhancement, IEEE Computer, Vol. 21, No. 5,

(1988), 61-72.

[12] C. Viravna, Lessons Learned from Applying The Spiral

Model in The Software Requirements Analysis Phase,

Proc. of 3th IEEE International Symposium on

Requirements Engineering, (1997), 40.

[13] H. Mills, et al., Cleanroom Software Engineering, IEEE

Software, Vol. 4, No. 5, (1987), 19-25.

[14] R. Linger, Cleanroom Process Model, IEEE Software,

Vol. 11, No. 2, (1994), 50-58.

[15] J. Wordsworth, Software Engineering with B, Addison

Wesley (1996).

[16] S. Prowell, et al., Cleanroom Software Engineering:

Technology and Process, Addison Wesley (1999).

[17] P. Abrahamsson, et al., Agile Software Development

Methods, ESPOO VTT Publications (2002).

[18] Agile, http://www.agilealliance.org/, accessed on Jan.

2011 (2011).

[19] R. Martin, Agile Software Development: Principles,

Patterns, and Practices. Prentice Hall (2003).

[20] J. Stapleton, Dynamic Systems Development Method,

Addison Wesley (1997).

[21] L. Lindstrom and R. Jeffries, Extreme Programming and

Agile Software Development Methodologies,

Information Systems Management, Vol. 21, No. 3,

(2004), 41-52.

[22] Extreme Programming: A Gentle Introduction,

http://www.extremeprogramming.org/, accessed on

January 2011 (2011).

[23] G. Armano and M. Marchesi, A rapid development

process with UML, ACM SIGAPP Applied Computing

Review, Vol. 8, No. 1, (2000), 4-11.

[24] J. Wu, An Extended MDA Method for User Interface

Modeling and Transformation, Proc. of 17th European

Conference on Information Systems, (2009), 1632-1642.

[25] J. Rumbaugh, et al., The UML Reference Manual,

Addison Wesley (2004).

<<HTML>>
<<Text Field>>

user <<HTML>>
<<Button>>

<<HTML>>
<<Form>>

<<Servlet>>
CTRL invoker

<<JSP>>
<<Text Field>>

<<Java Bean>>
data access helper

<<Java Bean>
retrieval mgr

<<EJB>
experiences mgr

<<EJB>
topics mgr

put()

displaying(topics)

shared
experiences

shared
experiences

shared
experiences

shared
experiences

input(topics)

submit()

fetch(topics)

doPost(topics)

access(topics)

retrieve(topics)

retrieve(topics)

retrieve(topics)

shared
experiences

shared
experiences

View Layer Control Layer Model Layer

Figure 8.b: system sequence diagram for viewing experiences shared from other users of the „share writing

experiences‟ use case

http://www.agilealliance.org/
http://www.extremeprogramming.org/
http://portal.acm.org/author_page.cfm?id=81100493120&coll=DL&dl=GUIDE&CFID=5547758&CFTOKEN=18347246
http://portal.acm.org/author_page.cfm?id=81100442370&coll=DL&dl=GUIDE&CFID=5547758&CFTOKEN=18347246

 Chaoyu Lin et al: An Architecture-Centered Method for Rapid …

088

[26] G. Booch, et al., The UML User Guide, 2nd Edition,

Addison Wesley (2005).

[27] J. Peterson, Petri Nets, ACM Computer Surveys, Vol. 9,

No. 3, (1977), 223-252.

[28] J. Peterson, Petri Net Theory and The Modeling of

Systems, Prentice Hall (1981).

[29] E. Yiannis, et al., Specification and Analysis of

Parallel/Distributed Software and Systems by Petri Nets

with Transition Enabling Function,” IEEE Transaction

on Software Engineering, Vol. 18, No. 3, (1992), 252-

261.

[30] C. Hofmeister, et al., Applied Software Architecture,

Addison Wesley (2000).

[31] P. Clements, et al., Documenting Software Architectures:

Views and Beyond, Addison Wesley (2002).

[32] G. Krasner and S. Pope, A Cookbook for Using The

MVC User Interface Paradigm in Smalltalk-80, Journal

of Object-Oriented Programming, Vol. 1, No. 3, (1988),

26-49.

[33] E. Gamma, et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison Wesley (1995).

[34] F. Buschmann, et al., Pattern-Oriented Software

Architecture: A System of Patterns, Wiley & Sons

(1996).

[35] C. Larman, Applying UML and Patterns, Prentice Hall

(2002).

[36] J. Lin and C. Yeh, An Object-Oriented Software Project

Management Model, The International Journal of

Computers and Their Applications, Vol. 10, No. 4,

(2003), 247-262.

[37] Microsoft Corporation, Microsoft Visual C++

Programming with MFC, MS Press (1995).

[38] G. Shepherd, MFC Internals, Addison Wesley (1996).

[39] M. Fowler, Patterns of Enterprise Application

Architecture, Addison Wesley (2003).

[40] A. Leszek, et al., Practical Software Engineering: A

Case Study Approach, Addison Wesley (2004).

[41] D. Kayal, Pro Java EE Spring Patterns: Best Practices

and Design Strategies Implementing Java EE Patterns

with the Spring Framework, APress (2008).

Chao-Yu Lin is a PhD candidate of

the Department of Information
Management at the National Dong

Hwa University at Hualien in

Taiwan. He received his M.S. degree

in 1998 from the Department of

Information Management at the

Chaoyang University of Technology in Taiwan. Chao-

Yu is a Senior Consultant, and he has more than ten

years of work experience in Software Industry.

Jyhjong Lin is a full professor and

the chair of the Department of

Information Management at the Ming
Chuan University in Taiwan. He

received his Ph.D. degree in 1995

from the Computer Science

Engineering Department at the

University of Texas at Arlington in USA. His research

interests include Software Engineering, Systems

Architecture and Development, and Object-Oriented

Techniques.
Wei-Pang Yang is the Dean of

Academic Affairs of the National

Dong Hwa University in Taiwan. He

received his Ph.D. degree in 1984

from the Computer Engineering

Department at the National Chiao

Tung University in Taiwan. His

research interests include database
theory and application, information retrieval, data

miming, digital library, and digital museum. Dr. Yang is

a senior member of IEEE, and a member of ACM.

