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The triangular format graph was originally introduced as a means to visualize special-
ized data sets, most commonly arising in the social sciences. The graphing paradigm
is defined, formalized, and extended to obtain a general method for displaying 4-
dimensional data sets whose points may be approximated by a hyperplane (distortions
introduced by the graphing process vanish as the approximation improves). The graph-
ing methodology is also analyzed to determine what, geometrically speaking, the dis-
tortions introduced by the graphing process represent.
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1 Introduction

This paper explains the triangular format graph, stressing its mathematical underpin-
nings and considering its inherent distortions. The presentation takes a layered approach,
where the graphing process is gradually revised and refined (over the following five sec-
tions) to finally take the form summarized in the conclusion (readers interested only in
the ultimate formal specification can skip to the conclusion). The final result is a general
graphing method suitable for arbitrary 4-dimensional data sets whose points may be ap-
proximated by a hyperplane (distortions introduced by the graphing process vanish as the
approximation improves). The reason for leading the reader through a layered develop-
ment is to motivate and explain what would otherwise seem to be the strange and arbitrary
objects appearing in the formal definition of the graphing process.

This work was partially supported by National Institutes of Health grant “New approaches to the modeling
of speciation” (GM56693).



16 Michael D. Vose and Donald W. Hastings

The triangular format graph has historically been an aid to visualization in the social
sciences — sometimes called quasi-scenic rendering [2, 3] — serving two purposes. First,
images engage researchers and allow them to develop a gestalt understanding of how data
are structured. Second, images provide the appropriate cues for researchers to select which
family of functions may be applied to best interpret the data’s structure, and where neces-
sary assist “the researcher in the search for plausible decomposition of effects” [15].

The most common graphing paradigm is the traditional orthogonal x-y-z axis format,
which is sometimes unsatisfactory; when displaying an age-period-cohort (APC) data set
where a dependent variable is referenced by three time coordinates (age A, calendar year
P , and birth year C) a format other than the orthogonal may be more cognitively appealing
to the researcher. Such data sets naturally arise in demography, history, and developmental
psychology. The traditional method would plot the dependent variable on the z axis and
two of the three time referent coordinates on the x and y axes. Unfortunately, to discern a
possible response effect for the third time coordinate the viewer must envision a family of
curves in the plotted surface situated obliquely with respect to the x and y axes. Under the
x-y-z orthogonal format, only two of the three time reference coordinates may be selected;
each pair selected in effect rotates the third reference axis out of the user’s direct field
of observation. Thus three graphs are necessary to examine fully each of the three time
referent profiles of the dependent variable. (For general discussions on the logic of cohort
analysis see [9–11, 20], or [21, 22], and for discussions on graphing techniques of APC

data sets see [5–7, 15–18, 24]).

As early as 1975, Norman Ryder [21] suggested that cohort data might better be pre-
sented employing an equilateral triangle whose sides represent age, period, and cohort,
respectively. Informally, one side denotes cohorts C, another side marks periods P , and
the triangle base references age A. Together the APC coordinates identify a point within
the triangle above which the dependent variable is represented as a height. By rotating the
displayed graphic, a user can directly observe each of the age, period, and cohort profiles
for the dependent variable, because each reference axis or combination of axes is treated
geometrically in an equivalent manner and all are in the user’s direct field of observation.

More formally, a cohort data set may be defined as a collection of 4-tuples 〈w, x, y, z〉
which satisfy w + x = y. The triangular format graph of a cohort data set is obtained
as follows (see figure 1.1). Point 〈w′, x′, y′, z′〉 is plotted at a height of z′ above a point
q(w′, x′, y′) located in a equilateral triangle in the plane. One side of the triangle (the side
with slope zero) represents the “w axis”, another side of the triangle (the side with negative
slope) represents the “x axis”, and the remaining side (with positive slope) represents the
“y axis”. The point q(w′, x′, y′) is the point of intersection of the following three lines: the
first line is parallel to the x axis and intersects the w axis at coordinate w′, the second line
is parallel to the y axis and intersects the x axis at coordinate x′, the third line is parallel to
the w axis and intersects the y axis at coordinate y′.
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Figure 1.1: Point q with reference coordinates 〈w′, x′, y′〉.

The historical roots described above are taken as the starting point for formalizing the
triangular format graph using vector and matrix algebra. The mathematical formalization
serves as the basis from which the graphing paradigm is extended to a more general and
useful method for displaying 4-dimensional data sets (which are not necessarily cohort data
sets), and allows the analysis of what distortions are introduced by the triangular format
graphing process. The following sections incrementally revise, generalize, and refine the
method, ultimately yielding a specification for computer implementation.

2 Formalization

Formalizing the triangular format graph begins with a representation for the equilateral
triangle Λ above which points are plotted; it is the convex hull of the unit basis vectors in
<3

e0 = 〈1, 0, 0〉,
e1 = 〈0, 1, 0〉,
e2 = 〈0, 0, 1〉.

The bold triangle (and its interior) in figure 2.2 depicts Λ (the diagram shows the coordinate
axes which extend beyond e0, e1, e2).

The point q(v0, v1, v2) with reference coordinates v0, v1, v2 is given by the intersection
of three lines l0, l1, l2 defined as follows. Let p0 on edge e1−e0 be determined by reference
coordinate v0 according to

p0 = (1− v0)e0 + v0e1

and define the line

l0(t0) = p0 + t0(e2 − e1).
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Figure 2.2: Domain for the triangular format graph.

Applying the following mapping to subscripts

i 7→ i + 1 modulo 3

transforms the definitions of p0 and l0(t0) given above into definitions for p1 and l1(t1), a
second application of the mapping yields the definitions for p2 and l2(t2). The intersection
of l0 with l1 is determined by the equation

p0 + t0(e2 − e1) = p1 + t1(e0 − e2).

Applying the subscript mapping as before yields the other intersections, which leads to

l0 ∩ l1 = 〈 1− v0 , 1− v1 , v1 + v0 − 1 〉,
l1 ∩ l2 = 〈 v2 + v1 − 1 , 1− v1 , 1− v2 〉,
l2 ∩ l0 = 〈 1− v0 , v0 + v2 − 1 , 1− v2 〉.

Point q(v) with reference coordinates v0, v1, v2 is the common intersection displayed
above. Using reference coordinates implicitly assumes v0 + v1 + v2 = 2 since otherwise
the lines would not have common intersection. It follows that

q(v) = 1− v,

where 1 is the vector 〈1, 1, 1〉.
The triangular graphing process as applied to a data point 〈v, z〉 = 〈w, x, y, z〉 (hence

v = 〈w, x, y〉) assumes that l0 ∩ l1 = l1 ∩ l2 = l2 ∩ l0 which is necessary and sufficient for
q(v) to be well defined. Data point 〈v, z〉 is plotted as

q(v) + 1
z
√

3
.
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Note that this does not restrict q to Λ (it is inside if and only if 0 ≤ vi ≤ 1), and so a more
general graphing paradigm than what was described in the introduction has been obtained.
Adopt the convention that angle brackets 〈· · · 〉 are used to denote tuples which are regarded
as column vectors. The assumption concerning the common intersection is equivalent to

1T v = 2.

Note, however, that cohort data do not satisfy this condition. The choice of reference
coordinates used in the formalization above is evidently not compatible with cohort data.
This “problem” is in some sense an illusion, as the next section will show.

3 Affine Relation

Variables w, x, y are said to satisfy an affine relation if

αw + βx + γy = ε

for some constants α, β, γ, ε. We are interested in the nontrivial case 〈α, β, γ〉 6= 0. Hence
in this section ‖〈α, β, γ〉‖ = ‖1‖ without loss of generality. Assume the displayed relation
above, and consider the change of variables

v = M〈w, x, y〉+ 1
2− ε

3
,

where M is a rotation matrix such that

M〈α, β, γ〉 = 1.

In particular, MT = M−1 and 1T = 〈α, β, γ〉T MT . It follows that

1T v = 1T
(
M〈w, x, y〉+ 1

2− ε

3

)

= 〈α, β, γ〉T MT M〈w, x, y〉+ 1T 1
2− ε

3
= αw + βx + γy + 2− ε

= 2.

Therefore, the “transformed” data 〈v, z〉 satisfies the necessary and sufficient condition
for triangular format graphing. When plotting 〈w, x, y, z〉 in the triangular format as the
point

q(v) + 1
z
√

3
we may regard that point as the result of a graphing process which has either inputs v and
z, or else inputs 〈w, x, y〉 and z. In the latter case, input 〈w, x, y〉 is called the vector of
coordinate variables. In the former case, the point is said to result from plotting z with
respect to reference coordinates v. In either case, input z is called the dependent variable.
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Theorem 3.1. The triangular format is suited to plotting dependent variable z with respect
to reference coordinates v if the coordinate variables w, x, y satisfy an affine relation

αw + βx + γy = ε

and
v = M〈w, x, y〉+ 1

2− ε

3
,

where M is any rotation matrix such that

M〈α, β, γ〉 = 1.

Theorem 3.1 completes the initial formalization of the triangular format graph. It ap-
pears to be a graphing paradigm more general than one which is applicable only to cohort
data; it is suited to data sets whose first three coordinates satisfy any affine relation. A more
general formulation is possible and is shown in the next section.

4 Affine Approximation

Let D be a 4-dimensional data set for which there exist constants α, β, γ, δ, ε that min-
imize the following mean squared error

S =
∑

〈d0,d1,d2,d3〉 ∈D
(αd0 + βd1 + γd2 + δd3 − ε)2,

subject to the constraint ‖〈α, β, γ, δ〉‖ = 1. The best-fitting 4-dimensional affine relation
to D (in the least squares sense) is therefore the hyperplane π with equation

αw + βx + γy + δz = ε.

This equation is “approximately” satisfied by points d ∈ D (with mean squared error S)
and is exactly satisfied when S = 0. Assume D ⊂ π, which is equivalent to assuming
S = 0, and consider the change of variables

u = Pk〈d0, d1, d2, d3〉,

where Pk is a rotation matrix such that

Pk〈α, β, γ, δ〉 = ek

and ek is any of
e0 = 〈1, 0, 0, 0〉,
e1 = 〈0, 1, 0, 0〉,
e2 = 〈0, 0, 1, 0〉,
e3 = 〈0, 0, 0, 1〉.
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Note that

uT ek = 〈d0, d1, d2, d3〉T PT
k Pk〈α, β, γ, δ〉

= 〈d0, d1, d2, d3〉T 〈α, β, γ, δ〉
= ε.

Refer to k as the pivot, and refer to uk as the pivot variable. What has been shown is
that if S = 0, then the transformed data PD (where P = Pk for pivot k) represented by
the vector variable u (ranging over that transformed data set) satisfies the following affine
relation

Pivot Pivot variable Affine relation
0 u0 u0 = ε

1 u1 u1 = ε

2 u2 u2 = ε

3 u3 u3 = ε

The pivot variable together with any two other variables from {u0, u1, u2, u3} satisfy a 3-
dimensional affine relationship (the other variables simply have coefficients of 0). In other
words, the results of the previous section apply, as summarized by the following.

Theorem 4.1. Using the notation above, if S = 0, then the triangular format graph of the
data set PD can be constructed based on the pivot variable and any two other variables
as the triplet of coordinate variables; the remaining variable (not chosen as a coordinate
variable) can be graphed as the dependent variable.

Theorem 4.1 restores symmetry to the graphing process in the sense that no particular
variable is necessarily singled out as being the dependent variable; any one can be graphed
with respect to the remaining three. Note also that the condition of Theorem 4.1 is less strict
than that of Theorem 3.1; any 3-dimensional affine relation between any three variables
implies S = 0. Moreover, a 4-dimensional affine relation may exist when no 3-dimensional
one does.

Note that the pivot merely specifies one of three coordinate variables; any of the three
could be the pivot variable. It would be more natural to specify the choice of dependent
variable. That formulation will be presented in the next section.

The next step to further generalization is to include the situation where S > 0. The
difficulty in that case is in the graphing process where the point q ∈ Λ is not well defined
(the three lines do not intersect in a single point), all else remains the same: P is deter-
mined by minimizing S and choosing coordinate variables 〈ui, uj , uk〉, then the remaining
variable can be graphed as the dependent variable with respect to reference coordinates as
determined by Theorem 3.1.

It is natural to let q be the centroid of the triangle with vertices {l0 ∩ l1, l1 ∩ l2, l2 ∩ l0}
(the centroid is the average of the vertices). This collapses to the previous definition when
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the triangle is degenerate (i.e., a single point). Therefore, extend the definition of q to the
case in which the three lines no not necessarily intersect,

q(v) =
l0 ∩ l1 + l1 ∩ l2 + l2 ∩ l0

3
This nearly completes the generalization of the triangular graphing process; later we discuss
why and how the function q should be altered further to minimize geometric distortions
introduced by the graphing process. An analysis of what those distortions are is the subject
of the next section.

5 Distortion

There are two potential sources of distortion. The first is from the change of variables
Theorems 3.1 and 4.1 entail. Let ui be the dependent variable, let α, β, γ, δ, ε be determined
by minimizing S , and let Pk correspond to pivot k = i + 1 modulo 4 so that if S = 0 then

√
3ui+1 + 0ui+2 + 0ui+3 =

√
3ε,

where subscripts are interpreted modulo 4. Let the rotation matrix Rk = (R′)k(R′′)k be
determined by the orthogonal matrices

R′ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , R′′ =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ,

and let M be any rotation matrix such that

M〈√3, 0, 0〉 = 1.

The combined change of variable involved in the graphing process may be taken to be

Θ(d) =

(
M 0
0 1

)
RkPk〈d0, d1, d2, d3〉+ 〈1, 0〉2−

√
3ε

3
,

which is easily verified as follows. Let i denote 1 if i is odd, and 0 otherwise. By definition,
the right hand side above simplifies to

(
M 0
0 1

)
〈ui+1, ui+3−i, ui+2+i, ui〉+ 〈1, 0〉2−

√
3ε

3

= 〈M〈ui+1, ui+3−i, ui+2+i〉+ 1
2−√3ε

3
, ui〉.

This corresponds to the reference coordinates as determined by Theorem 3.1 (first parti-
tion above – first three components of Θ(d)) for graphing dependent variable ui (second
partition above – last component of Θ(d)) of the transformed data set Θ(D).
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The transformation Θ is a rigid motion of four dimensional space; because only rotation
and translation are involved, no distortions are introduced (the transformed data set Θ(D)
and the original data set D are not only congruent, orientation is preserved).

The second potential source of distortion is the plotting of points which takes place
after the change of variable. Consider first the case where S = 0. Then the (partitioned)
point 〈v, z〉 = Θ(d) ∈ Θ(D) is plotted as the point

1− v + 1
z
√

3
.

Note the central inversion of the domain over which the dependent variable is graphed
caused by

q(v) = 1− v

(obviously translation by 1 is also involved, but that is not the focus of concern). Thus
orientation is reversed in that domain. However, the map

φ(v) = 1
4
3
− v

not only introduces an inversion, but also leaves 1T v = 2 invariant. Therefore, the in-
versions in q and φ cancel out in the composition q ◦ φ, and the inclusion of φ leaves the
necessary and sufficient condition 1T v = 2 undisturbed.

Figure 5.3: Corresponding vectors in Θ(D) and the triangular format graph.

This motivates a redefinition of the graphing process to include precomposition with φ

so that orientation is preserved. In the general case (S ≥ 0) replace q by

q′(v) = v +
1
3
− 11T v

3
.
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Because we are considering the case S = 0 (and thus 1T v = 2), the point 〈v, z〉 = Θ(d)
would therefore be plotted as

v + 1
( z
√

3
− 1

3

)
.

Now consider a pair of corresponding vectors, the first 〈∆v, ∆z〉 is between two points
of Θ(D) and the the second ∆v + 1∆z/

√
3 is between those points plotted in the trian-

gular format graph (see figure 5.3). Let 〈∆′
v,∆′

z〉 and ∆′
v + 1∆′

z/
√

3 be another pair of
corresponding vectors, and consider the following inner product between the vectors in the
triangular format graph (

∆v + 1
∆z√

3

)T (
∆v′ + 1

∆z′√
3

)
.

Expanding and using 〈v, z〉 ∈ Θ(D) ⇒ 1T v = 2 yields

∆T
v ∆v′ + ∆z∆z′ + ∆T

v 1
∆z′√

3
+

∆z√
3
1T ∆v′

= 〈∆v, ∆z〉T 〈∆v′ , ∆z′〉+ 1T (v∗ − v)
∆z′√

3
+ 1T (v∗′ − v′)

∆z√
3

= 〈∆v, ∆z〉T 〈∆v′ , ∆z′〉+ (2− 2)
∆z′√

3
+ (2− 2)

∆z√
3

= 〈∆v, ∆z〉T 〈∆v′ , ∆z′〉.

The result matches the inner product between vectors before graphing. Because the inner
product determines angles and distances, they are preserved by graphing, no distortions are
introduced. Let I denote the 3 × 3 identity matrix. The partitioned matrix Ψ = (I 1/

√
3)

relates differences 〈∆v,∆z〉 before graphing to differences ∆v + 1∆z/
√

3 after graphing,

∆v + 1∆z/
√

3 = (I 1/
√

3)〈∆v,∆z〉.

We have seen Ψ is an isometry (between its domain and range) if its domain is taken to be
spanned by differences of vectors within Θ(D). Moreover, that partitioned matrix preserves
orientation when mapping that domain. The previous observations are summarized by the
following.

Theorem 5.1. If S = 0, then the original data set D and the triangular format graph of D
are congruent and have the same orientation (they may be regarded as alternate views of
the same points from different perspectives in space).

Let Tq denote translation by q. When the data set D lies in the hyperplane π, points are
plotted in the triangular format graph by the plotting function T : <4 → <3 defined by

T (d) = T−1/3ΨΘ(d)

= Ψ〈v, z〉 − 1/3
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= v + 1z/
√

3− 1/3.

According to Theorem 5.1, T preserves the orientation and geometry of the data set, which
suggests (since π is mapped into <3) that the plotting function T is realized by:

1. Translate and rotate π into the three dimensional subspace <× <× <× {0}.

2. Project to <× <× <.

3. Rotate and translate the result.

However, T cannot be realized in that way. If it were, then there would exist rotation
matrices A and B and translation vectors r and s for which T = TsB(I 0)ATr which
leads to a contradiction as follows:

T−1/3ΨΘ = T = TsB(I 0)ATr =⇒ Ψ = T1/3+sB(I 0)ATrΘ−1.

Because Θ is a rotation followed by a translation, there must therefore exist a rotation
matrix A′ and translation vectors a, b, c such that for all v

Ψv = a + B(I 0)A(b + A′v) = c + B(I 0)AA′v.

Since Ψ is linear, the translation on the right hand side above can be ignored (linear maps
preserve the origin), yielding an expression for Ψ which has norm one (contradiction).

What is going on is that even though T maps π to <3 appropriately, it nevertheless
transforms points of <4 \ π in a non-intuitive manner. In some sense that is due to a
missing projection in the definition of T .

In the general case S ≥ 0, the plotting function G : <4 → <3 is given by

G(d) = T1/3Ψ′Θ(d),

where Ψ′ is the partitioned matrix (I−11T /3 1/
√

3). If S > 0 thenD is not contained in
a hyperplane and angles and distances cannot possibly be preserved (G reduces dimension).

Let ρ : <4 → <4 be the orthogonal projection to 〈1, 0〉⊥ given by
(

I − 11T /3 0
0 1

)
.

Note that Ψ′ = Ψρ. Therefore, the difference between T and G — aside from a compen-
sating difference in translation (T−1/3 vs T1/3) — is the inclusion of the projection ρ in
Ψ′ compared to its omission in Ψ. The presence of the projection is the influence of the
centroid calculation in the definition of q′, it was omitted in T (when S = 0 the centroid
calculation is irrelevant) but it is included in G.

The next theorem extends Theorem 5.1 to the general case, summarizing the distortions
that are introduced by the triangular format graph. They are in some sense minimal, since
the projection involved is to the best-fitting hyperplane.
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Theorem 5.2. Let Dπ be the orthogonal projection of the data set D to the hyperplane π.
ThenDπ and the triangular format graph ofD are congruent and have the same orientation
(they may be regarded as alternate views of the same points from different perspectives in
space).

Proof. Given d ∈ D, let
d = dπ + d⊥,

where dπ ∈ π and d⊥ is orthogonal to π; hence d⊥ = ‖d⊥‖〈α, β, γ, δ〉. By definition,
Dπ = {dπ : d ∈ D}, and, since S = 0 for the data set Dπ,

〈1, 0〉T Θ(dπ) = 2.

Therefore
Θ(dπ) =

2
3
〈1, 0〉+ ρ Θ(dπ)

and
ρ Θ(dπ) = Θ(dπ)− 2

3
〈1, 0〉.

Note that

Θ(d) = Θ(dπ) +

(
M 0
0 1

)
Ri+1P d⊥

= Θ(dπ) + ‖d⊥‖
(

M 0
0 1

)
Ri+1P 〈α, β, γ, δ〉

= Θ(dπ) + ‖d⊥‖
(

M 0
0 1

)
Ri+1ei+1

= Θ(dπ) + ‖d⊥‖
(

M 0
0 1

)
e0

= Θ(dπ) + ‖d⊥‖〈1, 0〉/√3.

Using the fact that Ψ′ = Ψρ, it follows from the above that

G(d) = T1/3Ψ′Θ(d)

= T1/3Ψρ
(
Θ(dπ) + ‖d⊥‖〈1, 0〉/√3

)

= T1/3Ψρ Θ(dπ)

= T1/3Ψ
(
Θ(dπ)− 2

3
〈1, 0〉)

= T1/3ΨΘ(dπ)− 2
3
Ψ〈1, 0〉

= T1/3ΨΘ(dπ)− 2
3
1
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= T−1/3ΨΘ(dπ)

= T (dπ).

The proof is completed by appealing to Theorem 5.1.

6 Conclusion

Theorem 5.2 of the previous section summarizes the meaning of the triangular graphing
process. That process is defined by the following specification:

• Input: A 4-dimensional data set D for which there exist constants α, β, γ, δ, ε that
minimize

S =
∑

〈d0,d1,d2,d3〉 ∈D
(αd0 + βd1 + γd2 + δd3 − ε)2

subject to the constraint ‖〈α, β, γ, δ〉‖ = 1.

• Output: The set of points

G(D) = {T1/3Ψ′Θ(d) : d ∈ D},

where

T1/3(x) = x +
1
3
〈1, 1, 1〉,

Ψ′ =
1
3




2 −1 −1
√

3
−1 2 −1

√
3

−1 −1 2
√

3


 ,

R′ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

R′′ =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ,

Θ(d) =

(
M 0
0 1

)
(R′)i+1(R′′)i+1Pd + 〈1, 1, 1, 0〉2−

√
3ε

3
.
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Here M is any rotation matrix such that M〈√3, 0, 0〉 = 〈1, 1, 1〉, the (arbitrary) rotation
matrix P must satisfy P 〈α, β, γ, δ〉 = 〈[i = 0], [i = 1], [i = 2], [i = 3]〉 where [i = j] is
1 if i = j and is 0 otherwise, and i is a parameter interpreted as selecting the dependent
variable. The coordinate axes are graphed as the following four parametric lines

t 〈1, 1, 1〉,
〈1, 0, 0〉 + t 〈1, 0,−1〉,
〈0, 1, 0〉 + t 〈−1, 1, 0〉,
〈0, 0, 1〉 + t 〈0,−1, 1〉.

The advantage of the triangular format graph for visual presentation stems from keeping
all four coordinate axes in the field of view while simultaneously minimizing distortions.
By so doing, it facilitates understanding of the underlying structure of the data, and it facili-
tates the researcher’s selection of which statistical solutions might be applied to decompose
additional variable effects on the dependent variable.

Returning to the initial motivating example of APC data sets discussed in the introduc-
tion (where triplet reference coordinates are linearly dependent), the user’s examination of
each of the age, period, and cohort profiles for the dependent variable z would suggest, then,
how age, period, and cohort effects operate and may be best interpreted. This approach is
more facile than other strategies suggested in the APC literature by [1,4,8,9,12–14,19,23].

More generally, the triangular format graph is a visualization paradigm suited to arbi-
trary 4-dimensional data sets. It minimizes distortions – when distortions are unavoidable –
and otherwise introduces no graphing artifacts (coordinate axes undergo distortion, but ori-
entation, distances, and angles between data points are preserved). Moreover, it manages
all that while simultaneously keeping all four coordinate axes in the field of view.
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