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Abstract: In this paper, we established traveling wave solutions of the nonlinear evolution equation. The sine-cosine method wasused
to construct travelling wave solutions of the Fitzhugh-Nagumo equation and Cahn-Allen equation. Graphical interpretation shows that
obtained results include periodic and Soliton wave solutions. It is also shown that forα =−1, solutions of Fitzhugh-Nagumo equation
coincide with solutions of Cahn-Allen equation.
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1 Introduction

The study of solitary wave solutions of nonlinear partial
differential equations (NLPDEs) plays an important role
in the study of nonlinear physical phenomena, which
appears in various scientific and engineering fields, such
as optical fibers, solid state physics, fluid mechanics,
plasma physics, biology, chemical kinematics, chemical
physics and geochemistry. In recent years, the direct
approach for exact solutions of PDEs has become more
and more attractive partly due to the availability of
computer symbolic systems like Maple or Mathematica,
which allows us to perform the complicated and tedious
algebraic calculations on computer.

A variety of powerful methods, such as Exp-function
method [1], adomian decomposition method [2], bilinear
transformation[3], Inverse Scattering Transform [4], the
tanh-sech method[5,6], the tanh-coth method[7],
homogeneous balance method[8], Exp-function method
[9], and many others see [10,11,12,13,14]. In recent
years, the sine-cosine method and the rational sine-cosine
method [15,16,17,18] have been widely used to search
for various exact solutions of nonlinear PDEs. The
motivation of the present paper is come from the work of
Abdul-Majid Wazwaz [2].

The Travelling wave solutions are useful in the
theoretical and numerical studies of the nonlinear
equation models due to complexity and challenges in
their theoretical study. Therefore, finding travelling wave
solutions of nonlinear equations is of fundamental interest
to complectly understand the model. In this paper the
sine-cosine method will determine the Traveling wave
solutions of Fitzhugh-Nagumo equation [19,20,21] and
Cahn-Allen equation [22].

The article is prepared as follows: In Section 2,
sine-cosine method is discussed. In Section 3, we exert
this method to the nonlinear evolution equations pointed
out above; in Section 4, graphical interpretation and in
Section 5, conclusions are given.

2 Analysis of the method

In this section, we will highlight briefly the main steps of
Sine-cosine method for nonlinear PDEs.

(I). We first use the wave variableξ = x−ct to convert
the PDE

P(u,ut ,ux,uxx,uxxx, ...) = 0, (1)
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into an ordinary differential equation (ODE)
Q(u,u′,u′′,u′′′, ...) = 0. (2)

(II). The sine-cosine method allows us the use of the
ansatz

u(x, t) = λcosβ (µξ ), |ξ | ≤ π
2µ

, (3)

or the ansatz

u(x, t) = λsinβ (µξ ), |ξ | ≤ π
µ
, (4)

whereλ ,µ andβ are parameters that will be determined.

(III). Substituting(3) or (4) into the reduced ODE
gives a polynomial equation of cosine or sine terms.

(IV). Balance the terms of the cosine functions when
eq.(3) is used, or balance the sine functions when eq.(4)
is used, to get a system of algebraic equations among the
unknownsλ ,µ , c andβ .

(V). Determined λ ,µ , c and β by algebraic
calculations or by using Maple, the solutions proposed in
eq.(3) and eq.(4) follow immediately.

3 Applications

3.1 Fitzhugh-Nagumo equation

Let us consider the Fitzhugh-Nagumo equation

ut − uxx = u(u−α)(1− u) (5)

whereα is an arbitrary constant. Eq. (5) is an important
nonlinear reaction-diffusion equation and applied to model
the transmission of nerve impulses [19] and [20], also used
in biology and the area of population genetics, in circuit
theory [21].
Using the transformationu(x, t) = u(ξ ) whereξ = x− ct ,
(5) yields following ODE,

u3− u2−αu2+αu− cu′− u′′ = 0. (6)

Substituting eq.(3) into eq.(6) yields

−λ (cos(µξ ))β

(cos(µξ ))2







































−λ 2
(

(cos(µξ ))β
)2

(cos(µξ ))2

+λ (cos(µξ ))β (cos(µξ ))2

+αλ (cos(µξ ))β (cos(µξ ))2

−β sin(µξ )µccos(µξ )

+β 2(sin(µξ ))2µ2

−β µ2(cos(µξ ))2

−β (sin(µξ ))2µ2

−α(cos(µξ ))2







































= 0

(7)

or

λ 3(cos(µξ ))3β −λ 2(cos(µξ ))2β

−λ 2(cos(µξ ))2β α +λ (cos(µξ ))β−1β sin(µξ )µc
−λ (cos(µξ ))β−2β 2µ2+λ (cos(µξ ))β β 2µ2

+λ (cos(µξ ))β−2β µ2+αλ (cos(µξ ))β = 0

(8)

Simplifying this equation and introducing a new
variableY = cos(µz), we obtain

λ 3Y 3β −λ 2Y 2β −λ 2Y 2β α −λ Y β−1β sin(µ z)µ c
−λ Y β−2β 2µ2+λ Y β β 2µ2+λY β−2β µ2+α λY β = 0

(9)

It is obvious that equation eq.(9) is satisfied if the
following system of algebraic equations holds:

β −1 6= 0,β −2 6= 0,
3β = β −2,
2β = β −1,
λ 3 = λ β 2µ2−λ β µ2,

−λ 2−λ 2α =−λ β sin(µξ ),
λ β 2µ2 =−αλ .

(10)

Solving this system leads to

β =−1,
λ =

√
−2α,

µ =
√−α.

(11)

Consequently, we obtain the following Traveling wave
solutions

u1 = i
√

2αsech
(√

α (x− ct)
)

, α > 0 (12)

u2 =
√
−2α sec

(√
−α (x− ct)

)

, α < 0 (13)

Now, if we use the ansatz eq.(4) instead of eq.(3),
we will get the same system of eqations as above

and therefore two more solutions are given by

u3 =
√

2αcsch
(√

α (x− ct)
)

, α > 0 (14)

u4 =
√
−2αcsc

(√
−α (x− ct)

)

, α < 0 (15)

3.2 Cahn-Allen equation

Now we consider the Cahn-Allen equation

ut − uxx − u+ u3 = 0 (16)

which is a reaction-diffusion equation and describes the
process of phase separation in iron alloys, including
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order-disorder transitions[22].

Using the transformationu(x, t) = u(ξ ) whereξ = x−
ct , equation(16) is converted to the following ODE

−u′′− cu′+ u3− u = 0 (17)

Substituting eq.(3) into eq.(17) yields

λ (cos(µξ ))β

(cos(µξ ))2



















λ 2
(

(cos(µξ ))β
)2

(cos(µξ ))2

+β sin(µξ )µccos(µξ )
−β 2(sin(µξ ))2µ2

+β µ2(cos(µξ ))2

+β (sin(µξ ))2µ2

−(cos(µξ ))2



















= 0

(18)

Or

λ 3(cos(µ ξ ))3β +λ (cos(µ ξ ))β−1β sin(µ ξ)µ c
−λ (cos(µ ξ ))β−2β 2µ2+λ (cos(µ ξ ))β β 2µ2

+λ (cos(µ ξ ))β−2β µ2−λ (cos(µ ξ ))β = 0

(19)

Simplifying this equation and introducing a new
variableY = cos(µz), we obtain

λ 3Y 3β −λ Y β−1β sin(µ z)µ c−λ Y β−2β 2µ2

+λ Y β β 2µ2+λ Y β−2β µ2−λ Y β = 0 (20)

It is obvious that equation eq.(20) is satisfied if the
following system of algebraic equations holds:

β −1 6= 0,β −2 6= 0,
3β = β −2,
λ 3 = λ β 2µ2−λ β µ2,

−λ β sin(µξ )µc = 0
λ β 2µ2 = λ .

(21)

Solving this system leads to

β =−1,µ = 1,λ =
√

2. (22)

Consequently, we obtain the following Traveling wave
solution

u1 =

√
2

cos(x− ct)
=
√

2sec(x− ct) (23)

For ansatzu(x, t) = λsinβ (µξ ) we obtain following
solutions

u2 =

√
2

sin(x− ct)
=
√

2csc(x− ct) (24)

4 Graphical Interpretation

In this section, we will put forth the graphical
representation of determined traveling wave solutions of
Fitzhugh-Nagumo equation and Cahn-Allen equation.

Fig. 1: Soliton profile of(12) with wave speedc = 1, α = 1 and
x ≥−1, t ≤ 4

Fig. 2: 3d plot of periodic wave solution, profile of(13) with
wave speedc = 1, α = 1 andx ≥−4, t ≤ 4
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Fig. 3: Soliton profile of(14) with wave speedc = −1, α = 1
andx ≥−4, t ≤ 4

Fig. 4: Soliton profile of(15) with wave speedc = −1, α = 1
andx ≥−4, t ≤ 4

Fig. 5: 3d plot of periodic wave solution, shape of(23) with wave
speedc = 1,andx ≥−4, t ≤ 4

Fig. 6: Soliton profile of(24) with wave speedc = −1,andx ≥
−4, t ≤ 4

Remark 1 For α = −1, the Fitzhugh-Nagumo
equation coincide with Cahn-Allen equation, hence their
solutions also coincide :(13) coincide with (2.3) and
(15) coincide with(24), which can also be seen by their
graphical interpretation.

5 Conclusion

We conclude that Sine-cosine method, with the help of
symbolic computation provides a powerful mathematical
tool for solving nonlinear evolution equations arising in
mathematical physics, which may be useful for the
explanation of some new nonlinear physical phenomena.
This approach can be extended to find traveling wave
solutions for the wide class of nonlinear dispersion partial
differential equations under certain restrictions, whichare
arising in the theory of solitons and other areas.
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