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Abstract: In this paper, we consider a proportional differentiation model based on the performance 

metric of service level while most existing researches on the proportional differentiation use other 

metrics such as average waiting time and packet loss probability. We use a metric called unfill rate to 
measure the service level of the traffic classes. As an implementation method of the proportional 

differentiation model, we suggest a time-dependent priority scheduling which expresses the priority 

of the traffic class as a linear function. We find out how to adjust the priority function parameters to 
achieve the intended proportional differentiation through the asymptotic analysis of the queue waiting 

time distribution in a two-class queueing system with a Poisson arrival process. Numerical 

experiments show that the scheduling method is effective for implementing the proportional 
differentiation model especially when the required service levels are high. 
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1  Introduction 

Proportional differentiation is a type of relative 

differentiated services approach for Internet 
applications. The relative differentiated services 

approach groups the network traffic into several 

classes and orders them based on their priority. For 
a selected performance measure, the network 

operator tries to make sure that a higher-priority 

class experiences better service than a lower-
priority one in terms of the measure. With 

proportional differentiation, performance measures 

should be proportional to the differentiation 
parameters. Suppose mi is a performance measure 

for class i. The proportional differentiation states 

that 
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where δi is the differentiation parameter for class i. 

There are several literature on proportional 
differentiation models. Dovrolis and Ramanathan 

[1] compare various approaches for differentiated 

services and describe scheduling methods for 

several proportional differentiation models. 

Dovrolis et al. [2] consider delay differentiation, 
which uses the average queueing delay as the 

performance measure, and how the proportional 

delay differentiation can be approximated by 
several schedulers. Leung et al. [3] study a two-

class case where both arrival processes are Poisson. 

They find several properties on scheduling 
parameters for proportional delay differentiation 

between the two classes. 

Most studies on proportional differentiation and 
their analytical results consider a differentiation 

based on average waiting time, which is called 

proportional delay differentiation. Although 
average waiting time is the most common metric in 

both theory and practice, there are other interesting 

performance measures in certain circumstances. For 
example, in call centers, one of the important 

performance measures is service level which is 

defined as a proportion of customer calls answered 
in a specific time referred to as acceptable waiting 

time (AWT) [4]. This kind of performance measure 
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is hard to analyze because it requires information 
not just on the average of waiting time but on its 

distribution. In this paper, we consider a 

performance measure called unfill rate ui(t), which 
is defined to be the probability that the total waiting 

time R
i
 of class i is longer than AWT t; 

 ui(t) :=  P{R
i 
 >  t} . (1.2) 

Since the unfill rate is defined as the probability 

that the waiting time is longer than AWT t, one can 

get the service level by taking out the unfill rate 
from 100%. Note that the unfill rate decreases as 

AWT t increases. In other words, when the 

customers are willing to wait for a longer time 
(larger t), the unfill rate (service level) becomes 

lower (higher). Using the performance measure of 

the unfill rate, we consider a proportional 
differentiation model based on service level and 

suggest a scheduling discipline which effectively 

implements it. 
In the next section, we describe the scheduling 

discipline used in this paper to implement the 

proportional differentiation. Section 3 shows 
analytical results on the performance measure and 

suggests how to use the scheduling discipline to 

achieve proportional differentiation between 
classes. After giving numerical examples 

illustrating how effectively the scheduling 

discipline works in Section 4, we end this paper 
with concluding remarks in Section 5. 

 

2  Time-Dependent Priority  
To implement proportional differentiation, 

many researchers consider the time-dependent 
priority (TDP) scheduler, which is a non-

preemptive packet scheduling discipline increasing 

the priority of a packet with its waiting time. There 
are many versions of TDP scheduling and we refer 

the reader to Essafi and Bolch [5] for details on 

them. In this paper, we use a TDP scheduler whose 
priority function qi(t) is defined as follows; if a 

tagged class i packet arrives at time τi, then its 

priority at time t ≥ τi is 
 qi(t) = ri + t − τi  . (2.1) 

Parameter ri determines the priority between classes 

and a higher-priority class is assigned with a larger 
ri. 

Although it is from a higher-priority class, a 

packet does not have higher priority over every 
packet from a lower-priority class. Since the 

priority increases with the elapsed time in the 

system, lower-priority class packets have higher 
priority than higher-priority class packets which 

have not spent much time waiting in the system. 

Figure 2.1 shows a plot of the priority function 
(2.1). Assume that class i has a higher priority than 

j (ri > rj). If a class i packet arrives at τi, it always 

has a higher priority over a class j packet which has 
not arrived before it (τj ≥ τi). In addition, its priority 

qi(t) is higher than a class j packet which has 

arrived before it if qj(t)  < qi(t), i.e., τj > τi − (ri − rj).  

priority

τiτj

ri

rj

ri−rj
t

qi(t)

qj(t)

 
Figure 2.1: Priority of a class i packet is set to ri when it arrives 
at τi then increases linearly with time t. 
 

3  Proportional Differentiation 
In this section, we consider a two-class 

queueing system with an i.i.d. interarrival time 

process {An} and an i.i.d. service time process {Bn}. 

Class 1 is assumed to have higher priority than 
class 2 and their proportional differentiation is 

stated by the ratio of the unfill rates:  
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To implement the unfill rate differentiation, we 

consider the TDP priority function (3.1) with r1 > 
r2. With the priority function, a class 1 packet has 

higher priority than class 2 packets whose arriving 

time τ2 is earlier than the class 1 packet arrival time 
τ1 but within an interval of Δr := r1 − r2 (i.e., τ1 − Δr 

< τ2 < τ1). 

In order to analyze the waiting time distribution, 
first we compare the service orders under the TDP 

scheduling with the packet arrival orders. Figure 

3.1 illustrates that class 1 packets have higher 
priority over a number of class 2 packets which 

have arrived before them. Under the TDP 

scheduling with priority function (3.1), the class 1 
packet which has arrived at τ1 (called “τ1-class 1 

packet”) could be served before the class 2 packet 
which has arrived between τ1 − Δr and τ1 (called 

“[τ1−Δr,τ1]-class 2 packet”). Since the TDP 

scheduling is non-preemptive, the class 1 packet 
cannot be served before the class 2 packet whose 

service has already started. In other words, the τ1-
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class 1 packet cannot “catch up” the [τ1−Δr,τ1]-class 

2 packet which starts to be served before τ1. As for 
those class 2 packets having arrived before τ1 − Δr, 

the τ1-class 1 packet has a lower priority and cannot 

catch them up at all.   
Compared with the well-known First-In-First-

Out (FIFO) policy where the service order is the 

same as the arrival order, the TDP scheduling can 
reduce the waiting time of a class 1 packet by as 

much as the interarrival time whenever it catches 

up a class 2 packet. Let N denote the number of the 
[τ1−Δr,τ1]-class 2 packets. Hence, N is the 

maximum number of the class 2 packets that the τ1-

class 1 packet can catch up. In the example of 
Figure 3.1, N is equal to 2 (the number of white 

circles between τ1 − Δr and τ1). Under FIFO policy, 

the τ1-class 1 would be served at the 5-th position 
among the 5 packets in Figure 3.1 because the 

packets are served according their arrival orders. 

priority

time

class 1

class 2
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Figure 3.1: Under TDP policy the service order can be different 
from the arrival order. The class 1 packet arriving at τ1 would 
be served before the class 2 packet whose arrival time is in [τ1 
− Δr, τ1] unless it starts to be served before τ1. 

 

Instead, under the TDP scheduling, it would 
catch up two class-2 packets and be served at the 3-

rd position if none of those class-2 packets do not 

start to be served until τ1. The difference of waiting 
time of the 3-rd and 5-th positions can be as large 

as twice the interarrival time. Thus, we can see that 

the TDP scheduling can reduce the waiting time of 

the τ1-class 1 packet by  

N

n nA
1

 at most. 

If we make further assumptions regarding the 
input process that the packet arrival follows a 

Poisson process and the percentage of the class 1 

traffic is 0 < θ < 1, then N has a Poisson 
distribution with mean (1 – θ) Δr. And, we have the 

following result on the unfill rate of class 1. The 

proof can be found in Appendix A. 
Theorem 1 If there exists γ > 0 satisfying 

 0)()(   AB  (3.2) 

where X  denotes the cumulant generating 

function: ][Elog:)( X
X e  , then for a constant C 

which does not depend on Δr or θ 

 rCetue t

t






)1(
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 . (3.3) 

Theorem 1 suggests that the unfill rate for high-

priority customers can be approximated as follows; 

 ])1([
1 )( rt

Cetu



  (3.4) 

We can use the similar arguments as for 
Theorem 1 to obtain a result on the low-priority 

class as well. Let M denote the number of class 1 
packets which arrive during time slot [τ2, τ2 + Δr]. 

This number represents how many class-1 packets 

can catch up the class-2 packet which has arrived at 
τ2 (called “τ2-class 2 packet”). As one class-1 

packet catches up the τ2-class 2 packet, the waiting 

time of the τ2-class 2 packet increases by as much 
as the class-1 packet service time. Thus, under the 

TDP scheduling, the waiting time of the τ2-class 2 

packet can be increased by  

M

n nB
1

 at most. 

Under the assumptions that the packet arrival 

follows a Poisson process and the percentage of the 
class 1 traffic is θ, M has a Poisson distribution 

with mean θΔr. And, we have the following result 

on the unfill rate of class 2. Its proof is given in 
Appendix B. 

Theorem 2 If there exists γ > 0 satisfying (3.2) 

and )2( B , then with the same constant C as 

in (3.3) 

 rCetue t

t






 )(lim 2 . (3.5) 

Theorem 2 suggests that the unfill rate for low-
priority customers can be approximated as follows; 

 )(
2 )( rt

Cetu



 . (3.6) 

Using the above asymptotic results on the unfill 
rates, we examine how the network service 

provider can control the service level differentiation 

between the two traffic classes. From Theorem 1 
and 2, we can easily get the following result 

regarding the proportion of the unfill rates. 

Corollary 1 If there exists γ > 0 satisfying 
(3.2), then 

 re
tu

tu

t
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)(
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2

1 . (3.7) 

The right-hand side of (3.7), called the asymptotic 

ratio, gives a hint on how to proportionally 
differentiate between the high- and low-priority 

classes. To achieve the proportional differentiation 

given by (3.1), the priority function parameter r1 
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and r2 can be selected such that their difference Δr = 
r1 − r2 satisfies the following equation: 

 
2

1






 re , (3.8) 

in other words  

 
2

1ln
1






 r . (3.9) 

Since the asymptotic ratio in (3.7) is no larger 

than 1, the unfill rate of high-priority class u1(t), is 
no greater than that of low-priority class u2(t). It 

becomes 1 only if Δr = 0, which makes q1(t) = q2(t) 

and virtually no priority difference between the 

classes. Note that the asymptotic ratio re
  does 

not include θ, the percentage of the high-priority 
class traffic. Thus, Corollary 1 implies that the 

percentage of the high- and low-priority class 

traffics has little influence on the proportion of their 
unfill rates when the AWT t is large enough and, in 

other words, a high service level is required. 

 

4  Numerical Experiments 

In this section, we conduct numerical 
experiments to verify the results on the proportional 

differentiation discussed in the previous section. 

The total traffic arrival rate λ is assumed to be 0.9. 
We try several service time distributions with mean 

1. The priority parameter gap Δr is set to 5 and we 

consider two different combinations of the traffic 
classes (θ = 0.3, 0.8). Figure 4.1 and 4.2 plot the 

unfill rates observed by simulation for both classes 

and their ratio as well as the asymptotic ratio 
defined in (3.7) for θ = 0.3 and 0.8, respectively.  

They show that the ratio of the unfill rates 

u1(t)/u2(t) converges to the asymptotic ratio re
  

as AWT t increases. In every case, the gap between 

the observed and asymptotic ratios becomes smaller 

when AWT t is long enough to make the unfill rates 
under 20%. The numerical results also show that 

the approximation of u1(t)/u2(t) by the asymptotic 

ratio works better for a service time with a larger 
squared coefficient of variation cB

2
. When the 

service time has small variation, e.g., cB
2
 < 1 as in 

(b) of Figure 4.1 and 4.2, it is rarely observed that 
the waiting time is longer than AWT, which makes 

inefficient to verify an asymptotic result through 

simulation. 
The unfill rates of both high- and low-priority 

classes increase as θ increases from 0.3 (Figure 4.1) 

to 0.8 (Figure 4.2). But, their ratio seems to remain 
at the same level close to the asymptotic ratio when 

AWT t is large. As Corollary 1 implies, the  

 
(a) Exponential Service Time 

 
(b) Gamma Service Time (cB

2 = 0.5) 

 
(c) Gamma Service Time (cB

2 = 2) 
 

Figure 4.1: Ratio of unfill rates (θ  = 0.3) 

 

percentage of high- and low-priority classes has 

little effect on the ratio of the service levels when 
the service levels are high enough. 

Corollary 1 also suggests that the network 

service provider can control the relative service 
levels between traffic classes through parameter Δr. 

We now conduct another numerical experiment and 

demonstrate how well the asymptotic ratio 
approximates the actual ratio of the unfill rates for 

different values of Δr. The service time is assumed 
to have an exponential distribution and other 

parameters are set to the same as in Figure 4.1 and  
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(a) Exponential Service Time 

 
(b) Gamma Service Time (cB

2 = 0.5) 

 
(c) Gamma Service Time (cB

2 = 2) 

 
Figure 4.2: Ratio of unfill rates (θ  = 0.8) 

 
4.2. Table 4.1 lists the experiment results such as 

u1(t), u2(t), and their ratio for two different AWTs (t 

= 20, 30). We choose AWTs such that the unfill 
rates for both classes are less than 20%. Table 4.1 

shows that in most cases the actual ratio u1(t)/u2(t) 

observed by simulation is very close to the 

asymptotic ratio re
 suggested in Corollary 1. 

With a shorter AWT (t = 20), the gap between the 

actual and asymptotic ratios gets bigger  as Δr 
increases (γ = 0.1 in this example). On the other 

hand, as t increases (t = 30), the asymptotic ratio 

approximates more closely the proportional  

Table 4.1: Actual ratio of the unfill rates observed by 
simulation along with the asymptotic ratio 

 

Δr 

 

u1(t) 

t = 20 

u2(t) 

 

u1(t)/u2(t) 

 

u1(t) 

t = 30 

u2(t) 

 

u1(t)/u2(t) 

 

re


 

1 0.128 0.141 0.911 0.045 0.049 0.916 0.905 

2 0.119 0.145 0.821 0.042 0.051 0.825 0.819 

3 0.111 0.149 0.741 0.039 0.052 0.743 0.741 

5 0.096 0.158 0.603 0.034 0.056 0.601 0.607 

7 0.084 0.167 0.501 0.029 0.060 0.490 0.495 

10 0.071 0.175 0.406 0.024 0.066 0.361 0.368 

 

differentiation of the unfill rates. In order to make 

the unfill rate of the high-priority class as low as, 
say, 60% of that of the low-priority class, the 

service provider can find a proper value of Δr using 

(3.9). In this example, −ln(u1(t)/u2(t))/γ = −ln(0.6)/ 
0.1 ≈ 5.1 and the numerical results in Table 4.1 

show that, with Δr = 5, actually the observed ratio 

is close to 60% (u1(t)/u2(t) = 0.603, 0.602, 0.601 for 
t = 20, 25, 30, respectively). 

 

6  Concluding Remarks 
In this paper, we suggest a proportional 

differentiation model based on a performance 
measure of unfill rate. As the implementing method 

of the proportional differentiation, we suggest a 

TDP scheduling discipline with priority parameter 
{ri}. Since it is difficult to measure the exact 

performance under the TDP scheduling discipline, 

we derive asymptotic results on the waiting time 
distribution and approximate the ratio of the unfill 

rates. We demonstrate that the approximated ratio 

can be used effectively to control the intended 
proportional differentiation between the high- and 

low-priory traffic classes when the packet arrival 

follows a Poisson process. The approach used in 
this paper can be classes. It requires additional 

analysis on the service order and waiting time of 

the packets from each class, which is left for future 
study. Also it might be verified by more numerical 

experiments whether the TDP scheduling discipline 

suggested in the paper remains effective when there 
are many traffic classes. Examining other types of 

TDP priority functions is another possible area for 

further researches. 
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We use the following notations for the poof of 
Theorem 1 in this section and Theorem 2 in 

Appendix B. 

H: set of arrival indices of high-priority class 
packets 

L: set of arrival indices of low-priority class 

packets 
Rn : total waiting time of the n-th arriving packet 

Wn : waiting time in the queue of the n-th 

arriving packet 
On : service order of the n-th arriving customer 

under the TDP scheduling discipline 

B′n : service time of the n-th departing packet 
W′n : waiting time in the queue of the n-th 

arriving packet under FIFO policy 

Under the TDP scheduling discipline, the n-th 
arriving packet is served in the order of On, which 

would be different from its arrival order n. If the n-

th arriving packet is class 1, the difference between 

Wn and 
nOW ' is equal to the interarrival time 

between the On-th and n-th arriving packets; 

 





1

'
n

Oi
iOn

n

n
AWW  for Hn . (A.1) 

We define another notation related to the high-

priority class service level; 

},:1{:
1

LkAnknG r

n

ki
in  





 

                                            for Hn . (A.2) 

As mentioned in Section 3, a high-priority packet 
can catch up with only the low-priority packets 

which have arrived at most Δr time units earlier. 

The last term in (A.2) denotes the number of those 
low-priority packets. Thus, Gn means the earliest 

service order that the n-th arriving packet could 

take when it is in the high-priority class. Hence, for 
Hn  

 nOG nn  . (A.3) 

If On > Gn, it means the Gn-th service has started 

before the n-th packet arrives; 
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AW   for Hn . (A.4) 

And, before getting served, the n-th packet needs to 

wait at most for the packets in service order of Gn 

through On − 1 to finish their service; 
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Now, we show that for Hn  
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where }{ nB is i.i.d. and has the same distribution as 

}'{ nB . 
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  (A.7) 

From (A.4) and (A.5), we have 

}.'{   

}''{}'',{   

}''{}{0

1

1

11

1

tBP

tBBPtBAWGOP

tBAWPtRP

n

n

n

n

n

n

n

n

n

n

Gn

i
i

O

O

Gi
iO

n

Oi
iOnn

O

n

Gi
iGn





























  (A.8) 

From the Markov’s inequality, 
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for an arbitrary 0 . From the definition of Gn in 

(A.2), we have that nGn   has the same distribution 

as min{n, N } where N is defined as follows; 
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 (A.10) 

and }{ nA is an i.i.d. sequence which has the same 

distribution as }{ nA . Thus, for    with finite 

)(B , 

0)]1)(([exp(}{ )(
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Since the right-hand side of the inequality in (A.11) 
does not dependent on n, it converges to 0 

uniformly as t . With (A.6), this implies that 

0}''{}{
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In order to complete the proof, we need to show 
that for some constant C 

))1(exp(}''{lim
1

rO

n

Gi
iG

t

n
CtBAWPe

n

n

n







  



 

Ki-Seok Choi: A Proportional Differentiation Model ..  

 

459 

                                    as  t . (A.13) 

Let kkk ABX  ' and define {Sn} as 

 S0 = 0 and 



n

k
kn XS

1

. (A.14) 

If 1]'[ 1 BE , then W′n converges weakly to a 

random variable W′ which has the same distribution 

as kk S0max   [6]. Using the result in the proof of 

Theorem 1 of Glasserman and Wang [7], we 

conclude ),'( nG GnW
n

 converges in distribution to 

),'( NW and W′ is independent of N  and }{ nA . 

From the above argument with new notations, 

we have that 
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where B  is a random variable having the same 

distribution as }'{ nB and independent of W′, N  and 

}{ nA . Using {Sn} in (A.14), we define 

}:1inf{ TSn n  with T = t +  
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. Then, 
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We use exponential twisting [6]. Specially we use 

γ-twisting of {Xn} and B and (−γ)-twisting of }{ nA , 

and denote the use of a twisted measure in 

computing expectations by E
~

. Note that τ is a 

stopping time for {Xn} and N  is a stopping time 

for }{ nA . From Theorem XII.4.1 of Asmussen [6], 

we have that 
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where the semicolon inside the expectation 
indicates that the expectation is evaluated over the 

event after the semicolon. Using the definition of γ, 

we reduce the above equation further; 
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where )( B . Since a cumulant generating 

function is convex [8] and 0)0( X , 

     0)('
~

1
1  

X
X

i XeEXE , (A.19) 

and thus the event of {τ < ∞} has probability one. 

The random variable T is independent of {Sn} and 

T as t . From Corollary 8.33 of Siegmund 

[9], we have that 
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where Z is a ladder variable. Since the distribution 

of Z is independent of }{ nA , we have 
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with eCC 1: . After (−γ)-twisting, }{ nA has an 

exponential distribution with mean 1/(λ + γ). It 

means that under the twisted measure N  has a 

Poisson distribution with mean (λ + γ)(1 − θ) Δr. 
Thus, 
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and we have (A.13). 
 

Appendix B 
 If the n-th arriving packet is class 2, the 

difference between Wn and W′n is equal to the total 

service time of the n-th through (On−1)-th departing 
packets; following 
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For the analysis of the low-priority class service 

level, we introduce a new variable {Fn}, which is 
similar to {Gn} in (A.2) for the high-priority class. 

For the n-th arriving packet which has low priority 

(i.e. Ln ), 
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The meaning of Fn is the last service order that the 
n-th arriving packet could take when it is in the 

low-priority class 2. 
If On < Fn, there exists at least one high-priority 

packet which arrives within Δr time units after the 

n-th packet arrived but cannot catch up with it. This 
means the low-priority packet started to get served 

before the high-priority packet arrives. Its waiting 

time in the queue must have been less than Δr (Wn < 
Δr). From (B.1), the following inequality holds; 
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Now, we show that for Ln  
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  (B.4) 

where }{ nB is i.i.d. and has the same distribution as 

}'{ nB . 
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  (B.5) 

From (B.3), we have 
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 (B.6) 

From the Markov’s inequality, 
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  (B.7) 

for an arbitrary 0 . From the definition of Fn in 

(B.2), we have that nFn   has the same distribution 

as M , which is a Poisson random variable defined 

as follows; 
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and }{ nA is an i.i.d. sequence which has the same 

distribution as }{ nA . Thus, for  2  with finite 
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                                         as  t . (B.9) 

Since the right-hand side of the inequality in (B.9) 
does not dependent on n, it converges to 0 

uniformly as t . With (B.4), this implies that 
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In order to complete the proof, we need to show 
that for some constant C 
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Using a similar method as in the proof of Theorem 

1, we can show that ),'( nFW nn  converges in 

distribution to ),'( MW and W′ is independent of M . 

Thus, 
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where }{ nB  is i.i.d. with the same distribution as 

}'{ nB and independent of W′, M and }{ nA . Using 

{Sn} in (A.14), we define }':1inf{' TSn n  with 

T′ = t  
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With γ-twisting of {Xn} and }{ nB , we have that 
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Using the definition of γ, we reduce the above 

equation further; 
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With the twisted measure,   ][
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1
1 XeEXE
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0)('   X and thus the event of {τ' < ∞} has 

probability one. The random variable T' is 

independent of {Sn} and 'T as t . From 

Corollary 8.33 of Siegmund [9], we have that 
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Since the distribution of Z is independent of }{ nB , 

we have that 
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  (B.17) 

with eCC 1: . Note that the constant is the same 

as in Theorem 1. 

Since M  is independent of both }{ nX  and 

}{ nB , 
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and we have (B.11). 
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