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Abstract: In this paper, the estimation for finite population total aftady variable will be considered, and the local linearesgion
will be used. The study variable is available for the sampbtia supplemented by two auxiliary variables, which arelale for every
element in the finite population. Also, the resampling mdghwill be combined with the local linear regression methmédtimate
the total. The comparisons between different methods wipp&rformed based on the mean squared error (MSE), meantbsalor
(MAE), and mean absolute percentage error (MAPE). A sinutagtudy is carried out to assess the effects.
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1 Introduction

Survey sampling often supplies information about a studyate only for sampled elements. However, auxiliary
information is often available for the entire populatiorheTrelationship of the auxiliary information with the study
variable across the sample allows inferences about thesampled portion of the population. Thus, the use of auxiliar
information at the estimation stage of a survey improvegtieision of the estimates parameters studied. One agproac
to using this auxiliary information in estimation is to assia working model describing the relationship between the
study variable of interest and the auxiliary variablesir&ators are then derived on the basis of this model.

Usually a parametric approach is used to represent theamsaip between the auxiliary variables and the study
variable. But in some situations, the parametric model tsappropriate, and the resulting estimators do not achieye a
efficiency gain over pure estimators. A natural alternatras first suggested by Kuo (1988) for the distribution fumcti
that adopts a nonparametric approach, which does not pfga@strictions on the relationship between the auxiliatad
and the study variable. Other important works in this topee @hambers et al. (1993), Drofman (1993), Drofman and
Hall (1993) and Rueda and Arcos (1998).

Breidt and Opsomer (2000) used the traditional local patyiab regression estimator for the unknown regression
function m(x). They assume thati(x) is a smooth function ok and obtained an asymptotically design-unbiased and
consistent estimator of the finite population total. Thealopolynomial regression estimator has the form of the
generalized regression estimator, but is based on a nanpaiea superpopulation model applicable to a much larger
class of functions. Breidt, Claeskens, and Opsomer (199%idered a related nonparametric model-assisted régness
estimator, replacing local polynomial smoothing with peeal splines. Kim, Breidt, and Opsomer (2009) extended the
local polynomial nonparametric regression estimatiomim-stage sampling, in which a probability sample of cluster
selected, and then subsamples of elements within eachestldaster are obtained. In this paper, we concerned wéth th
estimation the finite population total in the presence ofttheauxiliary variables using the local polynomial regieas

2 Multiple Regression

Suppose now that the covariatadislimensional, where

!

Xi = (Xi1, Xi2, -+, Xid )
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In this case,
Y =m(Xg,X2, ..., Xq) + €

For local linear regression, the kernel functiinis defined as a function af variables. Given a nonsingular positive
definitedx d bandwidth matrixH, we define

Kp (X) = ﬁK (H*l/Zx) . )

Often, one scales each covariate to have the same mean @&mbeasnd then we use the kernel

h~K (||| /h) )

!’

whereK is any one-dimensional kernel. Then there is a single badtthpiarameten. At a target value= (x1,X2,...,Xq) »
the local sum of squares is given by

2
n d
ZWi () <Yi—ao—zaj (Xij—xj)> ®3)
i= =1
where,
wi (x) =K (|x — x| /h)
In this case, the estimator is
m(x) = ao (4)
wherea’= (&, 4, ....,éd), is the value ofa = (ap, ay, ....,ad),that minimizes the weighted sums of squares. The solution
ais
a= (X'Wx) ' x'wy ()

whereX in this case is
1X11—X1 ... X9 — Xg
1 Xo1— X1 ... Xog — Xg

1 Xp1 — X1 ... Xnd — Xd

andW is the diagonal matrix whoseg, {) element. For more details [see CasellagGl (2006)].

3 Estimation of Total in the Case of Two Auxiliary Variables

In this case
1Xp1—Xgj Xo1— Xoj
1Xio—Xyj Xo2— Xoj
=1 . . . , ]=212..,N
1 Xin—X1j Xon — X2j
and
1 1 1
X! = | TR TR 12 N
X21— X2j X22 — X2j ... Xon — X2j
LetAgij =Xgi —Xa1j,  D2ij = Xoi — Xj
e (1 /(a2 2
in this casewiij = k(ﬁ (Alij +A2ij)> and
wg;j 0 --- 0
0 W2j 0
W= .
0 0 - Wy
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wherew;ij = wjj. So, we will substitute in the equatioTix) = (X’WX)_lx’WY by X, Wand Y to get the estimation of
the total. Hence

Wy Wo; o Whj
X'W = Alljwlj AleWZj Alannj , and
D21jW1j AjWaj - -+ AonjWhj
011 012 013
X'WX = 521 fzz 523 , where
031 (37 (33
l11=" W 1 ="y AuijWij
| |
l13 ="y AoijWij szZAlzijWij
| |
bz =y Diijlaijwij l33= ZAZZijWij
I I

Note that:(X" WX) is a symmetric matrix.
Hence, the inverse of the matiiX’ WX) is

1 1 .
(X'WX) " = XWX (Adj (X" WX))
The second term in the estimationais™
) YiWijYi
XIWY = | 3 AaijWij¥i
>i DoijWijYi

where 1
a=(X"Wx) “XxX"'Wy.
Since our primary interest is to compute an estimat¥,dhe necessary computations are limited to the ones that
estimate the parametgr Therefore, the estimator is simplified to

¥ =8 =€) (X' WX) X' WY
wheree; is a column vector with the first element equal to one, anddébeaqual to zero. Then
3 n
=d= Sia ZA(a—l)ijWijyi X' WX| (6)
a=1 i=
whereAgj =1, and
2
si = (5i83wi) (5143w ) — (51 Ay da v
S12= ZiAlijAZijWiJ) (ZiAzijWij — [ 2idq;Wij ziAlijAZijWiJ)
S13= ZiAmWij) (ziAlijAZijWij o O ZiAZijWij)
Now, our main purpose is to estimate the tof). (Therefore, according to Drofman (1992) the estimate ettital
R n
T= Ziyi Z Vi 7
i= j=n+1

Substitute from equatiorg) in (7), the estimated total is

R n N 1 3 n
i;I J;DJ aZl ai; -

N 1

n 3
— 1+ S1ala-1)ijWj | Vi (8)
|21< ; |Dlazl all(a-1)ij |J> |

is

whereD = |[X'WX|
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4 Bootstrapping Local Linear Regression for Estimating theTotal

Efron(1979) has developed a new resampling procedure nast@&botstrap” . Bootstrap resample consists of n elements
that are drawn randomly from the n original data observatiaith replacement (Friedl & Stampfer, 2002). The all
bootstrap samples aré , but we choosd bootstrap samples. Bootstrapping can be done by eithempiisey the
residuals, in which the regressdrg, xo, ..., Xq) are assumed to be fixed, or resamplingyhealues and their associated

X values, in which the regressors are assumed to be randorar kiualy, we deal with the residuals resampling, where
the bootstrap technique with nonparametric regressiostimate the total of the population will be used and the local
linear regression will also be considered. Suppose we havévariate response variable Y and two auxiliary variables
X1 andXz , then the nonparametric regression model is

Yi=m(Xui, Xei) +&, i=1..,n

and the bootstrap procedure based on the resampling eamtsecsummarized as follows:
(1) LetY = (Y1,Y2, ..., Ys) denote the sample of observations was selected from theajedgopulation. Then based on
the sample Y the local linear regression estimatx) is given by

Vi = M(xi, %) = € (XWX) " X'WY,

(2) Calculate the residuals as following

?Ji =Yi —m(Xli,XZi), i= 1, 2, Lo, N
(3) Define the centered residuals fy= & — 25 , &.
(4) Draw with replacement a random sample of size from the veds(lé,, &,, ..., ,, were calculated in steg8) giving
1/n probability for eachg; values. This gives n-bootstrap sample of the residgals = 1,2, ..., n. [See Stine (1985,
1990) and Wu (1986)].
(5) The bootstrap sample of observations is constructed byng@drandomly sampled residual to the original predicted
value for each observation. After resampling, new obs&mais given by

Yi* = m(Xli,XZi) + 8i*.
(6) Obtain the local linear estimate from the first bootstrapgie as follows:
¥ = ¢ (x'WX) X wy

(7) Repeat the steps 4, 5 and 6, B times.
Then, the bootstrap estimate is

o 1S cum
V=53 ©)

Now, we will estimate the total using local linear regresséstimation with bootstrap method, since we have

N N
TZZYJ'Z YH—;YJ'
=1 i= IEdl

=}

butz'j“#in is unknown , so we will estimate it as:

>
=z

sia 3 Aagijwij ¥, (10)

n
-
I

A
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5 Jackknifing Local Linear Regression for Estimating the Todl

In this Section, the algorithm of estimating the total usiocal linear regression method with jackknife techniqué wi
be given. The technique of deleting single case from theirmaigsample (delete one jackknife) sequentially will be
used. Suppose the dataset consista wéctors(Y;, Xyi, Xoi), whereY; is the study variable an¥y;, Xy are considered
auxiliary variables. For simplicity, let; = (xgi,%z)anddq = (Y, %), k= 1,2,....,n denote the values associated with
it observation. In this case, the set of observations is th®wéd;, ds, ..., ds). Then, the jackknife procedure based on
delete-one is as follows.

(1) Drawn sized sample from population randomly and label the elesn&fithe vectody = (yk, %), k=1,2,....,n

(2) Omit first observation of the vectody = (yk,Xx) and label the remainingn-1 sized observation set
Y<(1J)) = (Y2,....,¥n), and X((lJ; = (X2, ...,Xn) @s delete-one jackknife sampdg;.

(3) Obtain the local linear regression estimaté!"(x;) from d((ig
(4) Omit the second element of the vectaf = (yi,x) and label remainingn-1 sized observation set
Y<(23)) = (Y1,¥3,----,¥n), and Xg)) = (X1,%3, .-, Xn) asd((gg.
(5) Obtain the local linear regression estimaté?"(x;) from d((;).
(6) Similarly, omit each one of tha observations (there is samples jackknife each of them has- 1 observations)
and estimate the local linear regressittf"(x;), whereni™ (x;) is the jackknife local linear regression estimate after
deleting ofk" observation frontl = (yi,%).
(7) Then, the jackknife estimate of(X;) is

M) (x)) = £ 3R M (x)) = £ 3R, D%- Yo 1S1a 31 Dla1)ijWijYik-
(8) Using the jackknife estimate uﬁ(k,—) in estimating the total

n

e IP L

6 Performance Criteria of the Models

n

n 1 3 ( )
il WiiVi 11
kZlD Z )ijWijYik

1
n

The performance of the model is related with how close argtidiction values to the observed values. Three different
consistency criteria are used in order to compare amongrdifft methods. These are mean square error (MSE), mean
absolute error (MAE) and mean absolute percentage erroRE)Aespectively which are defined as follows:

LMSE = 251 (% —$1)"
2 MAE = nZ Ly “|
3MAPE = 131, WAl (100%).

7 Simulation studies

Sometimes in sampling, we do not usually observe all theesuinformation. That is, the survey variab¥eis not
observable for all the population units. Auxiliary varialy, is often used to estimate the unobserved survey variables.
One way of overcoming the above problem is the super populajpproach, in which a working model relating the two
auxiliary variables is assumed. In this study, we simulat drom four models, which introduced by ¥eal (2006),
each withY = m(Xy, X2) + 0 (X1) € , wheree ~ N (0, 1).

Model (1): my (X1,%2) = X1X2

5% (x1,%) = (X§ —0.04) | (¢>0.04) T0.01

x¢>0.0
Model (2): mp (x1,%2) = X1 €xp(—2x7)

& (x1.%2) = 25X — 0.04) I ;2. 5.0) +0.025
Model (3): Mg (X1,%2) = X1 + 2sin(1.5x7)

63 (Xl,Xz) (Xl —0. 04) I(x§>o.04) +0.01
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Table 1 MSE, MAE, and MAPE of the total estimation under differentthoals with different sample sizes and bandwidths for model
1

h=—n 17
Method | n=25 n=>50 n=100

MSE MAE MAPE | MSE MAE MAPE | MSE MAE MAPE
CLR 404.25 | 29.63 85.5% | 397.85 | 27.24 74.2% | 396.56 | 25.99 27.0%

LLR 332.25 | 25.85 68.8% 325.87 | 23.49 57.9% 32458 | 22.26 17.8%
LLB 329.22 | 21.55 42.1% 322.84 | 19.23 32.2% 321.55 | 18.01 6.4%
LLJ 336.14 | 28.14 72.3% 329.76 | 25.76 61.2% 328.47 | 24.52 19.6%
h=n1

CLR 373.16 | 27.35 79.0% 367.25 | 25.14 68.5% 366.05 | 24.00 25.0%
LLR 306.69 | 23.86 63.5% 300.81 | 21.68 53.4% 299.61 | 20.55 16.4%
LLB 303.89 19.89 38.9% 298.01 17.75 29.8% 296.81 16.62 5.9%
LLJ 310.28 | 25.97 66.7% 304.40 | 23.78 56.5% 303.20 | 22.63 18.1%
h=n1

CLR 435.35 | 31.90 92.1% | 428.46 | 29.33 79.9% | 427.06 | 27.99 29.1%
LLR 357.81 | 27.84 74.1% | 350.94 | 25.30 62.3% | 349.55 | 23.97 19.2%
LLB 35454 | 23.21 45.4% | 347.68 | 20.71 34.7% | 346.28 | 19.40 6.9%

LLJ 362.00 | 30.30 77.8% | 355.13 | 27.74 65.9% | 353.74 | 26.41 21.1%

Table 2 MSE, MAE, and MAPE of the total estimation under differentthwals with different sample sizes and bandwidths for model
2

h=n 73
Method | n=25 n=50 n=100

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE
CLR 513.09 | 37.60 108.6% | 504.97 | 34.57 94.2% 503.32 | 32.99 34.3%
LLR 421.70 | 32.81 87.3% 413.61 | 29.81 73.4% 411.97 | 28.25 22.6%
LLB 426.64 | 35.71 91.7% 418.55 | 32.69 77.7% 416.90 | 31.12 24.9%
LLJ 417.85 | 27.35 53.5% 409.76 | 24.40 40.9% 408.12 | 22.86 8.1%

h=n%
CLR 502.83 | 36.85 106.4% | 494.87 | 33.88 92.3% 493.26 | 32.33 33.6%
LLR 413.27 | 32.16 85.5% 405.34 | 29.22 72.0% 403.73 | 27.68 22.2%
LLB 409.49 | 26.80 52.4% 401.57 | 23.92 40.1% 399.96 | 22.40 7.9%

LLJ 418.11 | 35.00 89.9% 410.17 | 32.04 76.2% 408.56 | 30.50 24.4%
h=n%
CLR 519.31 | 38.06 109.9% | 511.09 | 34.99 95.4% 509.43 | 33.39 34.7%
LLR 426.81 | 33.21 88.3% 418.62 | 30.18 74.3% 416.96 | 28.59 22.9%
LLB 422.92 | 27.68 54.1% 414.73 | 24.70 41.4% 413.06 | 23.14 8.2%

LLJ 431.81 | 36.15 92.9% 423.62 | 33.09 78.7% 421.96 | 31.50 25.2%

Model (4): my (x1,X2) = Sin(Xq + X2) + 2 exp(—2x3)

&2 (%1,%2) = 3(x§ — 0.04) | (> 0.04) +0.03

x2>0.0
The populations ofX; and X, are generated as independent and identically distribuigd{niform (-2, 2) random
variables.

The simulation experiments will be performed to compareadgormance of the local linear regression estimator with
the classic linear regression estimator. Also, the effettse bootstrap and the jackknife techniques on those atiirs
will be studied. The simulation will be carried out as follew
1. Firstly, we generate population of sikke= 1000 as above.

2. The simple random samples will be chosen from the popuatnd different sizes will be considered, nameh
25,50,and 100 respectively
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Table 3 MSE, MAE, and MAPE of the total estimation under differentthuals with different sample sizes and bandwidths for model
3

h=n 13
Method | n=25 n=>50 n=100

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE
CLR 466.44 | 34.18 98.7% 459.06 | 31.43 85.7% 457.57 | 29.99 31.2%
LLR 383.36 | 29.83 79.4% 376.01 | 27.10 66.8% 374.51 | 25.68 20.6%
LLB 379.86 | 24.86 48.6% 37251 | 22.19 37.2% 371.02 | 20.78 7.4%

LLJ 387.85 | 32.47 83.4% 380.50 | 29.72 70.7% 379.00 | 28.29 22.7%
h=n7%
CLR 444.68 | 32.59 94.1% 437.64 | 29.96 81.7% 436.21 | 28.59 29.7%
LLR 365.47 | 28.44 75.6% 358.46 | 25.84 63.6% 357.04 | 24.48 19.6%
LLB 362.14 | 23.70 46.3% 355.13 | 21.15 35.5% 353.70 19.81 7.0%

LLJ 369.75 | 30.95 79.5% | 362.74 | 28.33 67.4% | 361.32 | 26.97 21.6%
h=nY

CLR 478.88 | 35.10 101.3% | 471.30 | 32.26 87.9% | 469.77 | 30.79 32.0%
LLR 393.59 | 30.62 81.5% | 386.03 | 27.83 68.5% | 384.50 | 26.37 21.1%
LLB 389.99 | 25.53 49.9% | 382.44 | 22.78 38.2% | 380.91 | 21.34 7.5%
LLJ 398.20 | 33.33 85.6% | 390.64 | 30.51 72.5% | 389.11 | 29.05 23.3%

Table 4 MSE, MAE, and MAPE of the total estimation under differentthuals with different sample sizes and bandwidths for model
4

h=n 13
Method | n=25 n=>50 n=100

MSE MAE MAPE | MSE MAE MAPE | MSE MAE MAPE
CLR 539.73 | 41.02 118.4% | 550.88 | 37.71 102.8% | 549.08 | 35.99 37.4%
LLR 440.04 | 35.79 95.2% | 451.21 | 32.52 80.1% | 449.42 | 30.82 24.7%

LLB 435.84 | 29.84 58.3% 447.01 | 26.62 44.6% 445.22 | 24.94 8.8%
LLJ 445.42 | 38.96 100.1% | 456.60 | 35.67 84.8% 454.80 | 33.95 27.2%
h=n7%

CLR 522.42 | 38.29 110.5% | 514.15 | 35.20 95.9% | 512.48 | 33.59 34.9%
LLR 429.37 | 3341 88.9% | 421.13 | 30.36 74.8% | 419.46 | 28.76 23.0%

LLB 425.45 | 27.85 54.4% 417.21 | 24.85 41.7% 415.54 | 23.27 8.2%
LLJ 434.40 | 36.36 93.4% 426.16 | 33.29 79.1% 424.48 | 31.69 25.4%
h=n%

CLR 565.95 | 41.48 119.8% | 557.00 | 38.13 103.9% | 555.18 | 36.39 37.9%
LLR 465.15 | 36.19 96.3% | 456.22 | 32.89 81.0% | 454.41 | 31.16 24.9%
LLB 470.60 | 39.39 101.2% | 461.67 | 36.06 85.7% | 459.86 | 34.33 27.5%
LLJ 460.90 | 30.17 59.0% | 451.98 | 26.92 45.1% | 450.17 | 25.21 8.9%

Secondly, for each sample, we estimate the Totaly !, Y; + z'j\l;éi m(X;). The linear regression and the local linear
regression will be used to estimatgx). Also, the bootstrap and the jackknife techniques will bebmed with those
regression methods to estimate(x). We consider the normal kernel function with different bamth values
h=n"13 n"Y5andn %7 for the local linear regression, each simulation settingpplied to all four models and
repeatedvl = 1000 times.

Thirdly, the mean square error (MSE) of the total (T) undertilio types of the regression methods will be calculated.
Also, the mean absolute error (MAE) and the mean absoluteptage error (MAPE) will be calculated.

Finally, the effects of the bootstrap and the jackknife teghes on the estimation of total (T) will be studied, these
effects based on the bias, MSE, MAE, MAPE.

Tables 1, 2, 3 and 4 reveals the values of the mean squarad(Elg&), mean absolute error (MAE) and the mean
absolute percentage error (MAPE) of the estimators for de models, when the sample size (n) has different values
n = 25,50,and 100 and the bandwidth has valtles n~%/3 n-4/5 andn-/7.
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8 Results of the Simulation Study

Tables 1, 2, 3 and 4 summarize the following conclusions abausimulation study:

1.For the four models the local linear regression estimadooninates the classical linear regression estimator wen t
regression model is incorrectly specified.

2.The local linear regression estimator with bootstrapvisrall the best choice for all models and bandwidths under
study.

3.The effect of the bootstrap on the estimator is better thafackknife at the most.

4.The bandwidtth = n~Y/5 is the best choice at the most for all models.

5. For all estimators as the sample size increases the maaresierror (MSE), the mean absolute error (MAE) and
the man absolute percentage error (MAPE) decrease, fantée bandwidths (h) considered and for the four models.

Abbreviation: CLR: classical linear regression, LLR: local linear regies, LLB: local linear regression with
bootstrap and LLJ: local linear regression with jackknife.
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