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Abstract: This paper use echo state network (ESN), feedforward echo state network (FE-ESN) and tapped delay line with inputs
(TDL-I) to predict the sea clutter time series and detect target embedded in sea clutter. The performance of predicting and detecting
using these methods is compared. A set of time series from IPIX radar data is tested. Numerical experiments reveal that FE-ESN and
TDL-I show high prediction precision and good detection effect as same as ESN. Furthermore, FE-ESN and TDL-I have simplication
architecture.
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1. Introduction

Neural networks have a wide range application, includ-
ing pattern recognition, automatic control, signal process-
ing, aid decision making, artificial intelligence, etc [1–3].
Echo state network (ESN) is a novel recurrent neural net-
work (RNN) architecture which was introduced by Herbert
Jaeger for time series prediction [4–6]. The kernel part of
ESN is a single reservoir with tens or hundreds of neurons
that are randomly and sparsely interconnected. The degree
of the sparseness is from 2% to 20%. The reservoir is fixed,
that is to say, the reservoir itself is not changed once the
network is setup. During the training process of ESN, only
the output connections are changed through offline linear
regression or online methods. ESN has dynamic charac-
teristic and short-time memory function. The stability of
ESN is better than the traditional networks, and can be
successfully applied in chaotic and nonlinear dynamic sys-
tems modeling, identification and control [6–8]. Feedfor-
ward echo state network (DESN) and tapped delay line
with inputs (TDL-I) are presented by Michal Cernansky
for modeling several time series [9]. We apply ESN, FE-
ESN and TDL-I to predict the sea clutter time series and
detect target. The great mean squared error (MSE) dif-
ferences between real-life sea clutter data and prediction
value are available for detecting target.

2. Echo State Network Model

The general structure of an ESN with anN -neuron reser-
voir is shown in Fig. 4. The number of input layer nodes is
K, and the number of output layer nodes isL. The update
of the reservoir state is expressed by

x(n) = f(W inu(n)+Wx(n−1)+W bd(n−1)+γ(n))(1)

wheref is a sigmoidal activation function,x(n) is the in-
ternal state of the reservoir at time stepn, u(n) is the input
vector at time stepn, d(n − 1) is the teacher signal (real-
life data or test sample) at the previous time step, andγ(n)
is the current artificial noise vector inserted into the state
update equation to ensure stability of the network. In gen-
eral, the range forγ(n) is from 0.0001 to 0.01. The input
weightW in is anN × K matrix which reflects the con-
nection from input nodes to the reservoir. The entries of
this matrix are selected at random. The recurrent weight
W is an N × N matrix which reflects the interconnec-
tion in the reservoir. This matrix is a sparse and random
matrix. To ensure echo characteristic in ESN, the spectral
radiusρ(W ) must be less than 1. The feedback weightW b

is anN×L matrix which reflects the connection from out-
put nodes to the reservoir. The output of ESN is typically
given by

y(n) = fout(W outx(n)) (2)

wherefout can be either linear or sigmodal, depending on
the task of interest, the output weightW out is anL×(K+
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Figure 1 The basic structure of ESN, with K input node and L
output node

N) matrix which reflects the connection from the reservoir
to output nodes. The output weight is determined through
either online or offline training. In this paper, we use the
offline pseudoinverse method for updating output weight.

3. Simplification Echo State Network Model

FE-ESN is a simplification architecture of ESN. The hid-
den units connect in a feedforward manner. Units in a reser-
voir can be indexed and their activities depend only on ac-
tivities of units with smaller indices. The activities do not
cycle. That is to say, the activity of the first unit does not
depend on activity of the last unit. Nodes represent units
and edges represent connections. FE-ESN is shown in the
Fig. 5(a). All connections are still recurrent ones because
units are fed by activities from previous time steps. The
training process of FE-ESN is same to that of regular ESN.
The only difference is how a recuurent weight matrix is
generated. Recurrent weight matrix is rescaled to the re-
quired spectral radius and the matrix is then made lower
triangular by keeping only elements below diagonal. To
force the ESN to keep longer history of inputs in activi-
ties,wi,i−1 which stands for the weight of uniti connected
with the previous onei−1 is chosen constant value. In this
paper, we choose the value of spectral radiusλ.

Tapped delay line with inputs (TDL-I) is a further sim-
plification architecture of ESN. The reservoir of units or-
ganized into a tapped delay line. TDL-I is shown in the
Fig. 5(b). Units in a reservoir can be indexed and their
activities depend only on activity of unit with last index.
The only nonzeros arewi,i−1 in recurrent weight matrix.
TDL-I uses hidden units with nonlinear activation func-
tion and was constructed in very simple nonlinear combi-
nation of inputs. All connections are set to 1.0. It supposes
that the process being modeled can be handled with auto-
regressive model.

4. Data Description

In this study, the McMaster IPIX datasets are used to be
training time series for testing the performances of ESN in
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Figure 2 The structure of FE-ESN.

x(n)

uK(n)

u1(n) y1(n)

yL(n)
B B

Figure 3 The structure of TDL-I.

detecting target. The McMaster IPIX radar is an instrumen-
tation-quality X-band radar system. The radar data were
collected in November 1993 from Osborne Head Gunnery
Range (OHGR) at Dartmouth, Nova Scotia, Canada. Four-
teen sea clutter measurement datasets were obtained from
a website maintained by Professor Simon Haykin: http://so-
ma.ece.mcmaster.ca/ipix/dartmouth/datasets.html. The op-
erating frequency of IPIX radar is 9.39GHz, so the wave-
length is about 3cm. The wave height of the ocean varies
from 0.8m to 3.8m, but the peak height even arrives at
5.5m. The wind conditions vary from 0 to 60km/hr gen-
erally, but the gusts reach to 90km/hr. The grazing an-
gle varies from less than1◦ to a few degrees. We consider
amplitude data of two polarizations, HH (horizontal trans-
mission, horizontal reception) and VV (vertical transmis-
sion, vertical reception). Each dataset contains fourteen
spatial range bins, and each range bin has217 samples and
the sampling frequency is 1000Hz. The target is a small
spherical block of styrofoam wrapped with wire mesh. A
few of the range bins hit a target, and the range bin where
the target is strongest is labeled as the primary target bin.
Due to the target moves around, the bins close to the pri-
mary target bin may also hit the target. They are labeled as
the secondary target bins.

5. Experiments

We study the performance of ESN, FE-ESN and TDL-I
with the McMaster IPIX radar sea clutter data. The number
of neurons in dynamic reservoir is 30. The non-zero entries
of W in and W b are uniformly distributed random vari-
ables within the range [-0.5,0.5] and [-4,4], respectively.
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Figure 4 (a)Prediction of ESN, (b)Squared error of ESN.
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Figure 5 (a)Prediction of FE-ESN, (b)Squared error of FE-ESN.
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Figure 6 (a)Prediction of TDL-I, (b)Squared error of TDL-I.

The entries of the recurrent sparse weightW are randomly
created and was rescaled to spectral radiusρ(W )=0.7. The
entries of the artificial noise which inserted into the state
updated equation are random number within the range [-
0.0005,0.0005].

The typical prediction curves of amplitude versus time
steps for the range bin of sea clutter without target are
shown in Fig. 4(a), Fig. 5(a) and Fig. 6(a). Red line denotes
the amplitude of the real-life sea clutter data, and blue line
denotes the prediction curve of ESN, FE-ESN and TDL-
I. The squared errors between real-life data and prediction
values are also presented in Fig. 4(b), Fig. 5(b) and Fig.
6(b). From these figures, we can deduce that the predic-
tion results using ESN, FE-ESN and TDL-I are all in good
agreement with the real-life sea clutter data without target.
The squared errors of three methods all belong to small
ranges. The results indicate although FE-ESN and TDL-I
simplify architecture of reservoir, they still have high ac-
curacy for predicting sea clutter time series.

Since the ultimate goal of sea clutter study is to im-
prove the performance of target detection within clutters.
We use ESN, FE-ESN and TDL-I to detect target embed-
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Figure 7 The mean squared errors for the 14 range bins.

ded in sea clutter. MSEs for the fourteen range bins data
are shown in Fig. 7. The MSEs results are presented in Ta-
ble 1. It is not difficult to see that MSEs for the data with
the primary target using above three methods are much
larger than that without the target. The MSEs without tar-
get of three methods are very small compared to that with
target. Using the great mean squared error differences be-
tween real-life sea clutter data and prediction values, we
can detect target in sea clutter. In addition, FE-ESN and
TDL-I not only have the simplicity architecture, but also
have good detecting effect as same as ESN. It turns out
that this is a generic feature for all the measurement data.

Table 1 Prediction results of MSEs for the 14 range bins
n ESN FE − ESN TDL− I
1 0.0246 0.0281 0.0295
2 0.0177 0.0214 0.0226
3 0.0196 0.0235 0.0249
4 0.0222 0.0258 0.0274
5 0.0166 0.0203 0.0214
6 0.0217 0.0258 0.0270
7 0.0285 0.0336 0.0346
8 1.1002 1.1435 1.2252
9 6.5115 6.8334 7.0786
10 4.0233 4.2203 4.4028
11 0.1507 0.1505 0.1717
12 0.0165 0.0200 0.0212
13 0.0198 0.0233 0.0246
14 0.0219 0.0255 0.0265

6. Conclusion

We apply ESN, FE-ESN and TDL-I for predicting sea clut-
ter time series. MSEs differences between real-life sea clut-
ter data and prediction value are available for detecting
target. The experiments demonstrate that beside simplic-
ity architecture FE-ESN and TDL-I have high prediction
precision for sea clutter data, and also have good effect for
detecting target.
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