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Abstract: For the analysis of square contingency tables with the samveand column ordinal classifications, McCullagh (1978)
considered the palindromic symmetry (PS) model, which hasléplicative form for cumulative probabilities that abservation will

fall in row (column) category or below and column (row) categoiy(> i) or above. The present paper proposes a modified PS model
which indicates that (1) the symmetric odds for cumulativabpbilities with distance 1 from main diagonal of the tadte constant

and (2) there is the structure of quasi-symmetry for therh @istancek (> 2). Also the present paper gives the decomposition of the
symmetry model using the proposed model. Examples are.given
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1 Introduction

For anR x Rsquare contingency table with the same row and column drdimssifications, lep;; denote the probability
that an observation will fall in thigh row andjth column of the tablei& 1,...,R; j = 1,...,R). The conditional symmetry
model is defined by

o feu <),
w={ " (5] .

where yij = Jji; see McCullagh (1978). A special case of this model obtalmeguttingd = 1 is the symmetry (S)
model (Bowker, 1948; Bishop, Fienberg and Holland, 197%82). Note that model (1) witld replaced byd;_; is
Goodman'’s (1979) diagonals-parameter symmetry modelsgiaus (1965) proposed the quasi-symmetry model for cell
probabilities, defined by

pij = aifjg; (I #]),
whereysj = (ji. This may be expressed as
pij =&iq@; (#]),
whereq@; = ;. The marginal homogeneity (Stuart, 1955) model is defined by

where

R R
pi. = t; Pit, Pi= S; Psi-

i R

Gj=>) > ps (i<]),

s=1t=]

Let
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and
R j
Gi=5Yps (i>])

The marginal homogeneity model may be expressed as
Giit1=Gi+1; (i=1,...,R-1).

McCullagh (1978) considered a multiplicative model for auative probabilitiesG;; }, i # j, which was referred to as
the palindromic symmetry (PS) model, including the S model the conditional symmetry model as special cases. The
PS model is defined by

Ao (<), oy
Gij = { a1 W (i > ), pi = Wi, (2)
whereW¥; = ¥} anda; = 1 without loss of generality. Note that (2) with replaced by; is the generalized PS model
(McCullagh, 1978).

The conditional symmetry model fdip;; } is also expressed similarly as a multiplicative form {@; } as

Gij :{ Wi (i> ), pi = %i, 3

where¥; = ¥;i. A special case obtained by puttidg= 1 is the S model. Note that Tomizawa (1989) and Tahata,
Yamamoto and Tomizawa (2012) gave the decompositions ofctimalitional symmetry model and the S model,
respectively, using the PS model. Tomizawa (1993) propdsedcumulative diagonals-parameter symmetry model,
defined by (3) withA replaced byA;_j. Miyamoto, Ohtsuka and Tomizawa (2004) proposed the cuiveala
quasi-symmetry model fofG;; }, defined by

Gj=w¥ (@(#1]), pi="W,
whereW; = ¥ji. This model may be expressed as

Gj v . .
-2 (i<
G v, (i<ij)
or
GijGjkGki = GjiGjGk (1<i<j<k<R).

See also Yamamoto, Ando and Tomizawa (2011) for this model.
The PS model is also expressed as

Gi,i+1:A (i=1,...,R-1), ®
Gitai

and
Gij of e it L
—=A— (i< j#i+1). >
c s (i<ii#i+1) 5)

Note that (4) is equivalent to the extended marginal homeigggmodel in Tomizawa (1984, 1995) (also see Tahata and
Tomizawa, 2008), and (5) is different from the structureha tumulative quasi-symmetry model because (5) depends
on both parameters db and {a;}. Now we are interested in considering a new model, which hagwcture of
cumulative quasi-symmetry fdiG;j, |j —i| > 2}, in addition to{G; ;11/Gi;1; = A}. For various models of symmetry of
cell probabilities, cumulative probabilities and mardipeobabilities, see also, e.g., Lawel (2003, Chap. 11)eKaind
Agresti (2007), a reference list in Tomizawa and Tahata 720nd Agresti (2013, Chap. 11).

Section 2 in the present paper proposes a new model whicliewitie PS model. Section 3 gives a decomposition of
the S model using the proposed model. Section 4 describg®tuness-of-fit test for models. Section 5 gives examples.
Section 6 provides some concluding remarks.
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2 Modified palindromic symmetry model

Consider a model defined by

B (]
Bi-1¥; (i >

whereY; = ¥; andB; = 1 without loss of generality. We shall refer to this modeltesodified palindromic symmetry
model (MPS) model. A special case of this model obtained limmi~ = 1 and{3 = 1} is the S model. The MPS model
is also expressed as

{ BiH; ('<JJ75i+1),
Glj :|+
j

Giji+1 .

m—r (I—l’...7R_1)7 (6)
and

Gij B Bi S

G "B, (<BiAiTL (7)

The equation (6) indicates that the cumulative probabiligt an observation will fall in row categoryor below and
column category+ 1 or above (i.e.jj11) is " times higher than the cumulative probability that the obaton falls
in row categoryi + 1 or above and column categdrgr below (i.e.,Gi;1,); this is the structure of the extended marginal
homogeneity model. The equation (7) states that the cuimelpitobability that an observation will fall in row categor
i or below and column categoliy(i < j; j # i+ 1) or above, ig3; /B;_1 times higher than the cumulative probability that
the observation falls in row categojyor above and column categargr below.

LetG;_; = Gijj andG]_;; = Gji for j —i > 2. Then (7) is expressed as

Gij_1 G L
- =—— (i<]; i+1). 8
G . B (i<hi#i+1) (8)
Namely, this indicates that there is the structure of cutivdauasi-symmetry fofG;; } with |j —i| > 2. Note that this
structure is different from the PS model. The equation (8) ahay be expressed as
GiGmGmk= GikGmiGkm (1<k<l<m<R-1). 9
The equation (9) implies
iT;stzes*t;ij (1§i<j<5<tSR—1), (10)

where o
. GG GisaGjin
1j;st — - .
! GiGis Git+1Gjsi1

Namely, from (10) the MPS model implies the symmetry of odd®s based ofG;; } with |j —i| > 2.

Let X andY denote the row and the column variables, respectively. UtidteMPS model[” > 1 is equivalent to
FX>FY fori=1,...,R—1, whereF* = 5|_, px. andF" = S|_, p,. Therefore the parametér in the MPS model
would be useful for making inferences such as & stochastically less thanor vice versa.

Define the odds ratio besed ¢@ij }, i # j, by 6j.st = (GisGjt)/(GitGjs) for 1 <i < j < s<t <R The PS model
implies
The MPS model implies

elj;st: 6st;ij (1<i<j<s<t<Rs#]|j+1),
and

Therefore, the PS model implies the symmetry of odds ratiseth on{G;; }, i # j; however, the MPS model implies
the symmetry of odds ratios with the asymmetry partiallyté\itnat both the PS and MPS models have the structure of
constant of 0dd$G;j+1/Gi;1i}, i=1,...,R—1.
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3 Decomposition of symmetry model

Tomizawa, Miyamoto and Ouchi (2006) proposed the cumwdaitbsymmetry (CSS) model, defined by
Giit2=Gis2i (i=1,...,R-2).

Consider the model of equality of marginal means,

We shall refer to this model as the ME model.
We obtain the decomposition of the S model as follows:

Theorem 3.1.The S model holds if and only if all the MPS, CSS and ME modeld.ho

Proof. If the S model holds, then the MPS, CSS and ME models hold.Assuthat all the MPS, CSS and ME models
hold, then we shall show that the S model holds. Since the M&&hhold, we see

R-1 R-1
i; Giiy1="I i; Gitii-

F'-F' =Gii1-Gi1 (i=1,...,R-1),

Also we have

and
R-1 X R-1 v
E(XX)=R-— F*, E(Y)=R- EY.
2" 2"
Thus we see
R-1 R-1
E(Y)-E(X)= Zi Gijit1— 21 Gt
i= =
Since the ME model holds, we obtdin= 1. From the MPS and CSS models, we can see

Gijiz2 B .
H2_ P 1 (i=1..R-2)
Gir2i B+ ( )

Sincef; = 1, thus we seq 3 = 1}. Therefore we obtaiGjj = Gj (i < j). Namely, the S model holds. The proof is
completed.

4 Goodness-of-fit test

Let nj; denote the observed frequency in tfigj)th cell of theRx Rtable (i =1,...,R;j =1,...,R). Assume that a
multinomial distribution applies to thR x R table. The maximum likelihood estimates of expected fregies under
models could be obtained by using the Newton-Raphson matttbe log-likelihood equation. Each model can be tested
for goodness-of-fit by the likelihood ratio chi-squaredisti (denoted by?) with the corresponding degrees of freedom.

The test statisti€? is given by
G*>=2 ; En--log(nij >
i;j:l ! mj )’

whereni; is the maximum likelihood estimate of expected frequemgyunder the given model. The number of degrees
of freedom for the MPS model (R— 1)(R— 2)/2, which is equal to that for the PS model.
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5 Examples

Example 1.The data in Table 1, taken from Stuart (1955), are constaufcten unaided distance vision of 7477 women
aged 30-39 employed in Royal Ordnance factories in Britaimf1943 to 1946. [These data have been analyzed by many
statisticians, including Stuart (1955), Caussinus (19BBhop et al. (1975, p. 284), McCullagh (1978), Goodmarr @9
Tomizawa (1989), Tomizawa and Tahata (2007), and Tahatd@mézawa (2011).]

Table 3 gives the values of likelihood ratio statigBé for testing the goodness-of-fit of each model in Theorem 3.1
and the PS model. [For the values®f for the other models, see the corresponding articles.] TagdSME models fit
these data poorly, however, the PS, MPS and CSS models fitda¢s well. When the MPS and PS models are compared,
the G2 value for the MPS model is less than that for the PS mode| Wigrsame number of degrees of freedom.

Under the MPS model, the maximum likelihood estimaté a§ I" = 1.20. Hence, under this model, the probability
that a woman'’s right eye gradeii®r below and her left eye gradeiig- 1 or above is estimated to be= 1.20 times
higher than the probability that the woman'’s right eye grisdet 1 or above and her left eye grade isr below. Since
I is greater than 1, the probability that the grade of the riyletis less thak (k = 2,3,4) is estimated to be greater than
the probability that the grade of the left eye is less tkaNamely, the right eye is estimated to be better than the left
eye. Also, the maximum likelihood esumates{ﬁ} areBz =0.78 andﬁg = 0.61, namerGlg/Ggl = 51/32 =1.29,
Gi14/Ga1 = B1/Bs = 1.64 andGpa/Gaz = B2/ = 1.27 with B = 1. Therefore, foi < j with j — i > 2, the probability
that a woman'’s right eye gradeiisr below and her left eye grade jor above is estimated to lfig/ 3;_1 times higher
than the probability that the woman's right eye gradgas above and her left eye grade isr below. A

Also under the PS model, the maximum likelihood estimat ifA = 1.18 (being close to the value 6fof the MPS
model). Hence, under the PS model, the probability that aavosiright eye grade isor below and her left eye grade is
i+1oraboveis estimated to de= 1.18 times higher than the probability that the woman'’s riglet@rade i$+ 1 or above
and her left eye grade isor below. Also under the PS model, the maximum likelihoodhestes of{a;} areé, = 0.93
and 63 =0.88, namely,élg/ég,l = A&l/az =1.27, él4/é41 = 561/63 =1.35, andé24/é42 = Aaz/ag = 1.25 with
a1 = 1. Therefore, under the PS model, for j with j —i > 2, the probability that a woman'’s right eye grade
below and her left eye grade jsor above is estimated to l&d; /&;_1 times higher than the probability that the woman’s
right eye grade ig or above and her left eye gradd isr below.

Moreover, under the MPS model, the odds r&g 12 is estimated to bé = 1.20 times greater than the odds ratio
612:34 On the other hand, under the PS model, the odds €a#iq, is estimated to be equal to the odds rafiQ.sa
Therefore, under the MPS model, the ratio of the odds thatraamds left eye grade is ‘Best (1)’ instead of ‘Best (1)’ or
‘Second (2)’ when her right eye grade is ‘Third (3)’ or ‘Woid)’ to the odds when her right eye grade is ‘Worst (4)’,
is estimated to b& = 1.20 times greater than the ratio of the odds that a woman’s egh grade is ‘Best (1) instead
of ‘Best (1)’ or ‘Second (2)’ when her left eye grade is ‘Th{{®)’ or ‘Worst (4)’ to the odds when her left eye grade is
‘Worst (4)'.

From Theorem 3.1, we see that the poor fit of the S model is damsthe influence of the lack of structure of the ME
model rather than the MPS and CSS models.

Example 2.The datain Table 2, taken from Tomizawa (1984, 1985), arstcocted from unaided distance vision of 4746
students aged to 18 to about 25 including about 10% womendultyaof Science and Technology, Science University of
Tokyo in Japan examined in April 1982.

We see from Table 3 that the S and ME models fit these data pborkever, the PS, MPS and CSS models fit these
data well. When the MPS and PS models are compared3thalue for the MPS model is somewhat greater than that
for the PS model.

_Under the MPS model, the maximum likelihood estimaté of l' = 0.85. Also under the PS model, that Afis
A =0.82. Thereford is close taA for these data. Namely tt{@. .+1/G.+1 i(=0.85)} under the MPS model are close to

the{G|,|+A1/G.+1 i(=0.82)} under the PS model. In addition, under the MPS model, themmamilikelihood estimates of

{B|} areﬁz 1.29 andﬁg 1. 17 namelyGlg/Ggl Bl/BZ =0. 77 Gl4/G41 Bl/ﬁg 0.85 andGz4/G42 Bz/B3 =
1.10 with [31 = 1. On the other hand, under the PS model, the maximum likeditestimates ofa;} ared, = 1.13 and
03 =0.91, name|ij_3/G31 = Aal/az =0.72, G14/G41 = Aal/ag =0.90 an(K324/G42 = Aaz/ag =1.01 witha a; =
Therefore, for these data, the values{ﬁfJ /GJ.} i < j, underthe MPS model are close to the corresponding valuiﬁrun
the PS model.

In a similar manner to Example 1, the interpretations underMPS and the PS models are obtained although the
details are omitted here.
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Table 1: Unaided distance vision of 7477 women aged 30-39 employBdyal Ordnance factories in Britain from 1943

to 1946; from Stuart (1955). (Upper and lower parenthesivzddes are the maximum likelihood estimates of expected
frequencies under the PS and MPS models, respectively.)

Right eye Left eye grade

grade Best (1) Second(2) Third(3) Worst(4) Total

Best (1) 1520 266 124 66 1976
(1520.00) (264.49) (133.21) (58.95)
(1520.00) (266.46) (129.43) (64.22)

Second (2) 234 1512 432 78 2256
(235.59) (1512.00) (423.40) (86.78)
(233.52)  (1512.00) (430.86) (82.71)

Third (3) 117 362 1772 205 2456
(107.30) (370.90) (1772.00) (204.18)
(110.99) (363.15)  (1772.00) (205.63)

Worst (4) 36 82 179 492 789
(43.68) (72.67) (179.86)  (492.00)
(39.22) (76.47) (178.34)  (492.00)

Total 1907 2222 2507 841 7477

Table 2: Unaided distance vision of 4746 students aged to 18 abouicding about 10% women in Faculty of Science
and Technology, Science University of Tokyo in Japan exachin April 1982; from Tomizawa (1984, 1985). (Upper and
lower parenthesized values are the maximum likelihoodredés of expected frequencies under the PS and MPS models,

respectively.)

Right eye Left eye grade

grade Best (1) Second(2) Third(3) Worst(4) Total

Best (1) 1291 130 40 22 1483
(1291.00) (129.75) (41.45) (19.84)
(1291.00)  (131.57) (44.47) (18.91)

Second (2) 149 221 114 23 507
(149.23) (221.00) (107.43) (25.50)
(147.50) (221.00)  (107.08)  (28.23)

Third (3) 64 124 660 185 1033
(62.79) (130.51) (660.00) (190.03)
(59.59) (131.21) (660.00) (193.45)

Worst (4) 20 25 249 1429 1723
(22.13) (22.60) (243.74)  (1429.00)
(22.22) (20.69) (240.08) (1429.00)

Total 1524 500 1063 1659 4746

Table 3: Likelihood ratio chi-squared valu&a? for models applied to the data in Tables 1 and 2.

Applied Degree of

GZ

models  freedom Table1l Table 2
S 6 19.25* 16.96*
PS 3 6.24 1.98
MPS 3 1.55 4.95
CSS 2 5.00 3.86
ME 1 11.98* 9.95*

* means significant at the 0.05 level.

(@© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro3, No. 2, 109-115 (2014)www.naturalspublishing.com/Journals.asp NS = 115

6 Concluding remarks

Compare the PS and the MPS models. From (4) and (6), both &Sfend the MPS models have the structure of extended
marginal homogeneity model. Also, from (5) and (7), the MR&Iei has the structure of cumulative quasi-symmetry for
{Gij } with |j —i] > 2, although the PS model does not have the similar strudtuoen (8), (9) and (10), when we want to
see the structure of cumulative quasi-symmetry (i.e., (§9)) including the structure of symmetry of odds ratiosdzhs

on {G;; } with |j —i| > 2, the MPS model rather than the PS model would be approphmsldition, as described in
Section 2, the PS model implies the structure of symmetryldfaatios{ 6.t} based o{Gj; }, i # j; however, the MPS
model implies the structure of symmetry of odds ratios whh structure of asymmetry partially (beifi@j.st = Bs;j for
1<i<j<s<t<Rands=j-+1).

The decomposition of the S model into the MPS, CSS and ME mspdalen by Theorem 3.1, would be useful for
seeing the reason for its poor fit when the S model fits the datdyp Indeed, for the data in Table 1, the poor fit of the
S model is caused by the poor fit of the ME model rather than tR& ind CSS models, i.e., by the reason that the mean
of grade of the right eye is different from the mean of gradthefleft eye (see Example 1).
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