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Abstract: A vertexu in a graphG resolves a pair of distinct verticas y of G if the distance between andz is different from the
distance between andy. A setWW of vertices inG resolves the graply if every pair of distinct vertices off is resolved by some
vertices int¥. The metric dimension of a graph, denotedday(G), is the smallest cardinality of a resolving set. A resolvingiget

for a connected grap&’ of ordern > 3 is called 2-size resolving set if the size of the subgraphV > induced bylW is two. The
minimum cardinality of a 2-size resolving set is called the 2-size metric dimensioh dénoted by (G). A 2-size resolving set of
cardinalitytr(QG) is called a tr-set. In this paper, we study 2-size resolving sets in some well-known classes of graphs and give some
realizable results.

Keywords: Resolving set, 2-size resolving set, 2-size metric dimension.

1. Introduction centricity of a vertexy in G. The join of two graphss;
and G, denoted byG; + Gs, is a graph with vertex set

In this paper, we consider finite, simple and connected” (G1) UV (G2) and an edge sdt(G1) U E(G2) U {u ~
graphs. The vertex and edge sets of a gi@pre denoted v | u € V(G1) A v € V(G2)}.
by V(G) and E(G), respectively. We write, ~ v if two Metric dimension was first introduced in the 1970s, in-
verticesu andv are adjacent (form an edge)dhand write  dependently by Harary and Melter [8], and by Slater [20].
u v if they are non-adjacent (do not form an edge). WeIn recent years, a considerable literature regarding this no-
refer [5] for the general graph theoretic notations and ter-tion has developed (see [1-4,6,9,11-13,16,18,19]). Slater
minology not described in this paper. described the usefulness of this idea into long range aids

A research area in graph theory that has increased ito navigation [20]. Also, this concept has some applica-
popularity during the past few decades is that of study-tions in chemistry for representing chemical compounds
ing various methods that can be used to distinguish all th¢14,15] and in problems of pattern recognition and im-
vertices in a connected gragh. Distance in graphs has age processing, some of which involve the use of hierar-
also been used to distinguish all the verticesGbfThe  chical data structures [18]. Other applications of this con-
distance, d(u, v), between two verticeg andv of a con-  cept to navigation of robots in networks and other areas
nected grapld- is defined as the length of a shortest v appear in [4,10,16]. The problem of determining whether
path inG. For an ordered sét = {w,ws,...,wr} C dim(G) < K is an NP-complete problem [7,16].
V(G)andavertex € G, thek-vectorey, (v) = (d(v,w), To determine whether a given $at C V(G) is a re-
d(v,wz), ..., d(v,wy) is called thecodeof v with respect  solving set forG, W needs only to be verified for the ver-
to W. The setiV is called aresolving sefor G if for any tices inV (G) \ W since every vertexo € W is the only
two distinct vertices), u € G, cw (v) # cw (u). Aresolv-  vertex of G whose distance from is 0.

ing §et with min_imum cardinality is_ c_:alledraetric_: basis_ A useful property for findinglim (G) is the following:
or simply abasisof G and that minimum cardinality is

called themetric dimensiomf G, denoted bylim(G)[4].

For avertex in G, theeccentricityecc(v), isthe max- Lemma 1[4] Let W be a resolving set for a connected
imum distance betweemand any other vertex af. The  graphG andu,v € V(G). If d(u,w) = d(v,w) for all
diameterof G, denoted byliam(G), is the maximum ec- w € V(G) \ {u,v}, thenuorvisin W.
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This paper introduces a new parameter in the contextof ~ Since the size of the subgraph induced by a tr-set is
resolvability, called the 2-size resolving set, formally de- two, it follows that
fined in the next section, following the idea of one size re-
solvability in graphs defined by Kwancharoegeal. [17]. 3<tr(G) <. (3)
In the next section, we study 2-size resolving sets and the
2-size metric dimension in nontrivial connected graphs,
and make a comparison between the metric dimension,

one size metric dimension and 2-size metric dimension. &

We determine the 2-size metric dimension of some spe- v

cific families of graphs and characterize all the graphs of ¢

ordern with 2-size metric dimension andn — 1. Also, e

we provide the necessary and sufficient conditions for cYe
5

pair (k,n) of positive integers wittk < n (n,k > 3) to
be realizable as the 2-size metric dimension and order of
some connected graph, respectively. o O

2. 2-Size Resolvability in Graphs

Figure 1 lllustration of 2-size resolving set and comparison be-
The following two results were proved by Chartraridil.  tWeendim(G), or(G) andtr(G)

in [4].

Theorem 1LetG be a connected graph of order Then To illustrate the 2-size metric dimension, consider the
(i) dim(G) = 1ifand only ifG is a pathP,, onn > 2  9graphG, of Figure 1. One can see that the §et, vs, vo }
vertices, and is a minimum resolving set fak; and is also an or-set for
(i) dim(G) = n — 1if and only ifG is a complete graph ~ G1 since the size of the subgraph induced by this set is
K, onn > 3 vertices. one. But, there is no resolving sBt of cardinality three

such that the size of the subgraph inducediiyis two.
Theorem 2[4] Let G be a connected graph of order>  However, if we add the vertex; into the set{v;, v3, v},
4. Thendim(G) = n — 2 if and only if G is one of the  then the resulting sé/ = {vy, vs, vs, v} is a resolving

graphsk, ; (n =r+sandr,s > 1),0or K, + K, (n =  set forG as well as the size of the subgraghi’ > in-
r+sandr > 1,s > 2), or K. + (K1 UKs) (n =  duced byW is two. Thus,dim(G,) = 3 = or(G;) and
r+s+1landr,s > 1). tr(Gy) = 4.

Thus, if G is a nontrivial connected graph of ordery  Remarkin a connected grap@, it is not necessary that if
then or(Q) exists, thertr(G) also exists and vice-versa.
1 <dim(G) <n-1. 8

Example 1Consider the graplt of Figure 2. The sub-

WKwancharonet ol. [17] defined the one size resolv- graphG’ induced by (G)\{y1, y2, y3} has ordep+q+2.
ability in graphs as follows: InG',asetW = {z1,22} U(VUX)\ {2}, whereV =
{v1,v9,...,vp} @andX = {z3,24,...,24} (p,q > 4),is
an or-set for’ but it is easy to see that there is no Bét
of cardinality at least three i@’ such thaf¥ is a tr-set for
G’. This implies thabr(G’) = p + ¢ — 1 and¢r(G’) does
not exist.

Definition 1.A resolving set¥ for a connected grapld:
of ordern > 2 is called one size resolving set if the size
of the subgraph< W > induced bylV is one. The min-
imum cardinality of a one size resolving set is called the
one size metric dimension 6f, denoted byr(G). A one
size resolving set of cardinality-(G) is called an or-set.  Example 2ZConsider the grap&', of Figure 1. The seii’”’ =

. . . . {v1,v9,v3} is @ minimum resolving set as well as a tr-set
oneSIi?fC;kt)r\]/\?sstlhzaet of the subgraph induced by an or-set Iéor G, since the'size of the subgraph'induced by this set is
' two. But, there is no sdf” of cardinality at least three in
2 <or(G@) <n. (2) G5 such thafiV is an or-set foGs. Because, without loss
of generality, if we consider the sBt = {vy, v2}, thenthe
third vertex of iV will be eithervs or vg, or if we consider
the sefV = {v1, v4}, then the third vertex di’ will be ei-
Definition 2.A resolving se#¥ for a connected grapld: theruvg or vz, or if we consider the sél” = {vy, v}, then
of ordern > 3 is called 2-size resolving set if the size of the third vertex ofi” will be eithervs or vg, the induced
the subgraph< W > induced by is two. The minimum  subgraph< W > have size 1 bufi}/ is not a resolving set
cardinality of a 2-size resolving set is called the 2-size met-for G5. Similarly, there is no or-set fars of cardinality at
ric dimension ofGG, denoted byr(G). A 2-size resolving least 4. This implies that(G») = 3 andor(G2) does not
set of cardinalitytr(G) is called a tr-set. exist.

In this section, we study 2-size resolving sets which
are defined as follows:

(© 2012 NSP
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Remarkt is possible thavr(G) = ¢r(G) and further it is
also possible thatim(G) = or(G) = tr(G) in a nontriv-
ial connected graptr.

Example Xonsider the Petersen graphshown in Fig-

ure 3 and the grapfi's of Figure 1, respectively. In the Pe-

tersen graphP, the set{v, vs, v7}is a minimum resolv-
ing set for P, but there is no resolving sét’ of cardi-

nality three such that the size of the subgraph induced by

W is one or two. However, it is easy to see that the set

{v1, v3,v6,v7} is an or-set and the s€by,v3,ve, v} IS
a tr-set forP (see Theorem 3). Thug;m(P) = 3 and
or(P) =4 =tr(P).

Example 4n the graphGs of Figure 1, one can see that

the set{vy, v3,v5} is @ minimum resolving set faks, the
set{v1,ve,v5} IS @an or-set and the séy, vy, vs} is a
tr-set for G3, which implies thatdim(G3) = or(Gs) =
t’l”(Gg) =3.

Figure 2 The graphG with tr-set(V' UX U X' U{y1, y2,y3}) \
{u, z} for someu € V' U X" andz € X

y2 ~ y3. ThenG contains four distinct twin-sets of car-
dinality at least two, namely’ = {vs,...,v,}, X =
{z1,22}, X' = {x3,..., 24} andY’ = {y1,y3}. Note
that, every tr-set foG is of the form(V' U X U X' U

From the definitions and the above discussion, we con<y;, y2,y3}) \ {u,z} for someu € V' U X’ andz € X.

clude that, in a nontrivial connected gra@tof ordern, if
both or(G) andtr(G) exist, thendim(G) < or(G) and
dim(G) < tr(G).

Letu be a vertex of a grapfi. Theopen neighborhood
of uis N(u) := {v € V(G) : v ~ uin G}, and the
closed neighborhoodf u is N{u] := N(u) U {u}. Two
distinct verticesu, v areadjacent twinsf N[u] = N[v]
andnon-adjacent twingf N(u) = N(v). Observe that if
u,v are adjacent twins, them ~ v in G and ifu,v are
non-adjacent twins, then % v in G. Adjacent twins are
called true twinsand non-adjacent twins are calléase
twins If u, v are adjacent or non-adjacent twins, themw
aretwins AsetU C V(G) is called &win-set of G if u,v
are twins inG for every pair of distinct vertices, v € U.
The next lemma follows from the definitions.

Lemma 2[9] If u,v are twins in a connected grap8,
thend(u, z) = d(v, ) for every vertex: € V(G) \ {u, v}.

Corollary 1.[9] Suppose that, v are twins in a connected
graph G and W resolves. Thenu or v is in W. More-
over, ifu € Wandv ¢ W, then(W \ {u}) U {v} also
resolvess.

Thus, we have the following useful remark:

Remarkf U is a twin-set in a connected gragh of or-
dern with |U| = m > 2, then every resolving set fa¥
contains at leasi: — 1 vertices fromU.

Lemma 3.There exists a grapty such that every tr-set for
G must contain all the vertices of some twin-set.

ProofLet G be the graph as shown in Figure 2 obtained

from K, ,,, whose vertex sets afe,, uo } andV = {vy, ...
,vp} With p > 4, by adding the vertices;, ..., z, with
q > 4 and the verticeg1, y2,y3 such ase; ~ ug; 1 <
i < qx o~ a2,y ~v;1 <i <3,y ~ yoand

From where the lemma follows.

Let U be atwin set of7, then the subgrapk U > in-
duced byU is either an empty graph or a complete graph
on |U| vertices. Thus, we have the following straightfor-
ward lemma:

Lemma 4 LetG be a connected graph and Etbe a twin-
set of G with |U| > 3. If the subgraph< U > induced by
U is not an empty graph, them(G) is not defined.

3. 2-Size Resolving Sets in Some Well-Known
Graphs

Here we determine the 2-size metric dimension of some
well-known classes of graphs.

Figure 3 The Petersen graph with tr(P) = 4

Theorem 3Let P be the Petersen graph. Ther(P) = 4.

ProofLet W = {vy,v3,v6,v9} be a set of vertices aP,
then the size of the subgraph W > induced byW is

© 2012 NSP
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two and all the codesy (v2) = (1,1,2,2),ew(vg) =
(25 1,2 1)7 CW(U5) = (L 2,2, 2)7 CW(U'?) - (27 2,2, 1)7
Cw(’l)g) = (2, 1,1, 2), CW(UIO) = (27 2,2, 2) of the ver-
tices ofV(P)\ W are distinct, which implies that (P) <
4.

For the lower bound, assume contrarily thit is a tr-
set for P of cardinality three. Let us call the the vertices

v1...,Vs, the outer vertices, and the vertices. . ., v1g,

the inner vertices. Then it is straightforward to see that{vi, - -

(a) no three vertices (outer or inner) with consecutive in-
dices form a resolving set faP, and(b) no three outer
(inner) vertices form a resolving set set 8r Thus, with-
out loss of generality, we can suppose that 1W’. Then
CW/(UQ) = CW/(U5) whenW’ = {’U17’UG,’U8}, orwW' =
{v1, vs, v9 }, @ contradiction. Sinc® is 3-regular symmet-
ric graph, considering one case is enough. Thy#$) >

4.

Theorem 4Let G be a path om > 3 vertices, or a cycle
onn > 4 vertices. Thenr(G) = 3.

ProofConsider a selV C V(G) consisting of three con-
secutive vertices of7. Then it is straightforward to see
that(a) T is a resolving set fo€7, and(b) the size of the
subgraph< W > induced byW is two. Thus,IW is a 2-
size resolving set fo6r. Therefore, it follows by (3) that
tr(G) = 3.

Theorem 7Let K, ; be a complete bipartite graph with
1 <r <s. Thentr(K, ) exists andr(K, ;) = 3 if and
onlyifl <r<s<3.

Proofltis a routine exercise to see that K, ;) exists and
tr(K,s) = 3ifandonlyif1 < r s < 3 andr # s when
r = 3 o0ors = 3. Now, let K, ; be a complete bipartite
graph withr,s > 3. LetU = {uy,...,u,} andV =

., s} be partite sets of{, ;. Let W be a tr-set for
K, s, then it follows from Remark 2 that/ contains at
leastr — 1 vertices fromU ands — 1 vertices fromV'.
However, the size of the subgraghWW > induced byilW
is greater than two, which is a contradiction.

4. Realizable Results

IAs we have noticed tha < ¢r(G) < n for all connected
graphs of ordern > 3 such thatr(G) exist. We are able
to characterize all the nontrivial connected graphs with 2-
size metric dimension andn — 1.

Theorem 8Let G be a connected graph of order > 3.
Thentr(G) = nifand only ifG = P; = K7 o.

ProofLet G = P; = K, 2, then, by Theorems 4 arid
we havelr(G) = 3 = n. Conversely, leté be a connected

Since every subgraph induced by a set of at least thre@raph of ordem > 3 with ¢7(G) = n and letW be a tr-

vertices in a complete graph of order> 3 is of size at

set forG of cardinalityn. Since the size of the subgraph

least three. Therefore, 2-size metric dimension is not de<< W > induced byl is two andG is a connected graph,
fined for the complete graphs. However, the removal ofit follows that|W| = [V (G)| = 3. ThenG = Ps.

any edge: from the complete graphs of order 3 and 4 de-

fines the 2-size metric dimension as we show in the next

result.

Theorem 5LetG be a complete graph of order > 3 and

It is an immediate consequence of the above theorem
thatif G is a connected graph of order> 4, thentr(G) <
n—1.

let G — e be the graph obtained by deleting one edge fromTheorem 9Let G be a connected graph of order > 4.

G. Thentr(G — e) exists andr(G — e) = 3 if and only if
G = Kz and Ky.

Prooflt is not difficult to see that the theorem is true for a
complete graph of order 3 and 4. Let us assumedhiata
complete graph of ordet > 5. ThenG — e = K, + K,
forallr > 3 s0,dim(G—e) = n—2, by Theorem 2. Since
there are two twin-sets, say andY’, of cardinalityr and

2, respectively, irG — e andWW must contain at leagt— 1
vertices fromX and at least vertex fromY’, by Remark

Thentr(G) n—1lifand only if G € {P,Cy =
Ky9,K13, K4 — e, K4 — 2e}.

ProoflLet G € {P4, Cy & K272,K1,3, Ky—e K4 — 26}
From Theorems 4-7, it follows that(G) =3 =n—1.To
verify the converse, suppose tltais a connected graph of
ordern > 4 with ¢tr(G) = n — 1. Forn = 4, itis straight-
forward to see thaty € {Py,Cy = Koo, K13, K4 —
e, K4 — 2e}. Thus, we assume that > 5. Let W be a
tr-set forG of cardinalityn — 1 and letV (G) \ W = {z}.

2. It follows that the size of the subgraph induced by anyThen we have the following two cases:

resolving set folz — e is greater than two. Thus; (G —e)
does not exist.

Similarly, the removal of any two edges from the com-

plete graphs of order 4 and 5 also defines the 2-size metri
dimension. The proof of the following result is same as the

proof of the previous result, so we omit it.

Theorem 6LetG be a complete graph of order > 4 and

let G—2e¢ be the graph obtained by deleting two edges from

G. Thentr(G — 2e) exists andr(G — 2e) = 3 if and only
if G = K4 and K.

Case 1.If u,v andw are adjacent vertices in the sub-
graph< W > of G induced byW in such a way that
u ~ v,v ~wandu £ w. Thenzx is adjacent to every
[ndependent vertex off” \ {u,v,w} and to at least one
vertex of{u, v, w}, sayu. Let W’ = W\ {y}, wherey is
one of W \ {u, v, w}. Sinced(u,xz) =1 andd(u,y) = 2,
it follows thatcy (x) # cw (y) and soW’ is a tr-set for
G with cardinalityn — 2, a contradiction.

Case 2.If u,v,w andy are adjacent vertices in the
subgraph< W > of G induced byW in such a way that
u ~ vandw ~ y. Then forn > 5, x is adjacent to

(© 2012 NSP
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at least one vertex ofu,v}, sayu, and to at least one {uy,v1,v2}, Or{uy, vy, ws }. Howeverey (ve) = ey (wy)

vertex of{w, y}, sayw. Thus, it is easy to see that the set if W’/ = V(Hz) or {uq,vi,us}; cwr(w1) = cwr(us)
W' = (W \ {v,y}) U {a} is tr-set forG of cardinality  if W’ = {uy,v1,v2} andew (u3) = ey (ve) if W =
n — 2, a contradiction. {u1,v1,ws }, a contradiction.
] Case 2.k > 5. Since{wy, ..., wr_3} is a twin-set in
From Theorems 8 and 9, we have the following corol- ; 5o Remark 2 implies thdt”’ contains at least — 4
lary: vertices from{wy, ..., wy_3}, without loss of generality,

sayw;; 1 < ¢ < k — 4. Since the size of the subgraph
_Cl_:r(])(ra(:]llary 2.Let G be a connected graph of order > 5. < W'~ induced byl must be two, it follows thall”’ —

V(Hg) U {w17 . ,wk,4}. But, cyy- (Ug) = Cwl(wkfg), a
3<tr(G)<n-—2. contradiction.

) o N Therefore, from the Cases 1 and 2, we hayé&) > k.
Now, we provide a necessary and sufficient condition

for a pair(k, n) of positive integers witlt: < n such thak
is realizable as the 2-size metric dimension for a connecte .
graph of ordenm. % Conclusion

Theorem 10For each pair(k, n) of positive integers with  In this paper, we study the notion of 2-size resolvability in

k < n, there exists a connected graghof order» and graphs and its relationship with metric dimension and one

tr(G) = kifand only ifn € {3,4} andk = 3,0rn > 5 size resolvability. Also, we study 2-size resolving sets in

and3 <k <n—2. some well-known families of graphs and give some realiz-
- able results. Furthermore, from the definitionsioh(G),

ProofBy Theorems 8, 9 and Corollary 2, it remains to or(G), tr(G), from the inequalities (2) and (3), and from

show that there exists a connected grapbf ordern and  the Remark 2, we leave to the reader the following conjec-

tr(G) = kforn > 5and3 < k < n — 2. By Theo- tures:

rem 4, graphG = P, with n > 5 satisfiestr(G) = 3.

Now, we assume that > 6 and4 < k < n — 2. Let Conjecture IFor k > 1, if dimy(G) denotes the:-size

G be a graph obtained from pathg : vy, vs,...,vh_k, metric dimension of a connected gra@hof ordern > k

Hy : uq,us,us andk—3 new verticeso, . .., w,y_zWith  andn # 4, thenk + 1 < dimy(G) < n.

u; ~ vy andw; ~ vy fori =1,2,3andl < j <k —3. ] o

Thus,G is a connected graph of ordems shown in Figure ~ Conjecture An a nontrivial connected graph of ordern,

4. if both or (G) andtr(G) exist, theror(G) < tr(G).

Conjecture 3f a nontrivial connected grap@ of ordern
has! disjoint twin-sets andr(G) is defined, then for all
n>5,tr(G) <n —L.

However, we show that the upper bound«fG) given
in the Conjecture 2 is attainable. L@tbe a graph of order
n > 6 obtained from the complete gragty with vertex
set{vy.v2, v3,v4}, Dy deleting an edge between the ver-
ticesvs andv, and by addingr—4 new verticesuv,, wa, . . .
, Wn—4 SUCh thatw; ~ vy forall 7; 1 <7 < n — 4. Then,
there are two twin-sets i’ of cardinality at least two,

Figure 4 The graphG of ordern andtr(G) = k

namely{vs,v4} and{ws,ws, ..., w,_4}, which implies

that! = 2. One can see the vertices, vs, v4 together

First we show thatr(G) < k. Let W = {u1, us, us, with anyn — 5 vertices from the sefw,, wo, ..., wn_4}
w, ..., we_s} C V(G). Since the size of the subgraph form a tr-set forG of cardinality n — [, which implies

< W > induced byW is two andew (v;) = (i,4,. .., 1) that¢r(G) = n — [. Further, in the grapliz of Figure 2,

for eachl < i < n — k, it follows thatW is a 2-size re-  7(G) <n —1(see Lemma 3).

solving set forG. Now, we show thatr(G) > k. Assume

contrarily thattr(G) < k — 1. Let W’ be a tr-set foiG

with [W’/| < k — 1. Since{u;,us} is a twin-set inG, it ~ Acknowledgement

follows by Remark 2 that?’’’ contains at least one vertex

from {uq,us}, sayu;. We consider two cases according This research of the authors was partially supported by

to the parity ofk. the Higher Education Commission of Pakistan, grant no.
Case 1.k = 4, then|WW'| < k —1 = 3. Since the  17-5-3(Ps3-257) HEC/Sch/2006. The authors are grateful

size of the subgrapk: W’ > induced byW’ must be to the anonymous referee for helpful comments that im-

two, it follows thatW” is eitherV (Hs), or {uy, v, us}, or proved this paper.
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