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Abstract: A vertexu in a graphG resolves a pair of distinct verticesx, y of G if the distance betweenu andx is different from the
distance betweenu andy. A setW of vertices inG resolves the graphG if every pair of distinct vertices ofG is resolved by some
vertices inW . The metric dimension of a graph, denoted bydim(G), is the smallest cardinality of a resolving set. A resolving setW
for a connected graphG of ordern ≥ 3 is called 2-size resolving set if the size of the subgraph< W > induced byW is two. The
minimum cardinality of a 2-size resolving set is called the 2-size metric dimension ofG, denoted bytr(G). A 2-size resolving set of
cardinalitytr(G) is called a tr-set. In this paper, we study 2-size resolving sets in some well-known classes of graphs and give some
realizable results.
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1. Introduction

In this paper, we consider finite, simple and connected
graphs. The vertex and edge sets of a graphG are denoted
by V (G) andE(G), respectively. We writeu ∼ v if two
verticesu andv are adjacent (form an edge) inG and write
u 6∼ v if they are non-adjacent (do not form an edge). We
refer [5] for the general graph theoretic notations and ter-
minology not described in this paper.

A research area in graph theory that has increased in
popularity during the past few decades is that of study-
ing various methods that can be used to distinguish all the
vertices in a connected graphG. Distance in graphs has
also been used to distinguish all the vertices ofG. The
distance, d(u, v), between two verticesu andv of a con-
nected graphG is defined as the length of a shortestu− v
path inG. For an ordered setW = {w1, w2, ..., wk} ⊆
V (G) and a vertexv ∈ G, thek-vectorcW (v) = (d(v, w1),
d(v, w2), ..., d(v, wk) is called thecodeof v with respect
to W . The setW is called aresolving setfor G if for any
two distinct verticesv, u ∈ G, cW (v) 6= cW (u). A resolv-
ing set with minimum cardinality is called ametric basis,
or simply abasisof G and that minimum cardinality is
called themetric dimensionof G, denoted bydim(G)[4].

For a vertexv in G, theeccentricity, ecc(v), is the max-
imum distance betweenv and any other vertex ofG. The
diameterof G, denoted bydiam(G), is the maximum ec-

centricity of a vertexv in G. The join of two graphsG1

andG2, denoted byG1 + G2, is a graph with vertex set
V (G1) ∪ V (G2) and an edge setE(G1) ∪E(G2) ∪ {u ∼
v | u ∈ V (G1) ∧ v ∈ V (G2)}.

Metric dimension was first introduced in the 1970s, in-
dependently by Harary and Melter [8], and by Slater [20].
In recent years, a considerable literature regarding this no-
tion has developed (see [1–4,6,9,11–13,16,18,19]). Slater
described the usefulness of this idea into long range aids
to navigation [20]. Also, this concept has some applica-
tions in chemistry for representing chemical compounds
[14,15] and in problems of pattern recognition and im-
age processing, some of which involve the use of hierar-
chical data structures [18]. Other applications of this con-
cept to navigation of robots in networks and other areas
appear in [4,10,16]. The problem of determining whether
dim(G) < K is an NP-complete problem [7,16].

To determine whether a given setW ⊆ V (G) is a re-
solving set forG, W needs only to be verified for the ver-
tices inV (G) \W since every vertexw ∈ W is the only
vertex ofG whose distance fromw is 0.

A useful property for findingdim(G) is the following:

Lemma 1.[4] Let W be a resolving set for a connected
graph G and u, v ∈ V (G). If d(u,w) = d(v, w) for all
w ∈ V (G) \ {u, v}, thenu or v is in W .

∗ Corresponding author: e-mail: imranjavaid45@gmail.com

c© 2012 NSP
Natural Sciences Publishing Cor.



372 Salman et al :2-Size Resolvability in Graphs

This paper introduces a new parameter in the context of
resolvability, called the 2-size resolving set, formally de-
fined in the next section, following the idea of one size re-
solvability in graphs defined by Kwancharoneet al. [17].
In the next section, we study 2-size resolving sets and the
2-size metric dimension in nontrivial connected graphs,
and make a comparison between the metric dimension,
one size metric dimension and 2-size metric dimension.
We determine the 2-size metric dimension of some spe-
cific families of graphs and characterize all the graphs of
ordern with 2-size metric dimensionn andn − 1. Also,
we provide the necessary and sufficient conditions for a
pair (k, n) of positive integers withk ≤ n (n, k ≥ 3) to
be realizable as the 2-size metric dimension and order of
some connected graph, respectively.

2. 2-Size Resolvability in Graphs

The following two results were proved by Chartrandet al.
in [4].

Theorem 1.LetG be a connected graph of ordern. Then
(i) dim(G) = 1 if and only if G is a pathPn on n ≥ 2
vertices, and
(ii) dim(G) = n − 1 if and only ifG is a complete graph
Kn onn ≥ 3 vertices.

Theorem 2.[4] Let G be a connected graph of ordern ≥
4. Thendim(G) = n − 2 if and only if G is one of the
graphsKr,s (n = r + s andr, s ≥ 1), or Kr + Ks (n =
r + s and r ≥ 1, s ≥ 2), or Kr + (K1 ∪ Ks) (n =
r + s + 1 andr, s ≥ 1).

Thus, if G is a nontrivial connected graph of ordern,
then

1 ≤ dim(G) ≤ n− 1. (1)

WKwancharoneet al. [17] defined the one size resolv-
ability in graphs as follows:

Definition 1.A resolving setW for a connected graphG
of ordern ≥ 2 is called one size resolving set if the size
of the subgraph< W > induced byW is one. The min-
imum cardinality of a one size resolving set is called the
one size metric dimension ofG, denoted byor(G). A one
size resolving set of cardinalityor(G) is called an or-set.

Since the size of the subgraph induced by an or-set is
one, it follows that

2 ≤ or(G) ≤ n. (2)

In this section, we study 2-size resolving sets which
are defined as follows:

Definition 2.A resolving setW for a connected graphG
of ordern ≥ 3 is called 2-size resolving set if the size of
the subgraph< W > induced byW is two. The minimum
cardinality of a 2-size resolving set is called the 2-size met-
ric dimension ofG, denoted bytr(G). A 2-size resolving
set of cardinalitytr(G) is called a tr-set.

Since the size of the subgraph induced by a tr-set is
two, it follows that

3 ≤ tr(G) ≤ n. (3)
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Figure 1 Illustration of 2-size resolving set and comparison be-
tweendim(G), or(G) andtr(G)

To illustrate the 2-size metric dimension, consider the
graphG1 of Figure 1. One can see that the set{v1, v3, v9}
is a minimum resolving set forG1 and is also an or-set for
G1 since the size of the subgraph induced by this set is
one. But, there is no resolving setW of cardinality three
such that the size of the subgraph induced byW is two.
However, if we add the vertexv8 into the set{v1, v3, v9},
then the resulting setW = {v1, v3, v8, v9} is a resolving
set forG as well as the size of the subgraph< W > in-
duced byW is two. Thus,dim(G1) = 3 = or(G1) and
tr(G1) = 4.

Remark.In a connected graphG, it is not necessary that if
or(G) exists, thentr(G) also exists and vice-versa.

Example 1.Consider the graphG of Figure 2. The sub-
graphG′ induced byV (G)\{y1, y2, y3} has orderp+q+2.
In G′, a setW = {x1, x2} ∪ (V ∪X) \ {z}, whereV =
{v1, v2, . . . , vp} andX = {x3, x4, . . . , xq} (p, q ≥ 4), is
an or-set forG′ but it is easy to see that there is no setW
of cardinality at least three inG′ such thatW is a tr-set for
G′. This implies thator(G′) = p + q − 1 andtr(G′) does
not exist.

Example 2.Consider the graphG2 of Figure 1. The setW ′ =
{v1, v2, v3} is a minimum resolving set as well as a tr-set
for G2 since the size of the subgraph induced by this set is
two. But, there is no setW of cardinality at least three in
G2 such thatW is an or-set forG2. Because, without loss
of generality, if we consider the setW = {v1, v2}, then the
third vertex ofW will be eitherv5 or v6, or if we consider
the setW = {v1, v4}, then the third vertex ofW will be ei-
therv6 or v7, or if we consider the setW = {v1, v8}, then
the third vertex ofW will be eitherv3 or v6, the induced
subgraph< W > have size 1 but,W is not a resolving set
for G2. Similarly, there is no or-set forG2 of cardinality at
least 4. This implies thattr(G2) = 3 andor(G2) does not
exist.
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Remark.It is possible thator(G) = tr(G) and further it is
also possible thatdim(G) = or(G) = tr(G) in a nontriv-
ial connected graphG.

Example 3.Consider the Petersen graphP shown in Fig-
ure 3 and the graphG3 of Figure 1, respectively. In the Pe-
tersen graphP , the set{v1, v3, v7}is a minimum resolv-
ing set forP , but there is no resolving setW of cardi-
nality three such that the size of the subgraph induced by
W is one or two. However, it is easy to see that the set
{v1, v3, v6, v7} is an or-set and the set{v1, v3, v6, v9} is
a tr-set forP (see Theorem 3). Thus,dim(P ) = 3 and
or(P ) = 4 = tr(P ).

Example 4.In the graphG3 of Figure 1, one can see that
the set{v1, v3, v5} is a minimum resolving set forG3, the
set {v1, v2, v5} is an or-set and the set{v1, v2, v3} is a
tr-set forG3, which implies thatdim(G3) = or(G3) =
tr(G3) = 3.

From the definitions and the above discussion, we con-
clude that, in a nontrivial connected graphG of ordern, if
both or(G) andtr(G) exist, thendim(G) ≤ or(G) and
dim(G) ≤ tr(G).

Letu be a vertex of a graphG. Theopen neighborhood
of u is N(u) := {v ∈ V (G) : v ∼ u in G}, and the
closed neighborhoodof u is N [u] := N(u) ∪ {u}. Two
distinct verticesu, v areadjacent twinsif N [u] = N [v]
andnon-adjacent twinsif N(u) = N(v). Observe that if
u, v are adjacent twins, thenu ∼ v in G and if u, v are
non-adjacent twins, thenu 6∼ v in G. Adjacent twins are
called true twinsand non-adjacent twins are calledfalse
twins. If u, v are adjacent or non-adjacent twins, thenu, v
aretwins. A setU ⊆ V (G) is called atwin-set of G if u, v
are twins inG for every pair of distinct verticesu, v ∈ U .
The next lemma follows from the definitions.

Lemma 2.[9] If u, v are twins in a connected graphG,
thend(u, x) = d(v, x) for every vertexx ∈ V (G)\{u, v}.
Corollary 1.[9] Suppose thatu, v are twins in a connected
graphG andW resolvesG. Thenu or v is in W . More-
over, if u ∈ W and v 6∈ W , then(W \ {u}) ∪ {v} also
resolvesG.

Thus, we have the following useful remark:

Remark.If U is a twin-set in a connected graphG of or-
dern with |U | = m ≥ 2, then every resolving set forG
contains at leastm− 1 vertices fromU .

Lemma 3.There exists a graphG such that every tr-set for
G must contain all the vertices of some twin-set.

Proof.Let G be the graph as shown in Figure 2 obtained
fromK2,p, whose vertex sets are{u1, u2} andV = {v1, . . .
, vp} with p ≥ 4, by adding the verticesx1, . . . , xq with
q ≥ 4 and the verticesy1, y2, y3 such asxi ∼ u1; 1 ≤
i ≤ q, x1 ∼ x2, yi ∼ v1; 1 ≤ i ≤ 3, y1 ∼ y2 and
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Figure 2 The graphG with tr-set(V ′∪X∪X ′∪{y1, y2, y3})\
{u, x} for someu ∈ V ′ ∪X ′ andx ∈ X

y2 ∼ y3. ThenG contains four distinct twin-sets of car-
dinality at least two, namelyV ′ = {v2, . . . , vp}, X =
{x1, x2}, X ′ = {x3, . . . , xq} and Y ′ = {y1, y3}. Note
that, every tr-set forG is of the form(V ′ ∪ X ∪ X ′ ∪
{y1, y2, y3}) \ {u, x} for someu ∈ V ′ ∪X ′ andx ∈ X.
From where the lemma follows.

Let U be a twin set ofG, then the subgraph< U > in-
duced byU is either an empty graph or a complete graph
on |U | vertices. Thus, we have the following straightfor-
ward lemma:

Lemma 4.LetG be a connected graph and letU be a twin-
set ofG with |U | ≥ 3. If the subgraph< U > induced by
U is not an empty graph, thentr(G) is not defined.

3. 2-Size Resolving Sets in Some Well-Known
Graphs

Here we determine the 2-size metric dimension of some
well-known classes of graphs.
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Figure 3 The Petersen graphP with tr(P ) = 4

Theorem 3.LetP be the Petersen graph. Thentr(P ) = 4.

Proof.Let W = {v1, v3, v6, v9} be a set of vertices ofP ,
then the size of the subgraph< W > induced byW is
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two and all the codescW (v2) = (1, 1, 2, 2), cW (v4) =
(2, 1, 2, 1), cW (v5) = (1, 2, 2, 2), cW (v7) = (2, 2, 2, 1),
cW (v8) = (2, 1, 1, 2), cW (v10) = (2, 2, 2, 2) of the ver-
tices ofV (P )\W are distinct, which implies thattr(P ) ≤
4.

For the lower bound, assume contrarily thatW ′ is a tr-
set forP of cardinality three. Let us call the the vertices
v1 . . . , v5, the outer vertices, and the verticesv6 . . . , v10,
the inner vertices. Then it is straightforward to see that
(a) no three vertices (outer or inner) with consecutive in-
dices form a resolving set forP , and(b) no three outer
(inner) vertices form a resolving set set forP . Thus, with-
out loss of generality, we can suppose thatv1 ∈ W ′. Then
cW ′(v2) = cW ′(v5) whenW ′ = {v1, v6, v8}, or W ′ =
{v1, v6, v9}, a contradiction. SinceP is 3-regular symmet-
ric graph, considering one case is enough. Thustr(P ) ≥
4.

Theorem 4.Let G be a path onn ≥ 3 vertices, or a cycle
onn ≥ 4 vertices. Thentr(G) = 3.

Proof.Consider a setW ⊆ V (G) consisting of three con-
secutive vertices ofG. Then it is straightforward to see
that(a) W is a resolving set forG, and(b) the size of the
subgraph< W > induced byW is two. Thus,W is a 2-
size resolving set forG. Therefore, it follows by (3) that
tr(G) = 3.

Since every subgraph induced by a set of at least three
vertices in a complete graph of ordern ≥ 3 is of size at
least three. Therefore, 2-size metric dimension is not de-
fined for the complete graphs. However, the removal of
any edgee from the complete graphs of order 3 and 4 de-
fines the 2-size metric dimension as we show in the next
result.

Theorem 5.LetG be a complete graph of ordern ≥ 3 and
let G− e be the graph obtained by deleting one edge from
G. Thentr(G− e) exists andtr(G− e) = 3 if and only if
G = K3 andK4.

Proof.It is not difficult to see that the theorem is true for a
complete graph of order 3 and 4. Let us assume thatG is a
complete graph of ordern ≥ 5. ThenG − e ∼= Kr + K2

for all r ≥ 3 so,dim(G−e) = n−2, by Theorem 2. Since
there are two twin-sets, sayX andY , of cardinalityr and
2, respectively, inG− e andW must contain at leastr− 1
vertices fromX and at least1 vertex fromY , by Remark
2. It follows that the size of the subgraph induced by any
resolving set forG−e is greater than two. Thus,tr(G−e)
does not exist.

Similarly, the removal of any two edges from the com-
plete graphs of order 4 and 5 also defines the 2-size metric
dimension. The proof of the following result is same as the
proof of the previous result, so we omit it.

Theorem 6.LetG be a complete graph of ordern ≥ 4 and
letG−2e be the graph obtained by deleting two edges from
G. Thentr(G− 2e) exists andtr(G− 2e) = 3 if and only
if G = K4 andK5.

Theorem 7.Let Kr,s be a complete bipartite graph with
1 ≤ r ≤ s. Thentr(Kr,s) exists andtr(Kr,s) = 3 if and
only if 1 ≤ r < s ≤ 3.

Proof.It is a routine exercise to see thattr(Kr,s) exists and
tr(Kr,s) = 3 if and only if 1 ≤ r, s ≤ 3 andr 6= s when
r = 3 or s = 3. Now, let Kr,s be a complete bipartite
graph withr, s ≥ 3. Let U = {u1, . . . , ur} and V =
{v1, . . . , vs} be partite sets ofKr,s. Let W be a tr-set for
Kr,s, then it follows from Remark 2 thatW contains at
leastr − 1 vertices fromU ands − 1 vertices fromV .
However, the size of the subgraph< W > induced byW
is greater than two, which is a contradiction.

4. Realizable Results

IAs we have noticed that3 ≤ tr(G) ≤ n for all connected
graphsG of ordern ≥ 3 such thattr(G) exist. We are able
to characterize all the nontrivial connected graphs with 2-
size metric dimensionn andn− 1.

Theorem 8.Let G be a connected graph of ordern ≥ 3.
Thentr(G) = n if and only ifG = P3 = K1,2.

Proof.Let G = P3 = K1,2, then, by Theorems 4 and7,
we havetr(G) = 3 = n. Conversely, letG be a connected
graph of ordern ≥ 3 with tr(G) = n and letW be a tr-
set forG of cardinalityn. Since the size of the subgraph
< W > induced byW is two andG is a connected graph,
it follows that|W | = |V (G)| = 3. ThenG = P3.

It is an immediate consequence of the above theorem
that ifG is a connected graph of ordern ≥ 4, thentr(G) ≤
n− 1.

Theorem 9.Let G be a connected graph of ordern ≥ 4.
Then tr(G) = n − 1 if and only if G ∈ {P4, C4

∼=
K2,2,K1,3,K4 − e,K4 − 2e}.
Proof.Let G ∈ {P4, C4

∼= K2,2,K1,3,K4 − e, K4 − 2e}.
From Theorems 4-7, it follows thattr(G) = 3 = n−1. To
verify the converse, suppose thatG is a connected graph of
ordern ≥ 4 with tr(G) = n− 1. Forn = 4, it is straight-
forward to see thatG ∈ {P4, C4

∼= K2,2,K1,3,K4 −
e,K4 − 2e}. Thus, we assume thatn ≥ 5. Let W be a
tr-set forG of cardinalityn− 1 and letV (G) \W = {x}.
Then we have the following two cases:

Case 1.If u, v andw are adjacent vertices in the sub-
graph< W > of G induced byW in such a way that
u ∼ v, v ∼ w andu 6∼ w. Thenx is adjacent to every
independent vertex ofW \ {u, v, w} and to at least one
vertex of{u, v, w}, sayu. Let W ′ = W \ {y}, wherey is
one ofW \ {u, v, w}. Sinced(u, x) = 1 andd(u, y) = 2,
it follows thatcW ′(x) 6= cW ′(y) and soW ′ is a tr-set for
G with cardinalityn− 2, a contradiction.

Case 2.If u, v, w and y are adjacent vertices in the
subgraph< W > of G induced byW in such a way that
u ∼ v and w ∼ y. Then forn ≥ 5, x is adjacent to
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at least one vertex of{u, v}, sayu, and to at least one
vertex of{w, y}, sayw. Thus, it is easy to see that the set
W ′ = (W \ {v, y}) ∪ {x} is tr-set forG of cardinality
n− 2, a contradiction.

From Theorems 8 and 9, we have the following corol-
lary:

Corollary 2.Let G be a connected graph of ordern ≥ 5.
Then

3 ≤ tr(G) ≤ n− 2.

Now, we provide a necessary and sufficient condition
for a pair(k, n) of positive integers withk ≤ n such thatk
is realizable as the 2-size metric dimension for a connected
graph of ordern.

Theorem 10.For each pair(k, n) of positive integers with
k ≤ n, there exists a connected graphG of order n and
tr(G) = k if and only ifn ∈ {3, 4} andk = 3, or n ≥ 5
and3 ≤ k ≤ n− 2.

Proof.By Theorems 8, 9 and Corollary 2, it remains to
show that there exists a connected graphG of ordern and
tr(G) = k for n ≥ 5 and3 ≤ k ≤ n − 2. By Theo-
rem 4, graphG = Pn with n ≥ 5 satisfiestr(G) = 3.
Now, we assume thatn ≥ 6 and4 ≤ k ≤ n − 2. Let
G be a graph obtained from pathsH1 : v1, v2, . . . , vn−k,
H2 : u1, u2, u3 andk−3 new verticesw1, . . . , wk−3 with
ui ∼ v1 andwj ∼ v1 for i = 1, 2, 3 and1 ≤ j ≤ k − 3.
Thus,G is a connected graph of ordern as shown in Figure
4.
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Figure 4 The graphG of ordern andtr(G) = k

First we show thattr(G) ≤ k. Let W = {u1, u2, u3,
w1, . . . , wk−3} ⊂ V (G). Since the size of the subgraph
< W > induced byW is two andcW (vi) = (i, i, . . . , i)
for each1 ≤ i ≤ n − k, it follows thatW is a 2-size re-
solving set forG. Now, we show thattr(G) ≥ k. Assume
contrarily thattr(G) ≤ k − 1. Let W ′ be a tr-set forG
with |W ′| ≤ k − 1. Since{u1, u3} is a twin-set inG, it
follows by Remark 2 thatW ′ contains at least one vertex
from {u1, u3}, sayu1. We consider two cases according
to the parity ofk.

Case 1.k = 4, then |W ′| ≤ k − 1 = 3. Since the
size of the subgraph< W ′ > induced byW ′ must be
two, it follows thatW ′ is eitherV (H2), or{u1, v1, u3}, or

{u1, v1, v2}, or{u1, v1, w1}. However,cW ′(v2) = cW ′(w1)
if W ′ = V (H2) or {u1, v1, u3}; cW ′(w1) = cW ′(u3)
if W ′ = {u1, v1, v2} andcW ′(u3) = cW ′(v2) if W ′ =
{u1, v1, w1}, a contradiction.

Case 2.k ≥ 5. Since{w1, . . . , wk−3} is a twin-set in
G, so Remark 2 implies thatW ′ contains at leastk − 4
vertices from{w1, . . . , wk−3}, without loss of generality,
saywi; 1 ≤ i ≤ k − 4. Since the size of the subgraph
< W ′ > induced byW ′ must be two, it follows thatW ′ =
V (H2) ∪ {w1, . . . , wk−4}. But, cW ′(v2) = cW ′(wk−3), a
contradiction.

Therefore, from the Cases 1 and 2, we havetr(G) ≥ k.

5. Conclusion

In this paper, we study the notion of 2-size resolvability in
graphs and its relationship with metric dimension and one
size resolvability. Also, we study 2-size resolving sets in
some well-known families of graphs and give some realiz-
able results. Furthermore, from the definitions ofdim(G),
or(G), tr(G), from the inequalities (2) and (3), and from
the Remark 2, we leave to the reader the following conjec-
tures:

Conjecture 1.For k ≥ 1, if dimk(G) denotes thek-size
metric dimension of a connected graphG of ordern > k
andn 6= 4, thenk + 1 ≤ dimk(G) ≤ n.

Conjecture 2.In a nontrivial connected graphG of ordern,
if both or(G) andtr(G) exist, thenor(G) ≤ tr(G).

Conjecture 3.If a nontrivial connected graphG of ordern
hasl disjoint twin-sets andtr(G) is defined, then for all
n ≥ 5, tr(G) ≤ n− l.

However, we show that the upper bound oftr(G) given
in the Conjecture 2 is attainable. LetG be a graph of order
n ≥ 6 obtained from the complete graphK4 with vertex
set{v1.v2, v3, v4}, by deleting an edge between the ver-
ticesv2 andv4 and by addingn−4 new verticesw1, w2, . . .
, wn−4 such thatwi ∼ v1 for all i; 1 ≤ i ≤ n − 4. Then,
there are two twin-sets inG of cardinality at least two,
namely{v2, v4} and{w1, w2, . . . , wn−4}, which implies
that l = 2. One can see the verticesv2, v3, v4 together
with anyn − 5 vertices from the set{w1, w2, . . . , wn−4}
form a tr-set forG of cardinality n − l, which implies
that tr(G) = n − l. Further, in the graphG of Figure 2,
tr(G) < n− l (see Lemma 3).
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[2] J. Ćaceres, C. Hernando, M. Mora, I. M. Pelayoe, M. L.
Puertas, C. Seara and D. R. Wood, SIAM J. of Disc. Math.,
321(2)(2007) 423-441.
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