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Abstract: In this work, we consider the selection algorithms for the order statistics problems. A general partition based selection
algorithm can be made to go quadratic by constructing input on the fly in response to the sequence of items compared. We develop
an extremely simple class for constructing the worst case data set for the partition based selection algorithm. The general method
works against any implementation of partition based selection algorithm that satisfies certain very mild and realistic assumptions.
Computational results ascertain that the techniques developed are not only of theoretical interest, but also may actually lead to the worst
case data sets for general partition based selection algorithms.
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1. Introduction

In this paper, we consider the selection algorithms for the
order statistics problems. Thekth order statistic of a sta-
tistical sample is equivalent to itskth-smallest value. It is
the most fundamental tools in non-parametric statistics and
inference. In computer science, an algorithm for solving
the order statistics problems is also called a selection al-
gorithm[2,4]. The task of a selection algorithm is to find
the kth smallest item in a set. This item is called thekth
order statistic. This task includes the cases of finding the
minimum, maximum, and median items. There areO(n),
worst-case linear time selection algorithms[3,5]. Selection
is also a subproblem of more complex problems like the
nearest neighbor problem and shortest path problems.

A general partition based selection algorithm is known
as Hoare’s selection algorithm or quickselect[6]. In the al-
gorithm quickselect, there is a sub-algorithm called par-
tition that can, in linear time, group a set, ranging from
indices left to right, into two parts, those less than a cer-
tain item, and those greater than or equal to the item. Al-
though quickselect is linear-time on average and therefore
efficient in practice, it can require quadratic time with poor
pivot choices.

When using quickselect we may feel a nagging tension
that it will go quadratic. Tactics to avoid embarrassing re-

sults in some low-entropy cases, such as already ordered
input, are not difficult to discover. Nevertheless, produc-
tion implementations have been caught going quadratic in
real-life applications. No matter how hard an algorithm
tries, it cannot defend against all inputs without great sac-
rifice of its speed.

This paper describes an adversarial method that finds
chinks in the defenses of any implementation. A similar
method was presented by Mcilroy for quicksort algorithm[7],
but our method is somewhat different. A polymorphic im-
plementation of quickselect never looks at the data. It re-
lies instead on an externally supplied comparison func-
tion. This allows us to monitor and influence the algorithm
non-invasively. For this purpose, we make a comparison
function that observes the pattern of comparisons and con-
structs adverse data on the fly.

The organization of the paper is as follows.
In the following 3 sections we describe our general ad-

versary class design paradigm. In section 2 we give an ex-
tremely simple class for constructing the worst case data
set for the partition based selection algorithm. The gen-
eral method works against any implementation of partition
based selection algorithm that satisfies some mild and re-
alistic assumptions. In section 3 we give a computational
study of the presented adversary class which demonstrates
that the achieved results are not only of theoretical interest,
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but also that the techniques developed may actually lead to
the worst case data sets for general partition based selec-
tion algorithms. Some concluding remarks are in section
4.

2. The Adversary Design

Any partition based selection algorithm finds thekth small-
est item in a set ofn data items by using the so-called di-
vide and conquer strategy in three phases:

1. Pick a data item as pivot. This operation costsO(1)
comparisons.

2. Partition the data into three parts that respectively
contain allj items less than the pivot, the pivot item itself,
and all items greater than the pivot. The placement of items
equal to the pivot varies among implementations.

3. The algorithm recursively continues in the appropri-
ate part of data: the low part ifk < j, high part ifk > j.

For this kind of partition based selection algorithms,
we will construct an adversary to make the selection algo-
rithms go quadratic by arranging for the pivot to be one of
the end points of the interval containing all items not seen
during pivot selection so that the partition will be lopsided.

Those items whose relationship to each other is un-
known are considered to have a value of gas[7]. The exact
values are not determined as long as they are not compared
against each other. Quadratic behavior is guaranteed since
n−O(1) gas values must survive pivot selection amongn
items.

In the whole of the algorithm, alln items are divided
into three parts, the lower part, the gas part and the upper
part. The values of the items in gas part are not determined.
All the items of the lower part and the upper part have solid
values. The value of an item of the lower part is less than
the value of any item of the upper part. In the initial part of
the algorithm, all items are gas items. The lower part and
the upper part of the items are both empty.

When two gas items are compared, one gets frozen into
a solid lower part item or a solid upper part item according
to the value ofk.

When a lower part item is compared to a gas item, it
compares low. When an upper part item is compared to
a gas item, it compares high. When two solid items are
compared, the answer depends on the frozen values.

The trick of the adversary is to make sure that the pivot
gets frozen early in the partition phase if it has not already
been frozen. No further gas items will become frozen for
the duration of the partitioning phase.

A simple observation helps to guess the pivot and freeze
it. A pivot candidate is the gas item that most recently sur-
vived a comparison. When an item is to be frozen in a gas-
gas comparison, a pivot candidate is preferred. The pivot
candidate will emerge as soon as a gas item is examined.
If the pivot is already solid, the candidate is not impor-
tant. Otherwise, the first gas-gas comparison in the parti-
tion phase results in the pivot either getting frozen or be-
coming the pivot candidate. The pivot will become frozen

at the second gas-gas comparison of the partitioning phase
in the worst case. At most two items will be frozen dur-
ing partitioning. This assures thatn − O(1) items will be
survival.

The adversarial method works for almost any polymor-
phic program recognizable as a partition based selection
algorithm. The algorithm may copy values at will, or work
with lists rather than arrays. It may even pick the pivot at
random. The partition based selection algorithm must sat-
isfy some mild assumptions:

1. Pivot-choosing takesO(1) comparisons.
2. The comparisons of the partitioning phase are con-

tiguous and involve the pivot value.
3. The only data operations performed are comparison

and copying.
Based on the discussion above, we can design an ad-

versary class for constructing the worst case data items for
a given partition based selection algorithm as follows.¨ ¥
templa te < c l a s s T>
c l a s s a d v e r s a r y
{ / / t h e k t h s m a l l e s t i t em

s t a t i c T k ;
/ / gas v a l u e
s t a t i c T gas ;
/ / t h e l a r g e s t v a l u e o f lower p a r t
s t a t i c T lower ;
/ / t h e s m a l l e s t v a l u e o f upper p a r t
s t a t i c T upper ;
/ / p i v o t c a n d i d a t e
s t a t i c T ∗ c a n d i d a t e ;
/ / number o f compar isons
s t a t i c long long ncmp ;
/ / i t em v a l u e s
mutable T ∗ v a l ;
vo id f r e e z e ( ) cons t{

∗ v a l = lower<k ?
T( lower ++) :T ( upper−−);

}
pub l i c :

s t a t i c s t d : : vec to r<T ∗> memory ;
a d v e r s a r y ( ) : v a l ( 0 ){ }
vo id i n i t ( ) {

memory . pushback ( v a l = new T( gas ) ) ;
}
vo id n s e t (T kth , T n ){

k= k th ;
gas=n ;
upper=n+n ;

}
bool operator<

( cons t a d v e r s a r y & o t h e r ) cons t
} ;§

In the description of the adversary class above, the vari-
ablek is the parameter of the selection algorithm to find
thekth smallest of the data set. The variablelower stores
the largest item value of the current lower part and the vari-

c© 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.6, No. 2, 357-362 (2012) / www.naturalspublishing.com/Journals.asp 359

ableupper stores the smallest item value of the current
upper part. The variablegas is for the gas value. Gas is
coded as a middle value. It is larger than any item value
of the lower part and less than any item value of the up-
per part. The variablecandidate is for the pivot candidate.
When we have to freeze an item in a gas-gas comparison,
the pivot candidate is chosen. The initial values of gas and
the upper value are dependent on the size of the data set. If
the size of the data set isn, then the functionnset will set
the value ofgas to n and the initial value ofupper to 2n.

The variableval is a pointer pointing to the frozen item
values. The vectormemory is the actual memory to store
the adversarial data set constructed. It is public to allow
recovery of the adversarial data set after the selection al-
gorithm finished and to free the memory used.

A default copy constructor and assignment operator
which just copy theval pointer is used. A default destruc-
tor is also used, which means the memory for the values
will leak until we call collect.

The variablencmp is used to record the number of
comparisons used in the current state of the selection al-
gorithm.

The most important operation of the adversary class is
the comparison operation ’<’.¨ ¥
bool operator <( cons t a d v e r s a r y & o t h e r )

cons t
{

ncmp++;
i f ( ∗ v a l = = gas && ∗ o t h e r . v a l = = gas )
{

i f ( v a l = = c a n d i d a t e ) f r e e z e ( ) ;
e l s e o t h e r . f r e e z e ( ) ;

}
i f ( ∗ v a l = = gas ) c a n d i d a t e = v a l ;
e l s e i f ( ∗ o t h e r . v a l = = gas )

c a n d i d a t e = o t h e r . v a l ;
re turn ∗ v a l < ∗ o t h e r . v a l ;

}§
Since the pivot candidate is the gas item that most re-

cently survived a comparison, when the pivot candidate
involved in a gas-gas comparison, it must be frozen by the
function freeze. The functionfreeze freezes the pivot
candidate to a lower part item or an upper part item ac-
cording to the value ofk to ensure that thekth smallest
item is neither in the lower part nor in the upper part of the
current data set.

The other comparison operations can be transformed
into comparison operation<.¨ ¥

bool operator >( cons t a d v e r s a r y & a )
{ re turn a . operator <(∗ t h i s ) ; }

bool operator <=( cons t a d v e r s a r y & a )
{ re turn ! ( operator >(a ) ) ;}

bool operator >=( cons t a d v e r s a r y & a )

{ re turn ! ( operator <(a ) ) ;}

bool opera tor ==( cons t a d v e r s a r y & a )
{ re turn v a l = = a . v a l ;}

bool opera tor ! = ( cons t a d v e r s a r y & a )
{ re turn v a l ! = a . v a l ;}§
By using this adversary class, we can construct the

worst case data set for the partition based selection algo-
rithm satisfying the mild assumptions mentioned above.

Suppose we want to construct the worst case data set
for the algorithmselect and we define sequencetype as
follows.¨ ¥
# d e f i n e s e t t y p e v e c t o r
t ypede f adve rsa ry<unsigned> U;
t ypede f s e t t y p e<U> : : i t e r a t o r i t e r ;§

The algorithmconstruct for this purpose can be de-
scribed as follows.¨ ¥
vo id c o n s t r u c t (i n t n , f l o a t k )
{

s e t t y p e<U> seq ( n ) ;
f i r s t =seq . beg in ( ) ;
l a s t =seq . end ( ) ;
k th = f i r s t +( i n t ) ( k ∗ ( seq . s i z e ( )−1 ) ) ;
unsigned nn= l a s t− f i r s t ;
unsigned kk=nth− f i r s t ;
seq . beg in ()−> n s e t ( kk , nn ) ;
f o r ( i t e r i =seq . beg in ( ) ;

i != seq . end ( ) ; + + i ) i−> i n i t ( ) ;
s e l e c t ( f i r s t , k th , l a s t ) ;
o u t p u t (U : : ncmp ,U : : memory ) ;
r e l e a s e (U : : memory ) ;

}§
In the algorithmconstruct(n, k), the functionoutput

is used to output the worst case data set for the algorithm
select and the number of comparisons used for the algo-
rithm select on this data set. The functionrelease is used
to release the memory allocated for the data set.

3. Computational Experiments

In this section, we performed a series of experiments on
various partition based selection algorithms. The investi-
gated 9 algorithms are listed in Table 1.

For these investigated algorithms we construct their
worst case data sets by using the adversary class described
above with various sizes of the data sets. For example, we
construct the worst case data set for the STL implemen-
tation of selection algorithmnth elementof size 100 as
shown in Table 2. For this data set, the algorithmnth element
needs 3587 comparisons to find the median.
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Table 1 Selection algorithms investigated

Algorithm Description
select A partition based selection algorithm which

chooses the middle item of the data set as
the pivot[4].

rselect A partition based selection algorithm which
chooses a random item of the data set as the
pivot[4].

nth element STL implementation of selection algorithm
which chooses the median of three items
first, middle and last items of the data set
as the pivot[1].

select-med3t Tukey’s ninther pivot selecting algorithm
which chooses the median of the medians
of three items, each of three random items
of the data set as the pivot[1].

select-medt5 A median-of-(2t + 1) pivot selecting algo-
rithm with t = 5 which chooses the median
of 11 random items of the data set as the
pivot[1].

select-medt9 A median-of-(2t + 1) pivot selecting algo-
rithm with t = 9 which chooses the median
of 19 random items of the data set as the
pivot[1].

iselect Selection algorithm using2x+ b rule intro-
spection but no randomization[8].

riselect Selection algorithm using(6/5)x + b rule
introspection and randomization[10]

linear Blum’s worst case linear time selection al-
gorithm[3].

Table 2 The worst case data set fornth elementof size 100

1 2 3 100 151 5 152 7 153
9 154 11 155 13 156 15 157 17

158 19 159 21 160 23 161 25 162
27 163 29 164 31 165 33 166 35
167 37 168 39 169 41 170 43 171
45 172 47 173 200 0 4 6 8
10 12 14 16 18 20 22 24 26
28 30 32 34 36 38 40 42 44
46 48 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198
199

The 9 algorithms experimented are divided into three
groups. For the algorithms in each group we construct the
worst case data sets by using our adversary class with the
data sizes in the range of10 ≤ n ≤ 300000. The algo-
rithms in groups 1 and 2 are all partition based selection
algorithms. The algorithms in groups 2 are of more subtle
pivot choices. The algorithms in groups 3 are not partition
based selection algorithms. They are worst case linear time
algorithms actually.

Table 3 The number of comparisons for algorithms in group 1

n select rselect nth element
10 57 64 74
50 927 898 815
100 3340 3338 3587
300 28790 28787 29537
500 79240 79236 80487
700 154690 154687 156437
900 255140 255133 257387
1000 314740 314729 317237
3000 2819240 2823677 2826737
5000 7823740 7823734 7836237
7000 15328240 15331766 15345737
9000 25332740 25337756 25355237
10000 31272490 31278511 31297487
30000 281317490 281317481 281392487
50000 781362490 781362488 781487487
70000 1531407490 1531407481 1531582487
90000 2531452490 2531452479 2531677487
100000 3125224990 3125224980 3125474987
150000 7031587490 7031587481 7031962487
200000 12500449990 12500554130 12500949987
250000 19531812490 19532178413 19532437487
300000 28125674990 28126018567 28126424987

For each worst case data set constructed we count the
number of comparisons required by the corresponding se-
lection algorithms.

The experiment results for the three groups are reported
in Table 3-5. The results reported here were obtained on a
personal computer with Pentium(R) Dual Core CPU 2.10
GHz and 2.0 Gb RAM, using the Microsoft Visual C++
version 8.0 compilers. The word size of the processor is
w = 32.

The experiment results show that the techniques sug-
gested in this paper produce real worst case data sets for
all partition based selection algorithms. For the results re-
ported above, we estimated the time complexities for each
algorithm performed on the corresponding data set by us-
ing a SAS regression program.

The adversary is effective, as Table 6 shows. For the al-
gorithms in group 1, the coefficients of the quadratic items
of their time complexities are 0.3125. For the algorithms
in group 2, the coefficients of the quadratic items of their
time complexities are all greater than 0.0466. This means
that the time complexities of the algorithms in these two
groups are really quadratic for the worst case data sets con-
structed by our adversary class. Our adversary class does
not work for the algorithms in group 3, since they are all
worst case linear time algorithms actually.

4. Concluding Remarks

We have suggested a novel technique for constructing the
worst case data sets for general partition based selection al-
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Table 4 The number of comparisons for algorithms in group 2

n select-med3t select-medt5 select-medt9
10 71 57 57
50 782 714 772
100 1509 1664 1861
300 9894 9358 8065
500 25683 23360 18087
700 50593 42542 31430
900 82463 68568 49282
1000 101108 82833 59114
3000 852074 695992 457134
5000 2458400 1903355 1226492
7000 4725897 3708364 2368485
9000 7939989 6110085 3883439
10000 9799473 7530145 4783367
30000 87991183 67247321 42280047
50000 244305266 186440553 117056979
70000 478747102 365255992 229081829
90000 791312369 603537970 378409316
100000 976912970 744936353 467081515
150000 2197765519 1675392905 1049982704
200000 3906957129 2977909154 1865948685
250000 6104344980 4652450331 2914653789
300000 8790049364 6698965999 4196492116

Table 5 The number of comparisons for algorithms in group 3

n iselect riselect linear
10 74 76 74
50 815 840 815
100 921 2880 553
300 3665 8746 2117
500 5901 14871 3726
700 8735 21889 5142
900 11472 28280 6737
1000 12698 31824 7752
3000 40257 99733 25308
5000 67143 167257 42156
7000 94664 235283 60089
9000 121910 302445 77175
10000 135706 335485 86062
30000 414276 1012533 264679
50000 692855 1691997 443114
70000 971940 2372138 621598
90000 1252335 3050536 803597
100000 1392975 3392025 894278
150000 2093603 5090631 1344105
200000 2797588 6792541 1789645
250000 3500777 8497393 2248174
300000 4199384 10197364 2700286

Table 6 Worst case performance for various selection algorithms
investigated

Algorithm Pivot choice Number of comparisons
select middle item 0.3125n2 + 2.25n− 6

rselect random item 0.3125n2 + 1.6n + 3684

nth element median of three
items

0.3125n2 + 4.75n− 27

select-med3t Tukey’s ninther 0.0976n2 + 3.6n− 10022

select-medt5 median-of-(2t + 1)
with t = 5

0.0744n2 + 9.21n + 1021

select-medt9 median-of-(2t + 1)
with t = 9

0.0466n2 + 11.74n + 787

iselect 2x+b introspection 13.9n− 1746
riselect (6/5)x + b intro-

spection
33.89n− 2061

linear worst case linear 8.9n− 1378

gorithms. The data sets constructed by our technique s in-
deed the worst case data sets for the algorithms in groups 1
and 2, which make the corresponding algorithms go quadratic.
In fact, our technique will work for all partition based se-
lection algorithms.

In this work we study the selection algorithms for the
common order statistics problem where we want to find
the kth-smallest item of a data set consisting ofn items
coming from a ordered complete setS.

In some cases, we know that the data set consists of
n items coming from an ordered complete setf(S) =
{f(X)|X ⊆ S} wheref(X) is a function ofX and may
not be computed in constant time. For these cases, some
partition based selection algorithms also work[9]. It is not
clear that whether our presented technique can be used to
construct the worst case data set for these algorithms. We
will investigate the problem further.
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