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The paper deals with the finite dimensional control of the generalized Korteweg-
de Vries Burgers (GKdVB) partial differential equation (PDE). A Karhunen-Loève
Galerkin projection procedure is used to derive a system of ordinary differential equa-
tions (ODEs) that mimics the dynamics of the GKdVB equation. Using Lyapunov
theory, it is shown that the highly nonlinear system of ODEs is stable. However, the
simulation results indicate that the system of ODEs converges slowly to the origin.
Therefore, two control schemes are proposed for the system of ODEs; the main objec-
tive of the controllers is to speed up the convergence to the origin. The first controller
is a linear state feedback controller whereas the second controller is a nonlinear con-
troller. It is proven that both controllers guarantee the asymptotic convergence of the
states of the system of ODEs to zero. Simulation results indicate that the proposed
control schemes work well.

Keywords: Generalized Korteweg-de Vries Burgers equation, Karhunen-Loève de-
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1 Introduction

In this paper, we investigate the finite dimensional control of the dynamics of the gen-
eralized Korteweg-de Vries-Burgers (GKdVB ) equation

∂u

∂t
− ν

∂2u

∂x2
+ µ

∂3u

∂x3
+ uα ∂u

∂x
= 0, x ∈ (0, 2π), t ≥ 0 (1.1)
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with periodic boundary conditions

u (0, t) = u (2π, t) ,
∂u

∂x
(0, t) =

∂u

∂x
(2π, t) ,

∂2u

∂x2
(0, t) =

∂2u

∂x2
(2π, t) , (1.2)

and the initial condition
u (0, t) = f (x) = sin(x), (1.3)

where µ, ν > 0 and α is a positive integer.
When α = 1 in Eq. (1.1), the GKdVB equation reduces to the Korteweg-de Vries

Burgers (KdVB) equation which was used as a model for many physical phenomena and
hydrodynamics processes. For instance, the KdVB was used as a model for long waves
in shallow water [9] and as a model of unidirectional propagation of planar waves [18].
In the last few decades, the KdVB equation has been investigated analytically as well as
numerically, see references [1, 4, 6–8, 15, 18, 20, 25]. If α = 1 and ν = 0, the GKdVB
equation reduces to the Korteweg-de Vries (KdV) equation derived by Korteweg and de
Vries as a model for waves propagating on the surface of a canal [19]. If α = 1 and µ = 0,
the GKdVB equation reduces to the Burgers equation which models turbulent liquid flow
through a channel [11].

Recently, a lot of work has been done to control the KdVB equation, the KdV equation
and the Burgers equation. For example, Balogh and Krstić [4] investigated the control
problem of the KdVB equation using boundary control. In their work, global stability
of the solution in the L2-sense and global stability in the H1-sense were proved. Rosier
[23, 24] worked on the the control problem of the KdV equation where an exact boundary
control of the linear and nonlinear KdV equations was established in [23]; and the control
was illustrated numerically in [24]. Smaoui [29, 30] and Smaoui et al. [33] considered
the boundary and distributed control of the Burgers equation. A boundary control is used
in [29] to show the exponential stability of the Burgers equation analytically as well as
numerically. In [30], a system of ODEs was constructed to mimic the dynamics of the
Burgers equation, then a state feedback control scheme was implemented on the system to
show that the solution of the Burgers equation can be controlled to any desired state.

In this paper, the control problem of the GKdVB equation with periodic boundary con-
ditions is investigated. A state feedback controller and a nonlinear controller are designed
for the GKdVB equation. Simulation results are presented to illustrate the developed the-
ory.

In section 2, numerical simulations of the GKdVB equation are obtained using the
pseudo-spectral Fourier Galerkin method. Then, the Karhunen-Loève decomposition is
used on the simulated data to extract the coherent structures of the equation for α = 2.
Next, we present the Galerkin projection method and apply it on the GKdVB equation for
α = 2; a system of ODEs that mimics the dynamics of the GKdVB equation is extracted.
The data coefficients obtained are then used to approximate the numerical solution of the
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GKdVB equation. The approximation is then compared to the numerical solution of the
GKdVB equation. Section 3 gives the ODE dynamics which mimics the dynamics of
the GKdVB and plots its numerical solution. Section 4 presents two control schemes to
speed up the convergence of the GKdVB equation; numerical simulations are presented to
illustrate the presented theory. Finally, some concluding remarks are given in section 5.

2 The Karhunen-Loève Galerkin Projection

2.1 The Karhunen-Loève decomposition

The Karhunen-Loève (K-L) decomposition is a very useful and powerful statistical
technique that is used in many applications; it has many different names depending on the
field where it is used in. It is known as the Hotelling transform in image processing [13,16],
the principal component analysis (PCA) in pattern recognition and signal processing [17],
the empirical component analysis in statistical weather prediction [21], the quasi-harmonic
modes in biology [10], the factor analysis in psychology and economics [14], and the
proper orthogonal decomposition (POD) or the singular value decomposition (SVD) in
fluid dynamics [22, 26].

Among the many applications that utilize the Karhunen-Loève (K-L) decomposition,
the K-L decomposition was used in the analysis of the two-dimensional Navier-Stokes (N-
S) equation [2, 3, 28, 32], and in the study of flames [27, 31].

In this paper, we use the K-L decomposition on the numerically simulated data of the
GKdVB equation given in (1) in order to extract the most energetic eigenfunctions or co-
herent structures that span the data set in an optimal way. Since the K-L decomposition
is a well known procedure, we refer the reader to the references cited above for a detailed
description of the technique.

The solution u(x, t) of the GKdVB equation, obtained using a pseudo-spectral Galerkin
method, can be written in terms of the eigenfunctions or coherent structures, ψ

′
is, as

u (x, t) =
M∑

i=1

ai (t)ψi (x) , (2.1)

where ai(t) are the data coefficients calculated from the projections of the sample vector
solution onto an eigenfunction, i.e.,

ai =
< u, ψi >

< ψi, ψi >
, i = 1, . . . ,M

with M being the number of snapshots.
Figure 2.1 shows the solution u (x, t) of the GKdVB equation as it evolves to its steady

state solution. Applying the K-L decomposition on the numerical solution presented in
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Figure 2.1: A 3-D landscape plot of the numerical solution of the GKdVB equation when α = 2,
ν = 0.5, and µ = 0.01.
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Figure 2.2: The eigenfunctions associated with the solution of the GKdVB equation when α = 2,
ν = 0.5, and µ = 0.01.
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Figure 2.3: The data coefficients associated with the eigenfunctions of the solution of the GKdVB
equation when α = 2, ν = 0.5, and µ = 0.01.
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Figure 2.4: A 3-D landscape plot of the approximated solution of the GKdVB equation when α = 2,
ν = 0.5, and µ = 0.01 .
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Figure 2.1, two eigenfunctions capturing 99.98% of the energy were obtained; these eigen-
functions are plotted in Figure 2.2. The first eigenfunction captures 99.54% of the energy
and the second one captures 0.44% of the energy. Figure 2.3 presents the corresponding
data coefficients, and Figure 2.4 depicts the approximated solution of the GKdVB equation
using the above eigenfunctions.

When comparing Figures 2.1 and 2.4, one can conclude that the K-L decomposition
was able to capture the large scale dynamics of the GKdVB equation with only two eigen-
functions.

2.2 The Galerkin projection

The Galerkin projection is a method used to replace infinite dimensional continuous
systems by finite dimensional ones [5, 12]. In this section, the Galerkin projection is used
to extract a system of ODEs from the GKdVB equation. The system of ODEs can be solved
to get an approximate solution of the original PDE. Thus, the approximation can be written
in the following form:

u (x, t) ≈
K∑

i=1

ai (t)ψi (x) , (2.2)

where ai (t) is the ith solution of the system of ODEs and can be computed in a way
that minimize the residual error produced by the approximate solution above and ψi (x)
is the ith eigenfunction from the K-L decomposition; K was taken to be 2, since two
eigenfunctions capture most of the dynamics of the GKdVB equation.

In order to extract the system of ODEs, we first write the original PDE as

∂u

∂t
= D (u) , (2.3)

with given initial and boundary conditions, where “D” is the differential operator. Then,
the system of ODEs is derived by projecting the normalized eigenfunctions, onto the PDE
as

ȧi (t) =
〈

D
( K∑

i=1

ai (t)ψi (x)
)
, ψi (x)

〉
, i = 1, . . . , K (2.4)

with initial condition

ai (0) = 〈u (x, 0) , ψi (x)〉, i = 1, . . . ,K, (2.5)

where u (x, 0) is obtained from the original PDE.
Using Eq.(2.2) and taking into account the two most energetic eigenfunctions, the

GKdVB equation (1.1) with α = 2

∂u

∂t
= ν

∂2u

∂x2
− µ

∂3u

∂x3
− u2 ∂u

∂x
,
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becomes
2∑

i=1

ȧi (t)ψi (x) = ν

2∑

i=1

ai (t) ψi
′′ (x)− µ

2∑

i=1

ai (t) ψi
′′′ (x)

−
( 2∑

i=1

ai (t)ψi (x)
)2( 2∑

i=1

ai (t)ψ′i (x)
)
, (2.6)

or
2∑

i=1

ȧi (t)ψi (x) = ν
2∑

i=1

ai (t)ψi
′′ (x)− µ

2∑

i=1

ai (t) ψi
′′′ (x)

−
2∑

i=1

2∑

j=1

a2
i (t) aj (t)ψ2

i (x)ψ′j (x)

− 2
2∑

i 6=j=1

ai (t) a2
j (t)ψi (x) ψj (x)ψ′j (x) , (2.7)

where ȧi (t) is the derivative with respect to time and ψ
′
i (x) is the derivative with respect

to x. Now, taking the Euclidean inner product of the above equation with ψk, k = 1, 2 and
using the orthogonality property of ψ’s, we obtain the following system of ODEs

ȧk (t) = ν

2∑

i=1

ai (t) 〈ψk, ψi
′′〉 − µ

2∑

i=1

ai (t) 〈ψk, ψi
′′′〉

−
2∑

i=1

2∑

j=1

a2
i (t) aj (t) 〈ψk, ψ2

i ψ′j〉

− 2
2∑

i6=j=1

ai (t) a2
j (t) 〈ψk, ψiψjψ

′
j〉, (k = 1, 2). (2.8)

The solution to the above ODE system can be obtained numerically using any ODE solver.

3 Stability of the ODE Dynamics of the GKdVB Equation

We have applied the above procedure on the GKdVB equation when α = 2 and with
the initial condition given by Eq.(1.3). The model of the obtained system of ODEs can be
written as

ȧ1 = f1(a1, a2),

ȧ2 = f2(a1, a2), (3.1)

where

f1(a1, a2) = −p1a
2
1a2 − p2a1a

2
2 − p3a

3
2 + p4µa2 − p5νa1 + p6νa2, (3.2)
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f2(a1, a2) = p2a
2
1a2 + p3a1a

2
2 + p1a

3
1 − p4µa1 + p6νa1 − p7νa2 (3.3)

with

p1 = 0.4899793644, p2 = 0.0570998562, p3 = 0.5148487537,

p4 = 1.0208303477, p5 = 1.0043594987, p6 = 0.0043221400,

p7 = 1.0140806414, for α = 2, µ = 0.01 and ν = 0.5.

Proposition 3.1. The dynamics of the system of ODEs of the GKdVB equation given by
(3.1) is asymptotically stable.

Proof. Let the Lyapunov function candidate V be such that

V (a1, a2) =
1
2
a2
1 +

1
2
a2
2. (3.4)

Taking the derivative of V with respect to time, it follows that

V̇ = a1ȧ1 + a2ȧ2

= (−p1a
2
1a2 − p2a1a

2
2 − p3a

3
2 + p4µa2 − p5νa1 + p6νa2)a1

+ (p2a
2
1a2 + p3a1a

2
2 + p1a

3
1 − p4µa1 + p6νa1 − p7νa2)a2

= −p5νa2
1 − p7νa2

2 + 2p6νa1a2

= −p5νa2
1 − p7ν

[
(a2 − p6

p7
a1)2 − p2

6

p2
7

a2
1

]

= −(p5 − p2
6

p7
)νa2

1 − p7ν(a2 − p6

p7
a1)2

< 0 for (a1, a2) 6= (0, 0). (3.5)

Note that V̇ is negative definite because it can be easily checked that p5 − p2
6/p7 > 0, and

p7 and ν are positive. Therefore, the dynamics of the system of ODEs given by (3.1) is
asymptotically stable.

The system of ODEs given by (3.1) is simulated using the Matlab software. The initial
conditions are chosen to be a1(0) = 10 and a2(0) = −10.

Figure 3.1 shows the simulation results of the system of ODEs. The coefficients a1(t)
versus a2(t) when the time t is taken to be 10 seconds are plotted. Note that a1(t) and a2(t)
take about 5 seconds to converge to zero. Therefore, it can be concluded that the dynamics
of the ODEs of the GKdVB equation is asymptotically stable.

4 Design of Controllers for the GKdVB Equation

To speed up the convergence of the coefficients a1(t) and a2(t) to zero, we propose to
add a forcing term to the system of equations. The forced system of ODEs can be written
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Figure 3.1: The profiles of the data coefficients a1(t) and a2(t) with no control.

as

ȧ1 = −p1a
2
1a2 − p2a1a

2
2 − p3a

3
2 + p4µa2 − p5νa1 + p6νa2 + b1u = f1(a1, a2) + b1u,

ȧ2 = p2a
2
1a2 + p3a1a

2
2 + p1a

3
1 − p4µa1 + p6νa1 − p7νa2 + b2u = f2(a1, a2) + b2u,

(4.1)

where u(t) is the forcing term (the input) of the system and b1 and b2 are multiplying
factors.

It is desired to design control schemes such that the coefficients a1(t) and a2(t) con-
verge to (0,0) as fast as possible.

4.1 Design of a state feedback controller

Let the design parameters k1 and k2 be chosen such that k1b2 = k2b1, k1b1 > 0 and
k2b2 > 0.

Proposition 4.1. The state feedback controller

u(t) = −k1a1(t)− k2a2(t) (4.2)

guarantees the asymptotic stability of the forced system of ODEs given in (4.1).

Proof. Let the Lyapunov function candidate V be such that

V (a1, a2) =
1
2
a2
1 +

1
2
a2
2. (4.3)
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Taking the derivative of V with respect to time, it follows that,

V̇ = a1ȧ1 + a2ȧ2

= (−p1a
2
1a2 − p2a1a

2
2 − p3a

3
2 + p4µa2 − p5νa1 + p6νa2 + b1u)a1

+(p2a
2
1a2 + p3a1a

2
2 + p1a

3
1 − p4µa1 + p6νa1 − p7νa2 + b2u)a2

= −p5νa2
1 − p7νa2

2 + 2p6νa1a2 + (b1a1 + b2a2)u

= −(p5 − p2
6

p7
)νa2

1 − p7ν(a2 − p6

p7
a1)2 + (b1a1 + b2a2)u

≤ (b1a1 + b2a2)(−k1a1 − k2a2)

= −b1k1a
2
1 − b2k2a

2
2 − (b2k1 + b1k2)a1a2

= −b1k1a
2
1 − b2k2

[
a2
2 +

b2k1 + b1k2

b2k2
a1a2

]

= −b1k1a
2
1 − b2k2

[
a2 +

b2k1 + b1k2

2b2k2
a1

]2

+
(b2k1 + b1k2)2

4b2k2
a2
1

= −b2k2

[
a2 +

b2k1 + b1k2

2b2k2
a1

]2

+
(b2k1 − b1k2)2

4b2k2
a2
1

= −b2k2

[
a2 +

b2k1 + b1k2

2b2k2
a1

]2

.

Clearly V̇ < 0 for (a1, a2) 6= (0, 0) and V̇ = 0 for (a1, a2) = (0, 0). Therefore, V̇ is
negative definite, and V is a Lyapunov function for the system (4.1). Hence, the system of
ODEs given by (4.1) is asymptotically stable.

The forced system of ODEs given by (4.1) with the controller given by (4.2) is simu-
lated using the Matlab ODE solver. The parameters b1 and b2 are taken to be b1 = b2 = 1.
The initial conditions are chosen to be a1(0) = 10 and a2(0) = −10.

Figure 4.1 shows the simulation results of the forced system of ODEs when the state
feedback controller is used. In Figure 4.1, the plots of the coefficients a1(t) and a2(t)
versus time and the plots of the coefficients a1(t) versus a2(t) are shown for three different
cases. The first case corresponds to gains k1 = k2 = 3; the second case, corresponds to
gains k1 = k2 = 10; and the third case corresponds to gains k1 = k2 = 20. It is clear
from the figure that the larger the gains of the controller, the faster the coefficients a1(t)
and a2(t) converge to zero. However, the increase in the convergence speed comes at the
expense of larger control actions.

4.2 Design of a nonlinear controller

Proposition 4.2. Let W be a positive scalar. The nonlinear controller

u(t) = −Wsign(b1a1(t) + b2a2(t)) (4.4)

guarantees the asymptotic stability of the forced system of ODEs given by (4.1).
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Figure 4.1: The profiles of the data coefficients a1(t) and a2(t) with the state feedback controller;
the solid line corresponds to gains k1 = k2 = 3; the ‘- - -’ line corresponds to gains k1 = k2 = 10;
and the bold line corresponds to gains k1 = k2 = 20.

Proof. Let the Lyapunov function candidate V be such that

V (a1, a2) =
1
2
a2
1 +

1
2
a2
2. (4.5)

Taking the derivative of V with respect to time, it follows that

V̇ = a1ȧ1 + a2ȧ2

= (−p1a
2
1a2 − p2a1a

2
2 − p3a

3
2 + p4µa2 − p5νa1 + p6νa2 + b1u)a1

+(p2a
2
1a2 + p3a1a

2
2 + p1a

3
1 − p4µa1 + p6νa1 − p7νa2 + b2u)a2

= −p5νa2
1 − p7νa2

2 + 2p6νa1a2 + (b1a1 + b2a2)u

= −(p5 − p2
6

p7
)νa2

1 − p7ν(a2 − p6

p7
a1)2 + (b1a1 + b2a2)u

≤ −W (b1a1 + b2a2)sign(b1a1 + b2a2).

Clearly V̇ < 0 for (a1, a2) 6= (0, 0) and V̇ (0, 0) = 0. Therefore, V̇ is negative definite
and V is a Lyapunov function for the system (4.1) with controller 4.4. Thus, the controller
given by (4.4) guarantees the asymptotic stability of the forced system given by (4.1).

Remark 4.1. It can be shown that using the hyperbolic tangent instead of the sign function
in (4.4) will also give good results (i.e., u = −Wtanh(b1a1 + b2a2)).
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Figure 4.2: The profiles of the data coefficients a1(t) and a2(t) with the nonlinear controller, the
solid line corresponds to W = 100; the ‘- - -’ line corresponds to W = 500; and the bold line
corresponds to W = 1000.

The forced system of ODEs given by (3.6) with the controller given by (4.4) is simu-
lated using the Matlab ODE solver. The parameters b1 and b2 are taken to be b1 = b2 = 1.
The initial conditions are chosen to be a1(0) = 10 and a2(0) = −10. The hyperbolic
tangent is used in the simulations.

Figure 4.2 shows the simulation results of the system of ODEs when the proposed
nonlinear controller is used. In Figure 4.2, the coefficients a1(t) and a2(t) versus time
and the coefficients a1(t) versus a2(t) are shown for three cases corresponding to three
different gains, W = 100, W = 500, and W = 1000. Hence, it is clear from the figure
that these data coefficients are controlled to perform in a desired manner. Also, one can see
from the figure that the larger the gain W of the controller, the faster the coefficients a1(t)
and a2(t) converge to zero. Obviously, the larger the gain W the bigger the control actions
are going to be.

Remark 4.2. The linear and nonlinear controllers are designed to drive the coefficients
a1(t) and a2(t) to (0, 0). By using proper change of variables, it can be easily shown that
the steady states values of a1 and a2 can take any desired values.
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5 Concluding Remarks

This paper addresses the control problem of the GKdVB equation. The numerical so-
lutions of the nonlinear PDE is obtained using a pseudo-spectral Galerkin method. Then,
coherent structures of the solutions are obtained using the K-L decomposition method. It
is shown that for the case when α = 2, only two eigenfunctions are necessary to capture
the large scale dynamics of the equation. Applying the K-L Galerkin projection of the nu-
merical solution data on the most energetic eigenfunctions results in a system of ODEs that
mimics the dynamics of the original PDE. The obtained system of ODEs is stable but it
converges slowly to (0, 0). A linear and a nonlinear control schemes are proposed to speed
up the convergence to the steady states. It is proven that both control schemes guarantee
the asymptotic stability of the states of the forced system of ODEs. Moreover, numerical
simulations show the effectiveness of proposed controllers.

It should be mentioned that, even though the paper concentrates on the case of α = 2,
similar results can be obtained for other integer values of α.

For future research, we will address the design of other controller such as adaptive and
optimal control schemes to the GKdVB equation and for different integer values of α.
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