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Abstract: Integer neural network has been already extensively applied, but the result of application is always due to its operators
because of the lack of theoretical guidance. In our paper, we will introduce a theoretical result that an integer network can present a
good performance on approximating continuous function. Firstly we will make a quantitative analysis on integer networks capability
of approximating a function from function spaces or . Then two new formulas will be first given to calculate the approximation
error. Correspondently, we will give two new formulas to calculate the number of neurons in a three-layer network which has certain
significance to engineering practice to construct a reasonable network.
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1. Introduction

Since Warren McCulloch, a neurophysiologist, and Walter
Pitts, an logician, proposed the concept of artificial neu-
rons and neural network mathematical model in 1943[15,
16] the researches on neural network became an important
and practical area in computer science. After the develop-
ment over half of a century, neural networks achieved un-
deniable success in a wide range, including pattern recog-
nition, automatic control, signal processing, aid decision
making, artificial intelligence, etc, as the statement of the
paper of R.P.Lippmann about pattern classification[12] and
the paper of A.Lapedes and R.Farber relating to nonlinear
time series prediction[11].

Previous theoretical research always didn’t care about
the limit of the structure of network, the number of neu-
rons, the precision of weights[2,4,7,8,10,13]. Such results
have been crucial in building a solid theoretical foundation
for neural network techniques.

However, ultimate success of any technique is deter-
mined by the success of its practical applications in real-
world problems. We must consider the structure of net-
works and the precision of weights for the applications
in real-world problems. In many case, we often encounter
such situation: we can only offer a limited accuracy for
the weight or a small number of neurons[17,24]. Most

software implementations use a limited precision for num-
ber representation. Digital hardware implementations use
a few bits to store the number of weights and this trans-
lates into a limited precision for the weights. Even ana-
log implementations which are often cited for their abil-
ity to implement easily real numbers as analog quantities
are limited in their precision by issues like dynamic range,
noise, VLSI area and power dissipation problems, as the
statement of the paper of Draghici.S.[5,24]. In this paper,
we pay our attention to the neural networks with integer
weights.

Some experimental and statistical methods[3,9,20–22,
1,14,17,25]have represented that a integer network can
also provided a good performance for certain applications.
But these results lack theoretical support, which hindered
the application of the integer weight network.

With further researches, the theoretical analysis on lim-
ited precision weight network has been paid much more
attention in recent years[5,23,25]. Here is a generalized
problem arising, the capability of approximating continu-
ous function by integer neural network. In this paper, we
focus on this problem. Firstly, we will demonstrate that
integer neural networks can’t approximate any continuous
function with arbitrarily small error. So we put our atten-
tion on finding a best approximation or a good approxi-
mation which our integer neural network could achieve. In
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this paper, we will show: (i) a good approximation could
be achieve by integer neural network; (ii) how to construct
the integer neural network for a good approximation?

In this section we discuss how our work relates to cur-
rent research trends. The rest of the paper is organized as
follows. Section 2 reviews some preliminary concepts and
definition that will be used at the following sections. Sec-
tion 3 expounds and proofs the main results. Finally, Sec-
tion 4 summarizes the main general results of the paper.

2. Preliminaries

A network is an acyclic graph which has several input
nodes, hide nodes and some output nodes. In this paper,
we focus on the network with one hide layer, so in our net-
work, the nodes were divided into three layer, the nodes
from different layer was connected by a line with a weight.
Each node (also called neuron) calculates a function of the
weighted sum of its m inputs as follows:

f(X) = σ(WT X + θ) (1)

Wheref(X) is the output of the node,WT is the weight
vector, X is the input vector,θ is the threshold of the
node and theσ(·) is the activation function. Here, without
loss of generality, assume that only one node in the output
layer, the neural network can be represent by the equation:

G(X) =
N∑

i=1

αiσ(WT
i X + θi) (2)

WhereG(X) is the output of the network,X is the input
of the network,αi is the gain of theith hide node.

Definition 1.A functionσ : R1 → R1 is called a sigmoid
function, if it satisfies

{
limx→−∞ σ(x) = 0
limx→+∞ σ(x) = 1 (3)

Definition 2.A functionσ : R1 → R1 is called a step func-
tion, if it satisfies

{
σ(x) = 0 x < 0
σ(x) = 1 x ≥ 0 (4)

Here, we can see that step function is a special form of
sigmoid function and is the most typical and the simplest
form.

Definition 3.The signal-to-noise ratio (SNR) of a network
is defined as:

SNR = 10× lg
‖f‖

‖f −G‖ (5)

Wheref is the target function,G is the neural network.

Definition 4.The p-norms of a measurable functionf from
(S,Σ, µ) is defined as:

{
‖f‖p = p

√∫
S
|f |p dµ < ∞ 1 ≤ p < ∞

‖f‖p = max (|f |) < ∞ p = ∞
(6)

Where(S, Σ, µ) be a measure space.

Definition 5.TheLp spaces are function spaces defined us-
ing natural generalizations of p-norms for finite-dimensional
vector spaces

Definition 6.f(x) is a continuous function on[a, b], for
anyx, y ∈ [a, b] if it satisfies

|f(x)− f(y)| ≤ M |x− y|α(0 < α ≤ 1) (7)

We sayf(x) ∈ LipMα , hereLipMα is theα exponentM
coefficient Lipschitz function class.

Definition 7.The symbolC[a, b]n represent n-dimension
continuous function space on[a, b]n.

Definition 8.The symbol±nbits represent n-bits integer
number between+(2n − 1) and−(2n − 1).

Definition 9.The symbol+nbits represent n-bits integer
number between+(2n − 1) and0.

Then we will establish the mathematical model for our net-
work which we will discuss in the following section. First
of all, we must choose a kind of function as the activa-
tion function. Sigmoid function is most widely used [4,
6,19]. But using the sigmoid function directly will make
some difficulty for the analysis, because the sigmoid func-
tion has many uncertain characteristics and we can’t use
the limit theory to simplify the problem [4,6,19] owing
to integer weights. So we use the step function firstly and
then try to analyze the relation between the sigmoid net-
work and the step network. Next we need a rule to mea-
sure the error of the network. In practical applications, we
always don’t care the absolute error, for example, if the
absolute error is 5 and the target function amplitude is 10,
or if the absolute error is 5 and the target function ampli-
tude is 10000, we can see the later system is more accurate
than the previous one. If the neural network was treated as
a signal system and the output was regarded as the super-
position of the noise and the signal. We can use the signal-
to-noise ratio (SNR) to describe the performance of our
neural network.

3. Main results

In this section, we begin to show our main results. First we
will show a simple result that many sigmoid active func-
tions can’t make the integer weight network approximate
any continuous function with arbitrarily small error. Let’s
see a kind sigmoid function:

NDF =
{

σ : σ(x) =
{

0 x ≤ 0
1 x ≥ 1 ;

}
(8)
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Theorem 1.The functions set

FSn =

{
N∑

i=1

αi × σ(WT
i X + θi) : θi, αi ∈ Z;

Wi ∈ Zn; X ∈ [0, 1]n; σ ∈ NDF

}

is not dense onC[0, 1]n for the‖ · ‖∞.

Proof.We can find a continuous functionf , let it meet the
condition:

f ∈ C[0, 1]n, f





0, 0, 0, · · · , 0︸ ︷︷ ︸

n





 = 0,

f





1, 1, 1, · · · , 1︸ ︷︷ ︸

n





 =

1
2

(9)

From (8) we can easily get the result:

ασ


WT


1, 1, 1, · · · , 1︸ ︷︷ ︸

n


 + θ


−

ασ


WT


0, 0, 0, · · · , 0︸ ︷︷ ︸

n


 + θ


 ∈ Z (10)

whereW ∈ Zn; θ ∈ Z; α ∈ Z;σ ∈ NDF. From (2)(10),for
any networkG we can get the following result:

G





1, 1, 1, · · · , 1︸ ︷︷ ︸

n





−G





0, 0, 0, · · · , 0︸ ︷︷ ︸

n







=
N∑

i=1


αiσ


WT

i


1, 1, 1, · · · , 1︸ ︷︷ ︸

n


 + θi




−αiσ


WT

i


0, 0, 0, · · · , 0︸ ︷︷ ︸

n


 + θi





 ∈ Z (11)

So,from (9)(11)

max




∣∣∣∣∣∣
G


1, 1, 1, · · · , 1︸ ︷︷ ︸

n


− f


1, 1, 1, · · · , 1︸ ︷︷ ︸

n




∣∣∣∣∣∣
,

∣∣∣∣∣∣
G


0, 0, 0, · · · , 0︸ ︷︷ ︸

n


− f


0, 0, 0, · · · , 0︸ ︷︷ ︸

n




∣∣∣∣∣∣


 ≥ 1

4
(12)

Then we can get the result

‖G− f‖∞ = max(|G(X)− f(X)|) ≥ 1
4

(13)

So the proposition holds.

Next, we will show a complexity result on theL2 function
space. Firstly, we construct a setCS = {〈a, b〉 : a, b is
coprime; a < b; a, b ∈ +nbits} and the|CS| is defined
the number of the elements ofCS; So we easily see that
|CS| < ∞. Here we sort the elements fromCS as follow-
ing:

0 <
a1

b1
<

a2

b2
< · · · < a|CS|−1

b|CS|−1
<

a|CS|
b|CS|

< 1 (14)

where〈ai, bi〉 ∈ CS; i = 1, 2, 3, · · · , |CS| − 1, |CS| − 1.
Then we construct a function set:

G′ =
{

g′0 = σ(x), g′|CS|+1 = σ(x− 1),

g′1 = σ(b1x− a1), g′2 = σ(b2x− a2), · · · ,

g′|CS| = σ
(
b|CS|x− a|CS|

)}
(15)

Whereσ is a step function.

Lemma 1.For any function as following:

f(x) =
n∑

i=1

αiσ(yix + θi) : αi ∈ R; yi, θi ∈ ±nbits;

σ is a step function(16)

on [0, 1]n can be represented by the linear combination of
functions fromG′ except several points.

Proof.For any functionsσ(yx + θ) : y, θ ∈ ±nbits on
[0, 1]1:

1.if y = 0, θ ≥ 0 thenσ(yx + θ) = g′0;
2.if y = 0, θ < 0 thenσ(yx + θ) = g′|CS|+1 except

x = 1;
3.if y > 0, −θ

y > 1 thenσ(yx + θ) = g′|CS|+1 except
x = 1;

4.if y > 0, −θ
y = 1 thenσ(yx + θ) = g′|CS|+1;

5.if y > 0, 0 < −θ
y < 1 thenσ(yx+θ) = g′i whereai

bi
=

−θ
y ;

6.if y > 0, −θ
y ≤ 0 thenσ(yx + θ) = g′0;

7.if y < 0, −θ
y ≥ 1 thenσ(yx + θ) = g′0;

8.if y < 0, 0 < −θ
y < 1 then σ(yx + θ) = g′0 −

g′i whereai

bi
= −θ

y exceptx = −θ
y ;

9.if y < 0, −θ
y = 0 thenσ(yx + θ) = g′|CS|+1 except

x = 0 andx = 1;
10.if y < 0, −θ

y < 0 thenσ(yx + θ) = g′|CS|+1 except
x = 1;

So we easily know that functions(16) can be represented
by the linear combination of function fromG′ except sev-
eral points.

Next, we get another function set
GS =

{
g0, g|CS|+1, g1, g2, · · · , g|CS|+1, g|CS|

}
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where




g0

g1

...
g|CS|−1

g|CS|
g|CS|+1




=




1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 −1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1
0 0 0 · · · 0 0 1




•




g′0
g′1
...

g′|CS|−1

g′|CS|
g′|CS|+1




(17)

for
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 0 · · · 0 0 0
0 1 −1 0 · · · 0 0 0
0 0 1 −1 · · · 0 0 0
0 0 0 −1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1 −1 0
0 0 0 0 · · · 0 1 −1
0 0 0 0 · · · 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0

So functions(16) also can be represented by the linear com-
bination of function fromGS except several points; in other
word, for anyf(x), we can find a linear combinationφ of
functions fromGS so that‖f − φ‖2 = 0.

Theorem 2.The functions set

NW =
{∑N

i=1 αiσ(yix + θi) : αi ∈ Z; yi, θi ∈ ±nbits
}

whereσ is a step function, for any continuous functiont(x) ∈
L2 on [0, 1]1 there exist aφ∗∗ ∈ NW let

‖t−φ∗∗‖2 ≤

√√√√√‖t‖22 −
|CS|+1∑

i=0

(∫ 1

0
t(x)gi(x) dx

)2

‖gi‖22 +
1
4

(18)

Proof.Firstly, for the inner productgi•gj =
∫ 1

0
gi(x)gj(x)

dx = 0 wherei 6= j and it is obvious that the elements in
setGS is linear independence. So from Lemma1 we get
the result thatGS is a group of orthogonal basis of the
function space:

GF′ =

{
n∑

i=1

αiσ(yix + θi) : αi ∈ R;

yi, θi ∈ ±nbits;σ is a step function}

For the target functiont(x) from the spaceL2. From I. P.
Natanson [18] results we can see the

φ∗ = [α0 α1 α2 · · · α|CS| α|CS|+1 ]




g0

g1

g3

...
g|CS|

g|CS|+1




(19)

is the best approximation element fromGF′ and(t−φ∗)•
gi = 0, where

αi =
gi • t

‖gi‖22 (20)

So we get the equation

‖t− φ∗‖22 = ‖t‖22 −
|CS|+1∑

i=0

(∫ 1

0
t(x)gi(x) dx

)2

‖gi‖22 (21)

Then we construct our network function

φ∗∗ =
[
round(α0) round(α1) · · · round(α|CS|−1)

round(α|CS|) round(α|CS|+1)
]




g0

g1

...
g|CS|−1

g|CS|
g|CS|+1




(22)

Whereround(·) is a function to integer and satisfy|round(x)−
x| ≤ 0.5. So,φ∗∗ ∈ NW and

|CS|+1∑

i=0

(αi − round(αi))
2 ‖gi‖22 ≤ 1

4

|CS|+1∑

i=0

‖gi‖22 =
1
4

(23)
Then

‖t− φ∗∗‖22 = ‖t− φ∗ + φ∗ − φ∗∗‖22

= ‖t− φ∗‖22 + 2(t− φ∗) • (φ∗ − φ∗∗) +

‖φ∗ − φ∗∗‖22

= ‖t− φ∗‖22 + ‖φ∗ − φ∗∗‖22

= ‖t− φ∗‖22 +
|CS|+1∑

i=0

(αi − round(αi)) gi

•
|CS|+1∑

i=0

(αi − round(αi)) gi

= ‖t− φ∗‖22 +
|CS|+1∑

i=0

(αi − round(αi))
2 ‖gi‖2

≤ ‖t− φ∗‖22 +
1
4

= ‖t‖22 −
|CS|+1∑

i=0

(∫ 1

0
t(x)gi(x) dx

)2

‖gi‖22 +
1
4

(24)
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So (18) holds.

From above theorem, we can get an error estimates for a
n-bits network, and then we want to know we need how
many neurons in the hidden layer. From the proof of the
theorem, we can see the number of the neurons related
with the coefficientαi and one functiongi(x) need two
neurons. So we need

⌈ |round(αi)|
2n − 1

⌉
× 2 (25)

neurons to implement theist item of φ∗∗.So, totally, we
need the number of neurons is

N -number2 =
|CS|+1∑

i=0

⌈ |round(αi)|
2n − 1

⌉
× 2 (26)

for implementingφ∗∗.
Next, we will show some results on theL∞ function

space. We define a symbolMS = max
(

ai+1
bi+1

− ai

bi

)
where

i = 0, 1, 2, · · · , |CS|.
Theorem 3.The functions set

NW =
{∑N

i=1 αiσ(yix + θi) : αi ∈ Z; yi, θi ∈ ±nbits
}

whereσ is a step function, a continuous functiont(x) ∈
L∞ on [0, 1]1 and ift(x) ∈ Lip 1

2MS
1 and equationt(x) =

c
2 : c ∈ Z have finite roots , we can get a functionφ∗ ∈
NW and let it satisfy

‖t− φ∗‖∞ ≤ 1 (27)

Proof.Firstly, for the target functiont(x),let
M = dmax (t(x))e andm = bmin (t(x))c,
then we get a sequence number

m = y0 < m +
1
2

= y1 < m + 2× 1
2

< · · · < yi

= m + i× 1
2

< · · · < M = y2(M−m) (28)

Then we use the line groupy = yi : i = 0, 1, 2, · · · , 2(M−
m) to intersectt(x) at a group pointsx1 < x2 < x3 <
· · · < xn wheren < +∞ because oft(x) = c

2 : c ∈ Z
have finite roots;Not losing general, letx1 > 0 andxn <
1, so we construct a points group

0 = x0 < x1 < x2 < · · · < xn < xn+1 = 1 (29)

on x-axis;and|t(xi) − t(xi+1)| = 1
2 : i = 1, 2, · · · , n −

1 becauset(x) is a continuous function; And fort(x) ∈
Lip 1

2MS
1, we can know

|t(xi)−t(xi+1)| ≤ 1
2MS

|xi−xi+1| ⇒ MS ≤ |xi−xi+1|
(30)

So there is at least one element ofCS in the interval
[xi, xi+1],get one element for every interval, we assume

those element sequence is0 <
a′1
b′1

<
a′2
b′2

<
a′3
b′3

< · · · <
a′n−1
b′n−1

< 1, we merge the same items then get the sequence

0 <
a∗1
b∗1

<
a∗2
b∗2

<
a∗3
b∗3

< · · · < a∗k
b∗k

< 1 (31)

And the points sequence have the property





∣∣∣t
(

a∗i
b∗i

)
− t

(
a∗i+1
b∗i+1

)∣∣∣ ≤ 1 i = 1, 2, 3, · · · , k − 1

∣∣∣t
(

a∗1
b∗1

)
− t (0)

∣∣∣ ≤ 1

∣∣∣t
(

a∗k
b∗k

)
− t (1)

∣∣∣ ≤ 1

(32)

Then we define a functionT (x, y) map fromR2 to Z as

T (x, y) =




dt(x)e if dt(x)e ≤ dt(y)e

dt(y)e if dt(x)e > dt(y)e
(33)

So we can construct a functionφ∗ ∈ NW as

φ∗(x) = T

(
0,

a∗1
b∗1

)
× [σ(x)− σ(a∗1x− b∗1)]

+T

(
a∗k
b∗k

, 1
)
× [σ(a∗kx− b∗k)− σ(x− 1)]

+
k−1∑

i=1

T

(
a∗i
b∗i

,
a∗i+1

b∗i+1

)
× [σ(a∗i x− b∗i )−

σ(a∗i+1x− b∗i+1)
]

(34)

For onex ∈ [0, 1]1, if x ∈
[

a∗i
b∗i

,
a∗i+1
b∗i+1

)
,then

φ∗(x) = T

(
a∗i
b∗i

,
a∗i+1

b∗i+1

)
(35)

Similarly whenx ∈
[
0,

a∗1
b∗1

)
and x ∈

[
a∗k
b∗k

, 1
]
.So ‖t −

φ∗‖∞ ≤ 1 holds.

Next we will concern the complexity of the network, as
proof above, every item need




∣∣∣T
(

a∗i
b∗i

,
a∗i+1
b∗i+1

)∣∣∣
2n − 1



× 2 (36)

neurons, so we need the number of neurons is

N -number∞ =




∣∣∣T
(

a∗1
b∗1

, 0
)∣∣∣

2n − 1



× 2+




∣∣∣T
(
1,

a∗k
b∗k

)∣∣∣
2n − 1



× 2 +

k−1∑

i=1




∣∣∣T
(

a∗i
b∗i

,
a∗i+1
b∗i+1

)∣∣∣
2n − 1



× 2 (37)
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Here if we use the SNR to measure the performance of
the network

SNR = 10× lg
‖f‖

‖f −G‖ ≥ 10× lg
‖f‖
1

= 10× lg ‖f‖
(38)

From (38), we can see that a good result could be achieved
if ‖f‖ is big enough. So in our application, there is a pro-
posal, we can enlarge our target function by a coefficient
then use the network to approximate it.

With the sigmoid active function, generally, the net-
work can perform the foregoing results when the bits num-
ber is large enough because of the limit equation which is
derived from the definition of sigmoid function:





limλ→∞ σ(λx + θ) = 1 x > 0
limλ→∞ σ(λx + θ) = 0 x < 0
limλ→∞ σ(λx + θ) = σ(θ) x = 0

(39)

whereσ is a sigmoid function.
For every neuron, there is an error corresponding, a

network error is the sum of those neurons error. So if the
number of neurons is great enough, the sigmoid network
would not get a reasonable approximation degree. Two
ways we can use to compensate the error. First we can use
even more bits. Second we can add neurons at some appro-
priate position. If we need quantitative analysis on the re-
lation among error, adding neurons and number of bits, we
could try to use the experimental and statistics methods for
specific sigmoid active function and get some useful statis-
tics results. In this paper we won’t to discuss this problem.
This problem and the sigmoid active function integer net-
work theoretical issues will be discuss in our further paper.

Then let’s see the multidimensional case. Firstly, we
construct an active function as following

σ (x1, x2, · · · , xn) =
{

1 1 ≥ xi ≥ 0 : i = 1, 2, 3, · · · , n
0 else

(40)
And the network output was described as following

G (x1, x2, · · · , xn) =
N∑

i=1

αiσ(w1ix1 − θ1i,

w2ix2 − θ2i, · · · , wnixn − θni) (41)

Here,(θ1i, θ2i, · · · , θni) is the threshold vector of theith
neuron,(w1i, w2i, · · · , wni) is the weight vector of the
ith neuron,αi is the gain of theith neuron . For every
one-dimension modal character, we can get correspondent
character in this modal, so we can use the above results
directly.

Another method, I.P.Natanson[18] had a result that the
set[0, 1]n and the set[0, 1]1 have the same cardinality, in
other word, we can find a one-one map from[0, 1]n to
[0, 1]1, an instance of these map could be found in I.P.
Natanson’s book [18], here we assume we can find a map
δ(·). If δ(·) is continuous, for a n-dimension continuous

functionF (X), there is a one-dimension function continu-
ousf(x) which satisfyf(δ(X)) = F (X). So we can con-
vert the n-dimension problem to a one-dimension problem.
There are two issues arising: 1) can we fine a continuous
map? 2) If we can’t find a continuous map, how to treat or
utilize those usable maps? We will put that content in our
further paper.

4. Conclusions

In this paper, we mainly analyzed the integer network us-
ing step active function, its performance and the construc-
tion method. We described the performance of n-bits net-
works by two theorems and concluded that an n-bits net-
work can achieve a good performance. Then we gave the
construction parameters by theN -number2 andN -number∞
. Finally we introduced some discussions about the sig-
moid function network and the n-dimension network. For
the sigmoid function network and the n-dimension net-
work, there is vast space remained for further study and
that is our main direction in further work. Neural network
would have more extensive applications in the engineering
fields if we have a strict theoretical system.
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