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Abstract: In this paper, we introduce fractional calculus into image inpainting and propose a new class of fractional-order variational
image inpainting models, in both space and wavelet domains, inspired by the works of Bai and Feng. The corresponding Euler-Lagrange
equations are given and proper numerical algorithm is analyzed. According to the simulations on several testing images, our algorithm
demonstrates better inpainting performance on some image details than original integral-order inpainting based on classic calculus.
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1. Introduction

Inpainting which is as ancient as art itself, is a technique
of applying undetectable modifications on images. For ex-
ample, removing the cracks and timestamp from old pho-
tos. Bertalmio et al. firstly introduced the image inpaint-
ing technique into the image processing[1]. Their main
idea is to propagate the surrounding laplacian information
along the isophotes into the inpainting domain. Chan and
Shen[2] obtained two new inpainting schemes based on
the celebrated total variation (TV) minimization model [3]
and the segmentation model of Mumford and Shah (MS)
[4]. After these well-known works, many image inpaint-
ing methods based on partial differential equations (PDEs)
have been developed. For example, Chan and Shen took
the curvature information into the mathematical model to
solve the problem of connectivity [5]. Bertalmio et al. de-
composed the image into two parts [6]. The structure part
is inpainted by the method of literature[1], and the texture
part is restored by texture synthesis technique [7]. Masnou
proposed a disocclusion method based on the continuation
of the level lines broken by the spots[8]. Bertalmio refor-
mulated the inpainting problem as a particular case of im-
age interpolation in which they intend to propagate level
lines [9]. Expressing this in terms of local neighborhoods
and using a Taylor expansion, he derived a third-order PDE
that performed inpainting. Chan et al. handled the wavelet
coefficients loss of images with TV model[20].

Recently, fractional-order PDEs have been studied in
computer vision. Cuesta proposed fractional-order linear
integro-differential equations which interpolated heat equa-
tions and wave equations using the Riemann-Liouville (R-
L) fractional derivative [10], while in literatures[11][12],
fractional-order scale spaces (α scale space) and the frac-
tional high-order linear filtering were introduced. Mathieu
et al. used fractional derivative to detect the image edges
[13]. Pu et al. designed the fractional derivative based fil-
ter to detect the texture details of images[14]. Zhang et
al. introduced fractional-order image inpainting into metal
artifacts reduction in CT images[17][18]. Bai and Feng de-
rived the fractional-order anisotropic diffusion model[16],
and they found that when the order was 1.8 or 2.2, the
performance was the best. Guidotti and Lambers proposed
two fractional-order anisotropic diffusion equations with
orders between 0 and 1[15]. The fractional derivative can
be treated as the generalization of the integer-order deriva-
tive. It has been studied by many mathematicians (For ex-
ample, Euler, Hardy, Littlewood, and Liouville)[19]. There
are several definitions which obtained the fractional deriva-
tive only using the integer-order derivative including: Riemann-
Liouville fractional derivative, Gr̈unwald-Letnikov (G-L)
fractional derivative and Caputo fractional derivative.

In this paper, we propose an image inpainting method
combined the TV model with fractional derivative called
fractional-order TV image inpainting model. The classi-
cal TV based inpainting scheme has a drawback while in-

∗ Corresponding author: e-mail: maybe198376@gmail.com

c© 2012 NSP
Natural Sciences Publishing Cor.



300 Y. Zhang et al : A Class of Fractional-order Variational Image ...

painting the texture parts of the images: the texture will
be smoothed out just as another high frequency noise. The
new equation can be treated as a regularization of TV based
inpainting scheme. We compared our method with the clas-
sical TV inpainting method. According to the simulation
results, we got better visual effects and Peak Signal to
Noise Ratio(PSNR).

In next section, we will give the details of our model.
In Section 3, we will show some simulation results. And
the conclusion will be in Section 4.

2. Fractional-order variational image
inpainting models

2.1. Review of TV inpainting model and TV
wavelet inpainting model

Assume a standard image model as

u(x) = u0(x) + n(x) (1)

whereu0 is the origin image,n is additive noise andu is
the contaminated image with noise. LetΩ the inpainting
(open) domain with its boundary∂Ω, andE an extended
domain surrounding the∂Ω, so that∂Ω lies in the inte-
rior of E

⋃
Ω. The image inpainting model based on total

variation proposed by Chan and Shen[2] is as following:

min Jλ[u] =
∫

E∪Ω

|∇u|dxdy +
λΩ

2

∫

E

|u− u0|2dxdy(2)

The first term is the regularizing term, to inpaint damaged
domains while the second term in the energy is a data
fidelity term that can keep important features and sharp
edges when noise exists.λΩ is scale function tuning the
weight of two terms. According to the variational theory,
the Euler-Lagrange equation corresponding to (2) is

−∇ · (|∇u|−1∇u) + λΩ(u− u0) = 0 (3)

with the Neumann boundary condition∂u/∂n = 0 on

∂Ω, whereλΩ = λ · 1E(x, y) =
{

λ, (x, y) ∈ E
0, otherwise

. This

model is inspired by the classic total variation denoising
model[3].

We assume that the size of the images isn×m. Let us
denote the standard orthogonal wavelet transform ofu0(x)
by

u0(α, x) =
∑

j,k

αj,kψj,k(x), j ∈ Z, k ∈ Z2. (4)

Packet loss during transmission in compressed form
causes loss of wave coefficients ofu0(x) on the index
region I, i.e., {αj,k}’s with (j, k) ∈ I represent those
wavelet components missing or damaged. The task is to
restore the lost coefficients.

Total variation wavelet models proposed by Chanet
al.[20] are followed.
For noisy images, we have

min
βj,k

F (u, z) =
∫
R2 |∇xu(β, x)| dx +

∑
(j,k)

λj,k(βj,k − αj,k)2, (5)

whereu(β, x) has the wavelet transform:

u(β, x) =
∑

j,k

βj,kψj,k(x), β = (βj,k), j ∈ Z, k ∈ Z2,

and the parameterλj,k is zero if (j, k) ∈ I, the miss-
ing index set; otherwise, it equals a positive constantλ to
be properly selected.I is the inpainting index region. The
Euler-Lagrange equation corresponding to (5) is

−
∫

R2
∇ ·

[ ∇u

|∇u|
]
ψj,kdx + 2λj,k(βj,k − αj,k) = 0 (6)

2.2. Our proposed models

Motivated by the previous works[15][16][21], we propose
a novel fractional-orderp-Laplace TV inpainting model
for spatial domain damaged images. The fractional-order
p-Laplace TV inpainting model for noiseless images (Model
I) is:

min J [u] =
1
p

∫

E∪Ω

|∇αu|pdxdy, α ∈ R+, p ∈ [1, 2] (7)

and the fractional-orderp-Laplace TV inpainting model
for noisy images (Model II) is:

min Jλ[u] = 1
p

∫
E∪Ω

|∇αu|pdxdy+
λΩ

2

∫
E
|u− u0|2dxdy, α ∈ R+, p ∈ [1, 2]

(8)

with the Neumann boundary condition∂u/∂n = 0 on∂Ω,

whereλΩ = λ · 1E(x, y) =
{

λ, (x, y) ∈ E
0, otherwise

.

In (7) and (8), we use the fractional-order gradient in-
stead of the integral-order gradient. In literature[2], the
authors got good results in inpainting non-texture parts,
but the integral-order TV inpainting model brings artifacts
which can cause bad visual effect. The fractional-order
gradient in the PDEs scheme has showed better restoration
ability[15][16].

For the images with damaged wavelet coefficients, we
present a new fractional-orderp-Laplace TV wavelet in-
painting model inspired by literature[22]. Likewise, there
are two models for both noiseless and noisy images. The
fractional-orderp-Laplace TV wavelet inpainting model
for noiseless images (Model III) is:

min
βj,k:(j,k)∈I

J(u, z) = 1
p

∫
R2 |∇α

xu(β, x)|pdx,

α ∈ R+, p ∈ [1, 2],
(9)
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whereu(β, x) has the wavelet transform:

u(β, x) =
∑

j,k

βj,kψj,k(x), β = (βj,k), j ∈ Z, k ∈ Z2,

and subjects to the constraint:

βj,k = αj,k, (j, k) /∈ I,

whereI is the inpainting index region.
The fractional-orderp-Laplace TV wavelet inpainting

model for noisy images (Model IV) is:

min
βj,k

Jλ(u, z) = 1
p

∫
R2 |∇α

xu(β, x)|pdx+
∑

(j,k)

λj,k(βj,k − αj,k)2, α ∈ R+, p ∈ [1, 2] (10)

and the parameterλj,k is zero if (j, k) ∈ I, the missing
index set; otherwise, it equals a positive constantλ to be
properly selected. Compared to original work[20], we use
thep-Laplace and fractional-order gradient instead of the
normal total variation term and the integral gradient.

Because all the models we proposed have the frac-
tional gradient and there is no Euler-Lagrange equation for
the fractional calculus, it is necessary to deduce fractional
Euler-Lagrange equation.

We use the Model I to deduce the equation. To get the
extremum of the energy function, the necessary condition
is δJ = 0 according to the variation method.

Let

φ (a) = 1
p

∫
E∪Ω

|∇αu + a∇αη|pdxdy

=
∫

E∪Ω
r (|∇αu + a∇αη|) dxdy

(11)

wherer(s) = sp/p, p ∈ [1, 2] andη (x, y) ∈ C∞ (E ∪Ω)
is any test function. So

δJ = ∂
∂aφ (a) |a=0 =∫

E∪Ω
r′ (|∇αu + a∇αη|) Dα

x u+aDα
x η

|∇αu+a∇αη|D
α
x ηdxdy|a=0

+
∫

E∪Ω
r′ (|∇αu + a∇αη|) Dα

y u+aDα
y η

|∇αu+a∇αη|D
α
y ηdxdy|a=0

=
∫

E∪Ω
r′ (|∇αu|)

(
Dα

x u
|∇αu|D

α
x η + Dα

y u

|∇αu|D
α
y η

)
dxdy

(12)

and∇α = (Dα
x , Dα

y ).
Let Dα∗

x andDα∗
y to be the adjoint ofDα

x andDα
y and

the definition is
{

Dα∗
x [u (x, y)] = Dα

x [u (−x, y)]
Dα∗

y [u (x, y)] = Dα
y [u (x,−y)] .

According to the theory of adjoint operator in functional
analysis[33], we can get

δJ =
∫

E∪Ω

[
Dα∗

x

(
r′ (|∇αu|) Dα

x u
|∇αu|

)

+Dα∗
y

(
r′ (|∇αu|) Dα

y u

|∇αu|
)]

ηdxdy.
(13)

For the arbitrariness ofη, the Euler-Lagrange equation is

Dα∗
x

(
r′ (|∇αu|) Dα

x u
|∇αu|

)

+Dα∗
y

(
r′ (|∇αu|) Dα

y u

|∇αu|
)

= 0.
(14)

Define the fractional divergence operatordivα(·) as

divα (u) = (−1)α (
Dα∗

x u + Dα∗
y u

)
. (15)

Whenα = 1, we can easily obtain

div(u) = Dxu + Dyu,

so it is obvious that the fractional divergence operator is a
generalization of integral divergence operator in its general
sense. With the definition of fractional divergence opera-
tor, we getr(·) (as formerly defined) and (14) into (15) and
obtain

(−1)α
divα

(
∇αu

|∇αu|2−p

)
= 0. (16)

The Euler-Lagrange equations of Model I to Model IV
are
Model I:

(−1)α
divα

(
∇αu

|∇αu|2−p

)
= 0, α ∈ R+, p ∈ [1, 2], (17)

Model II:

(−1)α
divα

(
∇αu

|∇αu|2−p

)
+ λΩ(u− u0) = 0,

α ∈ R+, p ∈ [1, 2],

λΩ = λ · 1E(x, y) =
{

λ, (x, y) ∈ E
0, otherwise

,

(18)

Model III:

− ∫
R2 (−1)α

divα
(

∇αu
|∇αu|2−p

)
ψj,kdx = 0,

α ∈ R+, p ∈ [1, 2], (j, k) ∈ I,
(19)

and Model IV:

− ∫
R2 (−1)α

divα
(

∇αu
|∇αu|2−p

)
ψj,kdx

+2λj,k(βj,k − αj,k) = 0,
α ∈ R+, p ∈ [1, 2],

λj,k = λ · 1I(j, k) =
{

0, (j, k) ∈ I
λ, otherwise

.

(20)

Our method can be seen as a generalized image in-
painting framework with both integral- and fractional-order
and it is easy to extend to other image inpainting with
PDEs methods, even the denoising models, such as CDD[5],
BSCB[1], Mumford-Shah-Euler model[4], TV-Stokes equa-
tion[23], et al. The reason we give the fractional-order TV
image inpainting model here is that the TV model which
is both used in inpainting and denoising is representative
and the discrete algorithm is relatively simple.

In this paper, an adaptive factorp is proposed based on
the local geometry and gradient features of images. Thep
is defined as followed:

p = 1 +
curvα

curvα + |∇αu|
wherecurvα is defined below, as the fractional curvature
formula for level lines ofu.
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3. Numerical algorithm

There are many numerical algorithms[24][25][26] avail-
able to get the minimizations of the proposed models. The
computation used for current work has been mainly based
on the gradient descent method, which is not the most ef-
ficient. We primarily aim at the discretization of the frac-
tional framework and exploring the inpainting feasibility
and qualities of the models rather than their numerical al-
gorithms.

We get the gradient flow by introducing an artificial
time variable and solving the equations followed to steady
states for Model I to IV respectively,

ut = (−1)α
divα

(
∇αu

|∇αu|2−p

)
, (21)

ut = (−1)α
divα

(
∇αu

|∇αu|2−p

)
+ λΩ(u− u0), (22)

(βj,k)t = −
∫

R2
(−1)α

divα

(
∇αu

|∇αu|2−p

)
ψj,kdx, (23)

and

(βj,k)t = − ∫
R2 (−1)α

divα
(

∇αu
|∇αu|2−p

)
ψj,kdx

+2λj,k(βj,k − αj,k).
(24)

The equations mentioned above are deduced from the
Euler-Lagrange Equations (17) to (20) and the parameters
here are same.

Firstly, we describe the discretization of the fractional
gradient operator∇α with Grümwald-Letnikov definition[19]
in fractional calculus as the mask we proposed in litera-
ture[27]. We also explained the reason why we chose the
masks defined by Grümwald-Letnikov definition in it.

α-order Gr̈umwald-Letnikov definition based fractional
differential can be expressed by

Dα
G−Ls(x) = dα

[d(x−a)]α s(x)
∣∣∣
G−L

= lim
N→∞

( x−a
N )

−α

Γ (−α)

N−1∑
k=0

Γ (k−α)
Γ (k+1) × s

(
x− k(x−a

N )
) (25)

where the duration of signals(x) is [a, x], α is any real
number, ands(x−k((x−a)/N)) is the discrete sampling.

WhenN is big enough, one can get rid of the limits
symbol and rewrite (25) as

dα

dxα s(x)
∣∣
G−L

∼= x−αNα

Γ (−α)

N−1∑
k=0

Γ (k−α)
Γ (k−1) s

(
x + αx

2N − kx
N

)
.

(26)

To get the value ofs (x + αx/2N − kx/N), we use La-
grange 3-point interpolation withs(x + x/N − kx/N),
s(x− kx/N), ands(x− x/N − kx/N). Then we get

dα

dxα s(x) ∼= x−αNα

Γ (−α)

N−1∑
k=0

Γ (k−α)
Γ (k+1)

×
[
sk + α

4 (sk−1 − sk+1) + α2

8 (sk−1 − 2sk + sk+1)
]
.

(27)

Whenk = n ≤ N−1, from (26), the anteriorn+2 approx-
imate backward difference of fractional partial differential
respectively on negative x-and y-axis, are expressed as

∂αs(x,y)
∂xα

∼= a1s(x + 1, y) + a2s(x, y)
+a3s(x− k, y) + a4s(x− n + 1, y) + a5s(x− n, y),

(28)

and

∂αs(x,y)
∂yα

∼= a1s(x, y + 1) + a2s(x, y)
+a3s(x, y − k) + a4s(x, y − n + 1) + a5s(x, y − n),

(29)

where

a1 = α
4 + α2

8 ,

a2 = 1− α2

2 − α3

8 ,

a3 = 1
Γ (−α)

n−2∑
k=1

[
Γ (k−α+1)

(k+1)!

(
α
4 + α2

8

)

+Γ (k−α)
k! (1− α2

4 ) + Γ (k−α−1)
(k−1)!

(
−α

4 + α2

8

)]
,

a4 = Γ (n−α−1)
(n−1)!Γ (−α)

(
1− α2

4

)
+ Γ (n−α−2)

(n−2)!Γ (−α)

(
−α

4 + α2

8

)
,

a5 = Γ (n−α−1)
(n−1)!Γ (−α)

(
−α

4 + α2

8

)
.

(30)

For simplicity, we only use four directions fractional-order
masks for calculation, including positive x- and y-coordinate,
negative x- and y-axis. LetDα

x+, Dα
x−, Dα

y+ andDα
y− de-

note the four directions calculation, see Fig.1. It is easy to
say that bigger the mask size is, a higher degree of accu-
racy we will get, but the computational time will be con-
suming. Considering the analysis in literature[27], we fix
the size of mask to 5.

The coefficients of masks in Fig.1 are:





Cs−1 = α
4 + α2

8 ,

Cs0 = 1− α2

2 − α3

8 ,

Cs1 = − 5α
4 + 5α2

16 + α4

16 ,
...

Csk
= 1

Γ (−α)

[
Γ (k−α+1)

(k+1)!

(
α
4 + α2

8

)

+Γ (k−α)
k! (1− α2

4 )
+Γ (k−α−1)

(k−1)!

(
−α

4 + α2

8

)]
,

...

Csn−2 = 1
Γ (−α)

[
Γ (n−α−1)

(n−1)!

(
α
4 + α2

8

)

+Γ (n−α−2)
(n−2)! (1− α2

4 )

+Γ (n−α−3)
(n−3)!

(
−α

4 + α2

8

)]
,

Csn−1 = Γ (n−α−1)
(n−1)!Γ (−α)

(
1− α2

4

)

+ Γ (n−α−2)
(n−2)!Γ (−α)

(
−α

4 + α2

8

)
,

Csn = Γ (n−α−1)
(n−1)!Γ (−α)

(
−α

4 + α2

8

)
.

(31)
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Figure 1 Masks of four directions. (a)Dα
x+; (b) Dα

x−; (c) Dα
y+;

(d) Dα
y−

So we get the discrete representation of the most im-
portant item:

curvα = divα
(

∇αu
|∇αu|2−p

)
=

Dα
x−

(
Dα

x+u(|Dα
x+u|2+|Dα

y+u|2+ε
) 2−p

2

)

+Dα
y−

(
Dα

y+u(|Dα
x+u|2+|Dα

y+u|2+ε
) 2−p

2

) (32)

whereε is a small positive number to prevent dividing by
zero.

4. Simulations

In our simulations, we use the Peak Signal to Noise Ra-
tio(PSNR) to quantify the performance of inpainting algo-
rithms:

PSNR = 10× log10

(
2552

‖u− u0‖22

)
.

Bigger the value of PSNR is, better the performance is.
The test256×256 grayscale images include peppers, lena,
house and barbara.

The proper selection of the fractional orderα depends
on the image to inpaint. We have test the order from 0.1 to
3.0 with step 0.1 on every testing images and we find that
α ≈ 1.8 can get the best results on Model I,α ≈ 1.6 on

Model II, α ≈ 1.2 on Model III and IV. So in this paper,
the order selection is based on the simulation experience
and the theoretical analysis and derivation will be our fol-
lowing works.

4.1. Model I

Figure 2 Inpainting results comparison of TV and Model I
on peppers. (a) Original image; (b) Mask; (c) Damaged im-
age (PSNR=15.8213); (d) TV inpainting (PSNR=36.1233); (e)
Model I (PSNR=38.0236,α = 1.8); (f) Zoom of red block of
(d); (g) Zoom of red block of (e);

Fig.2 shows the result of text removal on peppers com-
pared with original integral-order TV inpainting using Model
I. All the parameters are set as proposed [2]. For the in-
painting performance, when we choose the proper param-
eter, we got a better PSNR than integral-order TV model.

c© 2012 NSP
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For the visual effect, focusing on the Fig. (2f) and Fig.
(2g), we can see that at the edge between two peppers,
integral-order TV can not connect the broken edge per-
fectly, but our method got a satisfactory result and the edge
was reconnected as expected. The reason is that the orig-
inal TV inpainting model is second-order and whenα =
1.8, the Model I is close to third-order.

Table 1 Results of other three test images(PSNR)

Damaged image TV inpainting Our method
Lena 15.8834 34.4429 36.2158
House 16.4599 35.8064 36.7274
Barbara 14.9861 32.7660 32.7759

The inpainting results with the same damaged mask,
Fig.4.1, of other three images are displayed in the Tab.1(α
remains 1.8). While inpainting lena and house, the PSNR
values of Model I are bigger than original TV inpainting
model, but there is no obvious difference while dealing
with barbara. The reason is that barbara is full of texture
details and the PDE methods have intrinsic flaw to handle
this, but we can combine some other ideas to recover it,
such as nonlocal method[28].

4.2. Model II

Fig.3 shows the result of scratch removal on noisy lena
compared with original integral-order TV inpainting us-
ing Model II. We can see that the scratches on the images
are almost repaired by both integral- and fractional-order
TV inpainting model, but when zooming out the face of
lena, there are still traces on the right eye and left eye-
brow in Fig. (3e), and stair effect appeared [29][30][31]
on lena’s cheek. From Fig. (3f), there is no noticeable in-
painting consequence and no stair effect on lena’s face.
The noise removal ability of fractional-order PDE model
is analyzed in [16][15][32].

4.3. Model III

We use Daubechies 7-9 biorthogonal wavelets with sym-
metric extensions, which is used in standard JPEG2000 for
lossy compression. We use the WaveLab[34] to implement
the forward and the backward biorthogonal wavelet trans-
forms. The size of coarsest subband is32 × 32. The pa-
rameters of original TV wavelet inpainting model are set
as proposed[20]. We applied Model III to lena with 10%
wavelet coefficients randomly loss, see Fig.4.

Because the loss of coefficients is on all four subband,
including LL, HH, LH and HL, there are not only block
loss, but also oscillations. From Fig.4, we can see both
original TV wavelet inpainting model and Model III elim-
inate the small oscillations, but in Fig. (4c), blocks near

Figure 3 Inpainting results comparison of TV and Model
II on lena. (a) Original image; (b) Damaged image with
σ = 20% Gaussian Noise (PSNR=17.1900); (c) TV inpainting
(PSNR=24.2052); (d) Model II (PSNR=25.1206,α = 1.6); (e)
Zoom of lena’s face of (c); (f) Zoom of lena’s face of (d);

the lena’s hair are not removed completely. Although in
Fig. (4d), there are blocks at the same position, the edges
are obvious and the PSNR is bigger. When the loss of the
coefficients gets larger, the difference of inpainting per-
formance between integral- and fractional-order model is
fainter.

4.4. Model IV

In this part, we compared the original TV wavelet with
Model IV while dealing noisy image. In Fig.5, the noisy
level is σ = 20%, and loss of coefficients is50%. From
Fig. (5b), we can find that the most details are lost, and it
is hard to get any useful information without the deep im-
pression of famous lena. After processed by both model,
the results are in Fig. (5c) and Fig. (5d). The main con-
tent is repaired by inpainting, but the performances of two
models are still different. The larger blocks caused by co-
efficients loss can not be removed by both methods, but
the size of them is smaller in Model IV than original TV

c© 2012 NSP
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Figure 4 Inpainting results comparison of TV wavelet and
Model III on lena. (a) Original image; (b) Received image with
10% wavelet coefficients loss (PSNR=17.1900); (c) TV inpaint-
ing (PSNR=24.2052); (d) Model III (PSNR=25.1206,α = 1.4)

wavelet inpainting model and the PSNR is larger too. To
give a complete demonstration about the comparison of
different, we draw the curves for PSNR improvements v.s.
the percentage of lost coefficients forσ = 20% Gaussian
noisy image in Fig.6. As we can see, Model IV outper-
forms original TV wavelet inpainting model in almost ev-
ery coefficients loss level, except 0.9.

5. Conclusion

In this paper we propose four image models based on frac-
tional total variation. The models can both deal with space
and wavelet domain damages for images with or without
noise. In simulation part, we show that our models are bet-
ter than original inpainting models based on integral-order
total variation in both visual effect and PSNR. The rela-
tionship between fractional order and the inpainting per-
formance will be our following work, and an adaptive frac-
tional model will be very useful in practical applications.
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