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Abstract: In this paper, we introduce the notion of a logistic groupoid on the real nunibeasd show that, given a groupoiiR, )
with some conditions, there exists a group@id, ®) such that R, ) is the logistic groupoid of X, ®).
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1. Introduction 2. Preliminaries

A (ordinary) d-algebra ([6, 7]) is a non-empty seX with
a constan® and a binary operatiori  ” satisfying the

The general study of binary operations on sets has pm[ollowmg axioms.

duced a substantial literature which considers various typeg¢A)z x z = 0,

of structures via sets of axioms, suchB6'K-algebras, (B)0*xz =0,

BCI-algebras, pseudBC K-algebrasd-algebras MV - Czxy=0andyxxz =0implyx =y forall z,y € X.
algebras ([1, 2, 4, 5, 6, 7]) among others. For set such as the

real number®, it is possible to go even further and con- A BCK-algebra is al-algebraX satisfying the fol-
sider groupoid$R, ), wherez * y satisfies certain condi- lowing additional axioms:

tions in terms of the standard structureRfs a field. For (D) (z%y) * (x#2)) % (2y) =0

example(R, x) is a linear groupoid iftxy = ax+ Sy +7, 7 -

whereq, 3, v are constants, a quadratic groupoid, a cubic (E)z * (z*y))xy=0forallz,y,z e X.

groupoid, etc.. Similarly(R, x) is a bounded groupoid if An algebra(X, +,0) is said to be gre-d-algebraif it

L <zxy<Uforall z,y € R, the literature along these T o
lines is more limited. It is quite clearly an area where there.SatISers the conditions (A) and (B). An algel{us, «, 0)

is much that can be discovered. The results obtained bes said to be aquasid-_algebraif it satisﬁes the cond_itions
low mostly concern a type of real groupai., ) where (A) and (C). The notion ofl-alglebras is a generallzatlon
L = f% andU = % with the additional restriction that of BCK—aIgebras, and the notion of quashigebras is a
zxy+y*xx = 0forall z,y € R, i.e., the groupoid is generalization oBCI-algebras.
anti-commutative. For reasons made clear below, we have  Example 2.1.([3]) Let X := {0,1,2,---}. Definex *
named such real groupoids logistic groupoids. It appears, := 0 if = is even. Letr xy := max{x,y} —min{z, y} if
that as an example of what is possible along the lines wer andy are both odd and let«y := z+y+1 if z is odd and
have indicated as well as intrinsically, these groupoids arg; is even. Thefdxz = 0, since 0 is even. Alsa; xz = 0 if
of good interest. xiseven, and:+z = max{x,x}—min{z,z} =z—2 =0

if 2 is odd. Thug X, x,0) is a pred-algebra.

Note that Example 2.1 is neithetlaalgebra nor a quasi-
d-algebra, sinc@ x4 = 0 = 4 x 2, but2 # 4.
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Example 2.2.([3]) Let X := [0,00) and [z] be the
least integer greater that letx x y := 0 if « is rational,
x xy := [max{z,y} — min{z,y}] if both z andy are
irrational;z x y := [« + y + 1] if = is irrational andy is
rational. Also,x x x = 0, either because is rational or
because it is irrational anfinax{z, 2} — min{x,2}] =
[0] = 0. Of course0 * x = 0 since 0 is rational. This
proves thaf X, , 0) is a pred-algebra.

Note that Example 2.2 is neithetlealgebra nor a quasi-
d-algebra, sinc@ x4 = 0 = 4 % 3, but3 # 4.

J. S. Han et. al ([3]) introduced the notion of a strong

d-algebra as follow: An algebr@X; «,0) is said to be a
strongd-algebra([3]) if it satisfies (A), (B) and (C) where

(CO)Fif x xy =y x z, thenz = y.

An algebra(X;x*,0) is said to be astrong quasi-
algebra([3]) if it satisfies (A) and (C)

Obviously, every strong-algebra is ad-algebra, but
the converse need not be true in general.

Example 2.3.([3]) If X = [0,00) and ifz x y :=
max{0,z — y}, then(X;x,0) is an ordinaryd-algebra,
sincex x y = 0 meansy < z, andz < y,y < 2 means
x = y. We claim that(X, ,0) is a strongd-algebra. In
fact,ifxxy = yxxandifz < y,thenyxz =y —a > 0,
so thatr —y > 0 as well, which is an impossibility. Hence
(X;%,0) is a strongi-algebra.

In the following we show an ordinarj-algebra which
is not a strongl-algebra.

Example 2.4.([3]) Let R be the set of all real numbers
and definecxy := (z—y)-(x—e)+e, z,y,e € R, where
“ . 2 and “o_
real numbers. Thenxz =e;exx =e;xxy =yxx =¢
yields(x —y)-(x—e) =0, (y—z)-(y—e) =0andz =y
orr=e=y,lie.,x=y,ie,(R,xe)isad-algebra.

However,(R, x, e) is not a strongl-algebra. Ifx xy =
yrz e (@—y)-(z—e)+e=(y—z) (y—e)t+e
S@-y)(z-e)=—-(@-y) (y—e e @@y (v-
ety—e)=0&(z—y) - (r+y—2¢) =0 (z=y
orz +y = 2¢), thenthere exist = e+ aandy = e —
such thatr +y = 2e, i.e.,zxy = y*x andz # y. Hence,
axiom (C)* fails and thus thel-algebra(R, , ) is not a
strongd-algebra.

3. The Logistic Transformation

” are the ordinary product and subtraction of

xz,y € R. We denote the notatioty, by v/ if there is no
confusion.

Example 3.1.Let (R, ) be a groupoid defined by

—lifz <y,
TkY = 0if z =y,
lifz>y
foranyz,y € R. |fx<y,thenx>ky——1y>kx—1
sothat:cvy_ m—% = (1+62 If x = y, then

xy = yxx = 0so0 thatr v vy = 0. Ifx >y,then
rxy=1landy*xxr=—-1sothatr vy = 5 ( Hence

1+€2)
we obtain
2
2(11 oy ifa <y,
T\ Y = 0 if z = Y,
(1+ z) if x>y

for any z,y € R. The groupoid(R, /) is the logistic
groupoid of(R, x). It follows that—% < z 7y < 3 and
rvy+ysvex=0foranyz,y € R.

The following theorem shows that a groupoid with a
special condition can be the logistic groupoid of a groupoid.

Theorem 3.2.Given a groupoid R, x) with —1 <

THhy < %, Vz,y € R, if we define a binary operatior®”
onR which satisfies

1-2
x@y—y@m::ln[(m*y)}

then(R,, ) is a logistic groupoid ofR,, ®), i.e.,*x = V.

Proof. If we let o« := 2 ® y — y ® z, thene® =

_ _ 1-2(z*y) _
eT®YTY®T — 1+2(»L*y) and2(e®+1)(zxy) = 1—e. Itfol-
—e® o e:c@y_ey@:: o eI@y
lows thatrxy = Q(HQQ) = YOV Ter®E) — FEvFovEE

% =TVe ¥ for anyz,y € R. This proves thatR, %) is
the logistic groupoid of R, ®). O

Remarkl. The groupoidR, /) in Example 3.1 is the
logistic groupoid of( R, ) satisfying the condition:—% <
Y < % foranyzx,y € R. If we define a binary operation
“@®” on R which satisfies the condition:
1—2(xxy)
1+2(z*y)

asin Theorem 3.2, then it satisfies the following condition:

x@y—y@z:—ln{

One way to generate quagialgebras over the real num- 2if v <y,

bers is via the following mechanism. Given a groupoid ,. g y—y®ax = 0if z =y,

(R, %), we define an algebrR, v/..) as follows: -2 ifz>y
el*y 1

TNVl = erT*yY + ey*T o 5

for anyz,y € R. We call (R, v/.) thelogistic groupoid
of (R, *). Obviously, we have-1 < z v/, y < 3 forany

foranyz,y € R. Infact, ifx < y, thenx v y = 2(11*74_“’:%
andhence ®y —y®x=2.1fz =y, thentyy =0
and hence: ®y —y ®x = 0. Similarly, if z > y, then

T\ Y= 2(1+62)andfﬂ®y y@l—*Q
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2. Define a binary operationx,” on R by

:c*ay::{

foranyz,y € R wherea is a non-zero element @. By

—1l+aifzr<y,
aifz =y,
14+a ifx>y

routine calculations we obtain that the logistic groupoid

(R,v+,) is equal to(R, v/,) for any non-zerax € R,
i.e., (R,v.«,) is the logistic groupoid of any groupoid
(R, *,) by Theorem 3.2 and Example 3.1.

Proposition 3.3.Let (R, 57) be a logistic groupoid of a
groupoid(R, x). Then(R, %) is commutative, i.ex xy =
y*xifandonly ifx <7y = 0 foranyz,y € R.

Proof. If we assume that xy = y*m wherez, y € R.
Thenzvyy = < 1= 2201 =0.Conversely,

eT*Y f ey - - 281‘*y

if we assume that 7 y = O then2e™Y = e*V 4 e¥*®
and hence®™V = ¢¥*®, Since the functior?® is a one-one
function, we obtainc xy =y xxz. O

Corollary 3.4. Let(R
0 for anyx € R.

,*) be a groupoid. Thensy x =

Proof. Sincez « © = x x « for anyx € R, it follows
from Proposition 3.3 that \y x = 0. O

Proposition 3.5.Let (R
y+y7x=0foranyx € R

,*) be a groupoid. Then 7

Proof. Straightforward. O

Proposition 3.6.Let (R, v7) be a logistic groupoid of
a groupoid R, x). Then(R,, ) satisfies the condition (€C)
ifand only if (R, </) satisfies the condition (C)

Proof. (=) If z x y = y * x wherez,y € R, then
7y = 0 = y<7/x by Proposition 3.3. By assumption, we
obtainz = y, proving that(R, ) satisfies the condition
©).

(<) Ifzvy =y xwherez,y € R, then0 =
rVy+yv e =2z y by Proposition 3.5, and hence
rvy =0 =y x. By Proposition 3.3, we obtain *

y = y * x. By assumption, we obtain = y, proving that
(R, v) satisfies the condition (C) O

Proposition 3.7.Let (R, /) be the logistic groupoid
of a groupoid R, ) and letz,y € R. If x xy = 0, then
1*2(IV@/)]
1+2(zvy) -

Proof.Letz x y = 0. Thenz v y = = — 5 and
1+ev® = (zyy+1)7!, whencey x z = In[(z v y +
— 1-2(x
D7 -1 =53] o

Proposition 3.8.If (R, *) be a strong quasi-algebra,
then(R, /) is a strong quasi-algebra.

y*a::ln[

Proof. It follows immediately from Corollary 3.4 and
Proposition 3.6. O

Let (R, 57) be alogistic groupoid of a groupoidR,, ).
The groupoid R, *) is said to bdogistically associativéf
(R, ) is associative.

Proposition 3.9. If the groupoid(R, x) is commuta-
tive, then it is logistically associative.

Proof. If the groupoid(R, x) is commutative, them sy
y = 0 foranyz,y € R by Proposition 3.3. This means
that(z v y)vz=0=2v (yvz2) foralz,y,z € R.
O

Note that the converse of Proposition 3.9 need not be

true in general.

Example 3.10.Givenz € R, if we define a may :

r—|z|ifz—|z] <3
q(z) = {x - %x% OtherWLiSJe ’
thenq(3.75) = 3.75 — [3.75] = —0.25 and¢(2.25)
2.25 — [2.25] = 0.25. If nis an integer thera]( )
n—|n] = 0,andn—[n] = Oaswell. f—3 <z < 3,then
x— |z| =z ie,q(z) =z Henceq( (x )) =q(x ) z.
It is easy to see that ifR, v.) is a |OgIS'[IC groupoid of
any groupoid R, e), then—— <TVely <3 Lvr,y € R
andq(z Ve y) =T Ve y

Define a binary operation<* on R by

ray = {l‘(y—Q(y)) if |2 > 3

(z —q(@))(y — q(y)) otherwise
Letz,y,z € Rwith [z] > 1. Thenz«(yv2) = z(yvz—
q(yvz)) = 2(yvz—yvz) = 0and(yvz)xz = (yVz—
a(yv2)(@—q()) = (yvz—yvz)(z—q(x)) = 0. Hence
x*x(ywz) =0 = (ywvz)*z. By applying Proposition 3.3,
we obtainz v/ (y v z) = 0. Letz, y, 2 € Rwith |z| < 1.
Thenz « (y v 2) = (z —q@)(y vz —qlyvz) =
(x —q(z))(y v z —y v z) = 0. By applying Proposition
3.3, we obtainc sy (y/ 2z) = 0. Hencex sy (y </ z) = 0 for
anyz,y,z € R. Also (z v y) v 2 = 0 whence(z v y) v
z =125 (y z) and(R, ) is logistically associative. But
(R, %) is not commutative, sincg.6 = 2.9 = —0.36 and
2.9%3.6 = —1.16.

Theorem 3.11.If the groupoid(R, ) is logistically
associative, then

vy vez=0=2v(yv=2)

forall z,y,z € R

Proof. For anyz,y,z € R, by applying Proposition
3.5, weobtaizvy) vz =2v(yvz) = —[(yvz)val
for all z,y,z € R. Moreover, we obtaifz vV y) v z =
~v@Evyl=-lve)vy =yv(zva)
(y v z) v Hence(y v 2) Vo = —[(y v 2) vl and
(yv2)va=0forall z,y, z € R, proving the theorem.

Note that, if (R, %) is logistically associative, by ap-
plying Proposition 3.3 and Theorem 3.11, we obtair
(yvz)=@Wvz)xzforalz,y,zeR.

Let(R, /) be alogistic groupoid of a groupoidR,, *).
The groupoid R, ) is said to bdogistically Jordanif

(zvy)vezt@zver)vyt@yvz)ve=0

© 2012 NSP
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foranyx,y,z € R.

Corollary 3.12. If the groupoid(R,, ) is logistically
associative, then it is logistically Jordan.

Proof. It follows immediately from Theorem 3.11.0

Let (R, /) be alogistic groupoid of a groupoid,, x).
The groupoid R, ) is said to bdogistically anti-associative
if

vy vz=—lv(yv?)
foranyx,y,z € R.

Corollary 3.13. If (R, *) is logistically associative,
then it is logistically anti-associative as well.

Proof. It follows immediately from Theorem 3.11.0
Let (R, /) be alogistic groupoid of a groupoi®,, *).
The groupoid R, ) is said to bdogistically medialif
vy vyvz)=0
foranyzx,y,z € R.

Corollary 3.14. If (R, *) is logistically associative,
then it is logistically medial.

Proof. By applying Theorem 3.11, we haveyy (y v
z) = 0forall z,y,z € R. If we replacer by z 7 y then

(rvy)vywvz) =0 0O

Theorem 3.15.f (R, x) is logistically anti-associative,
then

vy vez=@zvr)vy=(@yvz)ve

foranyzx,y, z € R.

logistically associative. By Corollary 3.14 , we obtain that
(R, *) is logistically medial. O

Proposition 3.18.Let (R, ) and(R,, e) be two groupoids
with the same logistic groupoi®R., ). If we define a bi-
nary operatiofd onR. by

dy:=xxy—zey, Vr,yeR,

then(R, O) is commutative and hence it is logistically as-
sociative.

Proof. Since(R, ) and(R, ) have the same logistic
groupoid(R,, ), we obtain

HencexOy —yOx = (zxy —zey) — (yxx —yex) =
(xxy—y*x)—(xey—yex) = 0, proving thattOy = yOz,
i.e., (R,0) is commutative. It follows from Proposition
3.9 that(R, O) is logistically associative. O

Remark.3. Note that(R, ) does not havéR,, x) as
its logistic groupoid in Proposition 3.18. In Example 3.1
and Remark 2, we see th@R, x) and (R, *;) have the
same logistic groupoi@R, v/..). Letaly := z xy — x *;
y,Ve,y € R.If 2 < gy, thenzOy = -1 -0 = —1. If
z=y,thenzOy =0-1= —1.If z > y, thenzOy =
1-2=-1,ie,20y = —1 foranyz,y € R. Hence

Ty = 7Pmif:ym — 1 =o0foranyz,y € R. This
proves that R, ) does not havéR, 5/.) as its logistic

groupoid.

1+2(z*y)

x*y—y*m:xoy—yox:ln{l_%lﬂ*y)

Of course, Proposition 3.18 does not provide a solution
(R, %) for a given groupoid R, x) which is its prescribed
logistic groupoid. The answer to this problem is contained

Proof.Let (R, x) be alogistically anti-associative groupdidTheorem 3.19.

Givenz,y, z € R, by Proposition 3.5, we have 7 y) v
z=—[zv@vyl=(Evr)vyand(z vy vz =
“rvval=@Fyveve O

Corollary 3.16. If (R, ) is both logistically Jordan
and logistically anti-associative, then it is logistically as-
sociative.

Proof. If it is logistically Jordan, theriz </ v) v 2z +
(2v2)Vy+(yve)ve =3[(zvy) vz =0 and(zv
y) v z =0forall z,y, z € R. Since(R, ) is logistically
anti-associative, we have= (xvVy)vz = —[zV(2VY)]
and hence v/ (x 7 y) = 0 foranyz, y, z € R. It follows
that(R, ) is logistically associative. O

Proposition 3.17.If (R, *) is logistically anti-associative
andz <7y = y<y « foranyz,y € R, then it is logistically
medial.

Proof.Givenz,y,z € R, (zvy)Vz = (yva)vz
—“yv@vad@zvy vz=2v(@vy)
v (yve)=—levy v =—[(yvz)va) =
y v (r v z2). Hencey v (z 7 2) = —[y v (z v 2)] and
yv (xsyz)=0forall z,y,z € R, proving thatR, x) is

Theorem 3.19.Given a groupoid R, x) with —% <
zxy < 3 andz xy +yx = 0, if we define a groupoid

(R, @) by
m[

x@y::{

wherea € R, then(R, ) is the logistic groupoid ofR,, ®).

1-2(x*y)
14+2(z*y)

A
=y
a

}if:cséy,
ifz=y

Proof.Givenz,y € R, if z # y, sincexxy+yxxz = 0,
then we have

yo@ux

Hence
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1-2
TOQY—yY@r = x ln{ (w*y)}
T—y

1+ 2(zxy)
_xgylnF?(w*y)}

1+2(zxy)
_ 1—2(xxy)
‘”‘[Hz(x*y)]'

If x =y, sincez*xy+y*xz =0, we haver xx = 0

1—2(z*x)
14+2(zxx)

andhencén[ }lnlOaam@x

x ® x. By applying Theorem 3.2 we prove th@., ) is
the logistic groupoid of R, ®). O

Corollary 3.20. Given a groupoidR, ) with —3 <
rxy < 2 andzxy+y«*az = 0, if (R,*) is the lo-
gistic groupoid of R, ®) described in Theorem 3.19, then
(R, *) is the logistic groupoid of a groupo(@., ¢), where
rzeoy :=x@y+ 0y andzOy = yOx for anyz,y € R.

Proof. Sincexdy = yOz for anyx, y € R, we have
zey—yex=(z@y+aly) - (yo©z+yl)
=(z@y—yoz)+ (z0Oy — yOx)
=r@Qy—yo.

By applying Theorem 3.19, we obtain th@, x) is the
logistic groupoid of a groupoidR.,e). O

Note that this is an analogue to the problem of solving

a first order linear differential equation.

Theorem 3.21.Let (R, ) and(R,, e) be groupoids. If
we define a binary operatioiI” on R by Oy := x x
y —x ey, Ve, y € R and if this operation is commutative,
then the logistic groupoid diR., ) is equal to the logistic
groupoid of(R, e).

Proof.Let (R, v/.) and(R, v7.) be logistic groupoids
of groupoidgR,, ) and(R,, e), respectively. Then we have
Tk Y = ey — % andz Vel = e”y 1

eTeY feyer D

THY PEEY
for any x, yee ﬁe SincexzUy = yUz, we obtainz * y —
yxx=zey—yex Hencer v, y= —5 e

) ) ' TvTerT 2 T
Trerrwe — 3 = Txewevwer — 3 — & Ve y. Hence
(R,v.«) and (R,v/.) have the same logistic groupoid.
0
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