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Abstract: In this paper, the modified simplest equation method is successfully implemented to find travelling wave solutions of the
coupled Higgs equation and the Maccari system. This method is direct, effective and easy to calculate, and it is a powerful mathematical
tool for obtaining exact travelling wave solutions of the coupled Higgs equation and Maccari system and can be used to solve other
nonlinear partial differential equations in mathematical physics.
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1 Introduction

Consider the following coupled Higgs equation

utt −uxx + |u|2u−2uv = 0,

vtt + vxx − (|u|2)xx = 0. (1)

Tajiri obtained N-soliton solutions to Eq. (1)in [1]. Zhao
constructed more general traveling wave solutions of
Eq.(1) in [2].
Recently, Attilio Maccari derived a new integrable
(2+1)-dimensional nonlinear system [3]

iut +uxx +uv = 0,

vt + vy +(|u|2)x = 0. (2)

The integrability property was explicitly demonstrated
and the Lax pairs were also obtained. Zhao also
constructed more general traveling wave solutions of
system Eq. (2) in [2].
In this work we apply the modified simplest equation
method [4-10] to the coupled Higgs equation and Maccari
system. The modified simplest equation method is one of
the most powerful and direct methods for constructing
solutions of nonlinear partial differential equations is the
modified simplest equation method.

2 Modified simplest equation method

The modified simplest equation method is based on the
assumptions that the exact solutions can be expressed by
a polynomial in F ′

F , such thatF = F(ξ ) is an unknown
linear ordinary equation to be determined later. This
method consists of the following steps:

Step 1. Consider a general form of nonlinear partial
differential equation (PDE)

P(u,ux,ut ,uxx,uxt , · · ·) = 0. (3)

Assume that the solution is given byu(x, t) =U(ξ ) where
ξ = x+ ct. Hence, we use the following changes:

∂
∂ t

(.) = c
∂

∂ξ
(.),

∂
∂x

(.) =
∂

∂ξ
(.), (4)

∂ 2

∂x2 (.) =
∂ 2

∂ξ 2 (.).

and so on for other derivatives. Using (4) changes the PDE
(3) to an ODE

Q(U,U ′
,U ′′

, · · ·) = 0. (5)
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where U = U(ξ ) is an unknown function,Q is a
polynomial in the variableU and its derivatives.

Step 2. We suppose that Eq. (5) has the following formal
solution:

U(ξ ) =
N

∑
i=0

Ai(
F ′

F
)i
, (6)

where ai are arbitrary constants to be determined such
that AN 6= 0, while F(ξ ) is an unknown function to be
determined later.

Step 3. We determine the positive integerN in (6) by
balancing the highest order derivatives and the nonlinear
terms in Eq.(5).

Step 4. We substitute (6) into (5), we calculate all the
necessary derivativesU ′

,U ′′
, · · · and then we account the

function F(ξ ). As a result of this substitution, we get a

polynomial of F ′(ξ )
F(ξ ) and its derivatives. In this

polynomial, we equate with zero all the coefficients of it.
This operation yields a system of equations which can be
solved to findAi andF(ξ ). Consequently, we can get the
exact solution of Eq.(3).

3 Application the modified simplest equation
method

In this section, we study the coupled Higgs equation and
the Maccari system using the modified simplest equation
method.

3.1 Coupled Higgs equation

Using the wave variables

u = eiθU(ξ ), v =V (ξ ), θ = px+ rt, ξ = x+ ct.(7)

Substituting (7) into (1), we have

(c2−1)U ′′+(p2− r)U −2UV +U3 = 0,

(8)

(c2+1)V ′′−2(U ′)2−2UU ′′ = 0.

Integrating the second equation in the system and
neglecting the constant of integration we find

(c2+1)V =U2
. (9)

Substituting (9) into the first equation of the system and
integrating we find

(c4−1)U ′′+(c2+1)(p2− r2)U +(c2−1)U3 = 0, (10)

where prime denotes differentiation with respect toξ . By
balancing the highest order derivative termU ′′ with the

nonlinear termU3 in (10), we obtainN = 1 in (6). So we
assume that Eq.(10) has solution in the form

U(ξ ) = A0+A1(
F ′

F
), A1 6= 0. (11)

Using (11), we obtain

U3 = A3
0+3A2

0A1(
F ′

F
)+3A0A2

1(
F ′

F
)2+A3

1(
F ′

F
)3
, (12)

U ′′ = A1(
F ′′′

F
− F ′F ′′

F2 +2(
F ′

F
)3). (13)

Substituting (11) to (13) into Eq. (10) and setting the
coefficients ofF j( j = 0,−1,−2) to zero, we obtain

(c2+1)(p2− r2)A0+(c2−1)A3
0 = 0 (14)

(c4−1)A1F ′′′+(c2+1)(p2− r2)A1F ′

+ 3(c2−1)A2
0A1F ′ = 0 (15)

−3A1(c
4−1)F ′F ′′+3(c2−1)A0A2

1F ′2 = 0 (16)

2(c4−1)F ′3+(c2−1)A3
1F ′3 = 0 (17)

Eqs. (14) and (17) directly imply following solutions:

A0 =±

√

(c2+1)(p2− r2)

1− c2 , A1 =±i
√

2(c2+1)

Thus, Eqs. (15) and (16) become

(c4−1)F ′′′−2(c2+1)(p2− r2)F ′ = 0, (18)

F ′′− i

√

2(p2− r2)

1− c2 F ′ = 0. (19)

By substituting Eq. (19) into Eq. (18) we get

F ′′′− i

√

2(p2− r2)

1− c2 F ′′ = 0. (20)

The general solution of Eq. (20) is

F(ξ ) = a0+a1ξ +a2e
i

√

2(p2−r2)
1−c2 ξ

whereai(i = 0,1,2) are arbitrary constants.
Thus, we have

U(ξ ) = ±
√

c2+1(

√

p2− r2

1− c2

+ i
√

2
a1+ ia2

√

2(p2−r2)
1−c2 e

i

√

2(p2−r2)
1−c2 ξ

a0+a1ξ +a2e
i

√

2(p2−r2)
1−c2 ξ

),

V (ξ ) = (

√

p2− r2

1− c2

+ i
√

2
a1+ ia2

√

2(p2−r2)
1−c2 e

i

√

2(p2−r2)
1−c2 ξ

a0+a1ξ +a2e
i

√

2(p2−r2)
1−c2 ξ

)2
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Now, the exact solution of Eq. (1) has the form

u(x, t) = ±ei(px+rt)
√

c2+1(

√

p2− r2

1− c2

+ i
√

2
a1+ ia2

√

2(p2−r2)
1−c2 e

i

√

2(p2−r2)
1−c2 (x+ct)

a0+a1(x+ ct)+a2e
i

√

2(p2−r2)
1−c2 (x+ct)

),

v(x, t) = (

√

p2− r2

1− c2

+ i
√

2
a1+ ia2

√

2(p2−r2)
1−c2 e

i

√

2(p2−r2)
1−c2 (x+ct)

a0+a1(x+ ct)+a2e
i

√

2(p2−r2)
1−c2 (x+ct)

)2

If a1 = 0 anda0 = a2 = 1, we have

u(x, t) = ±ei(px+rt)

√

(c2+1)(p2− r2)

1− c2

× tan(

√

p2− r2

2(1− c2)
(x+ ct))

v(x, t) =
p2− r2

1− c2 tan2(

√

p2− r2

2(1− c2)
(x+ ct))

3.2 Maccari system

We next consider the Maccari system (2). Let us assume
the travelling wave solution of (2) has the form

u = eiθU(ξ ), v =V (ξ ), θ = px+qy+ rt,

ξ = x+ y+ ct. (21)

Substituting (21) into (2), we have

U ′′− (r+ p2)U +UV = 0,

(c+1)V ′+2UU ′′ = 0. (22)

Integrating the second equation in the system and
neglecting the constant of integration we find

−(c+1)V =U2
. (23)

Substituting (23) into the first equation of the system and
integrating we find

(c+1)U ′′− (c+1)(r− p2)U −U3 = 0, (24)

where prime denotes differentiation with respect toξ . By
using (6) and balancingU ′′ terms withU3 in (24) gives

m+2= 3m,

so that
m = 1.

So we assume that Eq.(24) has solution in the form

U(ξ ) = A0+A1(
F ′

F
), A1 6= 0. (25)

Using (25), we obtain

U3 = A3
0+3A2

0A1(
F ′

F
)+3A0A2

1(
F ′

F
)2+A3

1(
F ′

F
)3
, (26)

U ′′ = A1(
F ′′′

F
− F ′F ′′

F2 +2(
F ′

F
)3). (27)

Substituting (25) to (27) into Eq. (24) and setting the
coefficients ofF j( j = 0,−1,−2) to zero, we obtain

−(c+1)(r− p2)A0−A3
0 = 0 (28)

(c+1)A1F ′′′− (c+1)(r− p2)A1F ′−3A2
0A1F ′ = 0 (29)

−3(c+1)A1F ′F ′′−3A0A2
1F ′2 = 0 (30)

2(c+1)A1F ′3−A3
1F ′3 = 0 (31)

Eqs. (28) and (31) directly imply following solutions:

A0 =±
√

(c+1)(p2− r), A1 =±
√

2(c+1).

Thus, Eqs. (29) and (30) become

F ′′′−2(p2− r)F ′ = 0, (32)

F ′′+
√

2(p2− r)F ′ = 0. (33)

By substituting Eq. (33) into Eq. (32) we get

F ′′′+
√

2(p2− r)F ′′ = 0. (34)

The general solution of Eq. (34) is

F(ξ ) = a0+a1ξ +a2e−
√

2(p2−r)ξ

whereai(i = 0,1,2) are arbitrary constants.
Thus, we have

U(ξ ) = ±
√

c+1(
√

p2− r

+
√

2
a1−a2

√

2(p2− r)e−
√

2(p2−r)ξ

a0+a1ξ +a2e−
√

2(p2−r)ξ
),

V (ξ ) = −(
√

p2− r

+
√

2
a1−a2

√

2(p2− r)e−
√

2(p2−r)ξ

a0+a1ξ +a2e−
√

2(p2−r)ξ
)2
.

Now, the exact solution of Eq. (2) has the form

u(x,y, t) = ±eiθ√c+1(
√

p2− r

+
√

2
a1−a2

√

2(p2− r)e−
√

2(p2−r)(x+y+ct)

a0+a1(x+ y+ ct)+a2e−
√

2(p2−r)(x+y+ct)
),

v(x,y, t) = −(
√

p2− r

+
√

2
a1−a2

√

2(p2− r)e−
√

2(p2−r)(x+y+ct)

a0+a1(x+ y+ ct)+a2e−
√

2(p2−r)(x+y+ct)
)2
.
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If a1 = 0 anda0 = a2 = 1, we have

u(x, t) = ±ei(px+qy+rt)
√

(c+1)(p2− r)

× tanh(

√

p2− r
2

(x+ y+ ct)),

v(x, t) = (r− p2) tanh2(

√

p2− r
2

(x+ y+ ct)).

Conclusion

In this paper, the modified simplest equation method is
applied successfully for solving the coupled Higgs
equation and the Maccari system. The results show that
this method is efficient in finding the exact solutions of
nonlinear differential equations.
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