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Abstract: In the present investigation, we have studied the influence of heat and chemical reactions on blood flow through anisotropi-
cally tapered elastic artery with overlapping stenosis. The nature of blood in small arteries are analyzed mathematically by considering
it as micropolar fluid. The analysis is carried out for an artery with a mild stenosis. Analytical expressions for the axial velocity, the
stream function, the circumferential microrotation, the temperature distribution, the concentration of fluid, the resistance impedance
and the wall shear stress distribution have been computed numerically and the results were studied for various values of the physical
parameters, such as the the coupling numberN , the micropolar parameterm, the taper angleφ, the maximum height of stenosisδ, the
Soret numberSr, the Brickmann numberBr, the degree of anisotropy of the vessel walln, the initial circumferential viscoelastic stress
Tθo, the circumferential Poisson’s ratioσθ and the contribution of the elastic constraints to the total tetheringK. The obtained results
for different values of parameters into the problem under consideration show that the magnitude of the axial velocity is higher for a
Newtonian fluid than that for a micropolar fluid also the transmission of axial velocity curves through a free tube is substantially higher
than that through the tethered tube. Further the temperature profile increase rapidly for small values of micropolar parameter (micropo-
lar spin parameter) while the concentration profile has an opposite behavior. The trapping bolus increase in size as the coupling number
increases (the particle size increases) while the volume of the bolus decreases by increasing of micropolar parameter (micropolar spin
parameter). Finally the size of trapped bolus for the stream lines in the free isotropic tube is smaller than those in the tethered tube.

Keywords: Micropolar fluid, anisotropic artery, mild stenosis, the degree of anisotropy.

1. Introduction

Stenoses in the arteries of mammals are a common oc-
currence and for many years researchers have endeavored
to model the flow of blood through stenosed arteries ex-
perimentally and theoretically. The deposition of choles-
terol and proliferation of the connective tissues in the ar-
terial wall form plaques which grow inward and restrict
the blood flow. In order to have a fuller understanding of
the development of these diseases, an accurate knowledge
of the mechanical properties of the vascular wall together
with the flow characteristics of blood are indispensable.
Thus relevant information is deemed to be of great help
in the treatment of vascular diseases and also to bioengi-

neers who are engaged in the design and construction of
improved artificial organs. Perhaps the actual cause of ab-
normal growth in an artery is not completely clear to the
theoretical investigators but its effect over the cardiovascu-
lar system has been determined by studying the flow char-
acteristics of blood in the stenosed area. Although the ap-
plicability of a purely mechanical model for such a physio-
logical problem has obvious limitations, vascular rheology
together with hemodynamic factors are predominant in the
development and progression of arterial stenosis [1].

The theory of micropolar fluid due to Eringen [2] is
a subclass of microfluids. In the micropolar theory a part
from the classical velocity field, the microrotation vec-
tor and the gyration parameter are introduced to inves-

∗ Corresponding author: e-mail: khmekheimer@yahoo.com

c© 2012 NSP
Natural Sciences Publishing Cor.



282 Mekheimer et al : Influence of heat and chemical reactions on blood flow ...

tigate the kinematics of microrotations. The micropolar
fluid, e.g., liquid crystals, suspensions and animal blood
etc, consists of randomly oriented bar-like elements or dumb-
bell molecules and each volume element has microrotation
about its centroid, in addition to translatory motion in an
average sense. The micropolar fluid theory deviates from
the classical Navier-Stokes model of viscous fluid, regard-
ing the suspenance of couple stress in the fluid and the non
symmetry of the stress tensor. The micropolarity of the
fluid was found to be prominent in tubes of small radius
whereas in larger tubes it was hardly perceptible. The mi-
cropolar fluid is considered to the model of the blood flow
in small arteries and the calculation of theoretical velocity
profiles is observed in good agreement with experimental
data.

Recently, the study of the effects of heat and chem-
ical reactions on blood has become quite interesting to
many researchers both from the theoretical and experimen-
tal point of view because the quantitative prediction of
blood flow rate and heat generation are of great importance
for diagnosing blood circulation illness and for the nonin-
vasive measurement of blood glucose. An understanding
of convection heat transfer in non-Newtonian fluids inside
pipes is crucial to the design of several types of thermal
equipment. From this viewpoint, heat transfer problems of
this type have been investigated by a large number of re-
searchers [3–10].

The important contributions of recent years to the topic
are referenced in the literature [11–14]. Many of researches
about arteriosclerotic development indicate that the studies
are mainly concerned with the single symmetric and non-
symmetric stenoses while the stenoses may develop in se-
ries (multiple stenoses) or may be of irregular shapes or
overlapping or of composite in nature. Some studies con-
sidered an overlapping stenosis in the blood vessel seg-
ment. Chakravarty and Mandal [15] noted that the prob-
lem becomes more acute in the presence of an overlapping
stenosis in the artery instead of a mild one. The effect of
vessel tapering is another important factor that was consid-
ered. Chakravarty and Mandal [16] formulated the prob-
lem on tapered blood vessel segment having an overlap-
ping stenosis. Ismail et al. [17] study the power-law model
of blood flow through an overlapping stenosed artery where
an improved shape of the time-variant stenosis in the ta-
pered arterial lumen is given and the vascular wall de-
formability is taken to be elastic (moving wall). Recently,
Mekheimer et. al. [18] study the effect of induced mag-
netic field on blood flow through an anisotropically tapered
elastic arteries with overlapping stenosis in an annulus.

Many recent researches have studied the effect of heat
and mass transfer on the flow of blood but in all of these
studies the effect of motion of the arterial wall when it is
subjected to inertial forces, surface forces and the forces
of constraint representing the reactions of the surrounding
connective tissues have been neglected. In this paper, we
interest with studying the effect of elastic wall properties
on the flow of micropolar fluid (as a blood model) through
an artery with overlapping stenosis. The problem is first

modeled and the non-dimensional governing equations are
formulated. The non-dimensional governing equations in
the case of mild stenosis and the corresponding bound-
ary conditions are prescribed then solved analytically for
the axial velocity and the circumferential microrotation,
the temperature distribution and the concentration of fluid.
The obtained results have been discussed for various val-
ues of the problem parameters. Also the contour plots for
the stream function are discussed. Finally, the main finding
of the results are summarized as a concluding remarks.

2. Formulation of the problem

Consider an incompressible micropolar fluid of viscosityµ
and densityρ flowing through a tube of finite lengthL with
overlapping stenosis. The tube material is being treated as
anisotropic linear viscoelastic. Let(r, θ, z) be the coordi-
nates of a material point in the cylindrical polar coordinate
system wherez- axis is taken along the axis of the artery
while r, θ are along the radial and circumferential direc-
tions respectively. Further, we assume thatr = 0 is taken
as the axis of the symmetry of the tube. The heat and mass
transfer phenomenons is taken into account by giving tem-
peratureT1 and concentrationC1 to the wall of the tube,
while at the center of the tube we are considering symme-
try condition on both temperature and concentration. The
geometry of the elastic (moving wall) arterial wall of the
time-variant overlapping stenosis for different taper angles
(see Fig. 1) is written mathematically as [17]

R(z, t) = [(mz + Ro)− δ cosφ

Lo
(z − d){11− 94

3Lo
(z − d)

+
32
L2

o

(z − d)2 − 32
3L3

o

(z − d)3}]Ω(t),

d ≤ z ≤ d +
3Lo

2
(1)

= (mz + Ro)Ω(t) otherwise

whereR(z, t) denotes the radius of the tapered arterial seg-
ment in the constricted region,Ro is the constant radius of
the normal artery in the non-stenotic region,φ is the angle
of tapering,3Lo

2 is the length of overlapping stenosis,d is
the location of the stenosis,δ cos φ is taken to be the crit-
ical height of the overlapping stenosis andm = (tan φ)
represents the slope of the tapered vessel. We can explore
the possibility of different shapes of the artery viz, the con-
verging tapering (φ < 0), non-tapered artery (φ = 0) and
the diverging tapering (φ > 0)[19]. The time-variant pa-
rameterΩ(t) is taken to be

Ω(t) = 1− b(cos ωt− 1) exp[−bωt], (2)

whereb is a constant,ω represents the angular frequency
of the forced oscillation andt is the time.
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Figure 1 Schematic diagram of overlapping stenosed artery.

The equations governing for unsteady flow of an in-
compressible micropolar fluid in the absence of body force
and body couple are

∇.V = 0, (3)

ρ(
∂V

∂t
+ V.∇V ) = −∇p + k∇× V + (µ + k)∇2V, (4)

ρj(
∂w

∂t
+ V.∇w) = −2kw + k∇× V − γ(∇×∇× w)

+(α + β + γ)∇(∇.w), (5)

wherep is the fluid pressure,µ andk are the coefficients of
shear and vortex viscosities,α, β andγ are the respective
coefficients of viscosities,V is the velocity vector,w is the
microrotation vector andj is the microgyration parameter.
Further, the material constantsµ, k, α, β andγ satisfy the
following inequalities [20]

2µ + k ≥ 0, k ≥ 0, 3α + β + γ ≥ 0, γ ≥ |β|. (6)

The energy equation is defined as follow

ρcp(
∂T

∂t
+ V.∇T ) = Φ + F∇2T, (7)

andΦ is the frictional heating can be written by

Φ = 2µ[(
∂Vr

∂r
)2 +

1
2
(
∂Vr

∂z
+

∂Vz

∂r
)2 + (

∂Vz

∂z
)2]. (8)

It should be mentioned that the mass concentration equa-
tion can be found in the book by Bejan [21] in the form

(
∂C

∂t
+ V.∇C) = D∇2C +

DFT

Tm
∇2T, (9)

whereVr andVz are the velocity components inr andz
directions respectively,T is the temperature,C is the con-
centration of fluid,F denotes the thermal conductivity,cp

is the specific heat at constant pressure,Tm is the temper-
ature of the medium,D is the coefficients of mass diffu-
sivity andFT is the thermal-diffusion ratio.

The governing equations of motion for the arterial wall
when it is subjected to inertial forces, surface forces and

the forces of constraint representing the reactions of the
surrounding connective tissues, are given by [1,22–24]

Mo
∂2ξ

∂t2
+ Cl

∂ξ

∂t
+ Klξ = −µ(

∂Vz

∂r
+

∂Vr

∂z
)|r=Ro

+
∂η

∂z
(
Tto − Tθo

Ro
) +

Eth

1− σθσt
(
σθ

Ro

∂η

∂z
+

∂2ξ

∂z2
) (10)

Mo
∂2η

∂t2
+ Cr

∂η

∂t
+ Krη = (p− 2µ

∂Vr

∂r
)|r=Ro

+
η

a2
Tθo + Tto

∂2η

∂z2
− Eθh

Ro(1− σθσt)
(

η

Ro
+ σt

∂ξ

∂z
), (11)

in which Mo = ρoh + Ma whereρo andh are the mass
density and thickness of the arterial wall respectively.(ξ, η)
represent the displacement components of the vessel wall
along the axial and radial directions respectively while
(Tto, Tθo) are the initial respective viscoelastic stress com-
ponents acting along the longitudinal and the circumferen-
tial directions.Kl, Cl andMa represent (per unit area) the
spring coefficient, the frictional coefficient of the dashpot
and the additional mass of the mechanical model respec-
tively in the longitudinal tethering andKr, Cr are those in
the radial direction.Eθ andEt are Young’s moduli in the
circumferential and longitudinal directions, respectively,
σθ andσt are the corresponding Poisson’s ratios.

The boundary conditions are:

Vr = 0,
∂Vz

∂r
= 0,

∂T

∂r
= 0,

∂C

∂r
= 0,

Vz and νθ are finite at r = 0, (12)

Vr =
∂η

∂t
, Vz =

∂ξ

∂t
, νθ = 0 [25],

T = T1, C = C1 on r = R(z, t). (13)

Since the flow is axisymmetric, all the variables are inde-
pendent ofθ. Hence, for this flow let the velocity vector is
given byV = (Vr, 0, Vz) and the microrotation vector
w = (0, νθ, 0). We introduce the following non-dimensional
variables:

r = Ror
′, z = Loz

′, ω =
c

Lo
ω′, ξ = Loξ

′,

η = Loη
′, Vr =

δc

Lo
V ′

r , Vz = cV ′
z , R = RoR

′,

t =
Lo

c
t′, p =

cLoµ

R2
o

p′, j = R2
0j
′, νθ =

c

R0
ν′θ,

Mo = ρRoM
′
o, Cl = ρcC ′l , Cr = ρcC ′r, h = Roh

′,

Kl =
ρc2

Ro
K ′

l , Kr =
ρc2

Ro
K ′

r, Tto = ρc2RoT
′
to,

Tθo = ρc2RoT
′
θo, Et = ρc2E′

t, Eθ = ρc2E′
θ,

T = T1 + (To − T1)Θ, C = C1 + (Co − C1)Σ, (14)

wherec is the velocity averaged over the section of the
tube with radiusRo.
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To proceed, we non-dimensionalize Eqs. (3-5) and (7-
11) by using Eq. (??), the non-dimensional governing equa-
tions after dropping the dashes can be written as:

δ∗(
∂Vr

∂r
+

Vr

r
) +

∂Vz

∂z
= 0, (15)

Reδ
∗ε3(

∂Vr

∂t
+ δ∗Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
) = −∂p

∂r
+

ε2

1−N

(−N
∂vθ

∂z
+ δ∗(

∂2Vr

∂r2
+

1
r

∂Vr

∂r
− Vr

r2
+ ε2 ∂2Vr

∂z2
)), (16)

Reε(
∂Vz

∂t
+ δ∗Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
) = −∂p

∂z
+

1
1−N

(
N

r

∂(rνθ)
∂r

+
∂2Vz

∂r2
+

1
r

∂Vz

∂r
+ ε2 ∂2Vz

∂z2
), (17)

jReε(1−N)
N

(
∂νθ

∂t
+ δ∗Vr

∂νθ

∂r
+ Vz

∂νθ

∂z
) =

−2νθ + (δ∗ε2 ∂Vr

∂z
− ∂Vz

∂r
) +

2−N

m2

[
∂

∂r
(
1
r

∂(rνθ)
∂r

) + ε2 ∂2νθ

∂z2
], (18)

ε2Mo
∂2ξ

∂t2
+ εCl

∂ξ

∂t
+ Klξ =

− ε

Re
(
∂Vz

∂r
+ δ∗ε2 ∂Vr

∂z
)|r=1 + ε

∂η

∂z
(Tto − Tθo)

+ε
Eth

1− σθσt
(σθ

∂η

∂z
+ ε

∂2ξ

∂z2
), (19)

ε2Mo
∂2η

∂t2
+ εCr

∂η

∂t
+ Krη =

1
Re

(p− 2δ∗ε2 ∂Vr

∂r
)|r=1 + Tθoη + ε2Tto

∂2η

∂z2

− Eθh

1− σθσt
(η + εσt

∂ξ

∂z
), (20)

Reε(
∂Θ

∂t
+ δ∗Vr

∂Θ

∂r
+ Vz

∂Θ

∂z
) = 2Ec(ε2δ∗2(

∂Vr

∂r
)2

+
1
2
(ε2δ∗

∂Vr

∂z
+

∂Vz

∂r
)2 + ε2(

∂Vz

∂z
)2)

+
1
Pr

(
∂2Θ

∂r2
+

1
r

∂Θ

∂r
+ ε2 ∂2Θ

∂z2
), (21)

Reε(
∂Σ

∂t
+ δ∗Vr

∂Σ

∂r
+ Vz

∂Σ

∂z
) =

1
Sc

(
∂2Σ

∂r2
+

1
r

∂Σ

∂r
+ ε2 ∂2Σ

∂z2
)

+Sr(
∂2Θ

∂r2
+

1
r

∂Θ

∂r
+ ε2 ∂2Θ

∂z2
). (22)

The appropriate equations describing the flow of micr-
polar fluid in the case of a mild stenosis(δ∗ = δ

Ro
<< 1),

subject to the additional condition(ε = Ro

Lo
' o(1)) [26]

can be written as:

∂p

∂r
= 0, (23)

∂p

∂z
=

1
1−N

(
1
r

∂

∂r
(r

∂Vz

∂r
) +

N

r

∂(νθ)
∂r

), (24)

2vθ = −∂Vz

∂r
+

2−N

m2

∂

∂r
(
1
r

∂(rνθ)
∂r

), (25)

Klξ = 0 (26)

p(z, t) = Re(Kr +
Eθh

1− nσ2
θ

− Tθo)η(z, t) (27)

1
r

∂

∂r
(r

∂Θ

∂r
) + Br(

∂Vz

∂r
)2 = 0, (28)

∂

∂r
(r

∂Σ

∂r
) + SrSc

∂

∂r
(r

∂Θ

∂r
) = 0, (29)

whereN = k
(µ+k) is the coupling number(0 ≤ N ≺

1) [20] andm2 = R2
ok(µ+k)
γ(µ+k) is the micropolar parameter,

Re = ρcRo

µ is suction Reynolds number,Pr = cpµ
F is the

Prandtl number of the fluid,Ec = c2

cp(To−T1)
andSc =

µ
Dρ are the dimensionless quantities,Sr = ρDFT (To−T1)

µTm(Co−C1)

is Soret number,Br = EcPr is Brickmann number and
n = σt

σθ
is the degree of anisotropy of the vessel wall

The corresponding boundary conditions (dropping dashes):

∂Vz

∂r
= 0,

∂Θ

∂r
= 0,

∂Σ

∂r
= 0, on r = 0, (30)

(
δ

Lo
)Vr =

∂η

∂t
, Vz =

∂ξ

∂t
,Θ = Σ = 0 on r = R, (31)

where

R(z, t) = [(m∗z + 1)− δ cosφ(z − d∗){11− 94
3

(z − d∗)

+32(z − d∗)2 − 32
3

(z − d∗)3}]Ω(t),

d∗ ≤ z ≤ d∗ +
3
2

(32)

= (m∗z + 1)Ω(t) otherwise

where m∗ = Lom and d∗ = d
Lo

.

3. Solution of the problem

By using the Eq. (26) and the boundary condition (31),
we can note thatξ = 0 whereKl 6= 0 and for( δ

Lo
<<

1), we assume that the radial motion for arterial wall de-
creases with increasingz and can be written in the form
η(z) = exp[−kz] [[1], [24], [27]] whereη independent on
the time andk represents the wave number of the harmonic
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oscillation. Noting the factp is a function ofz only from
Eq. (23), the fluid pressure can be written as

p(z) = Re(Kr +
Eθh

1− nσ2
θ

− Tθo)exp[−kz]. (33)

And Eq. (24) can be rewritten in the form

∂

∂r
{r∂Vz

∂r
+ Nrνθ − (1−N)

r2

2
∂p

∂z
} = 0, (34)

hence, we get

∂Vz

∂r
= (1−N){r

2
∂p

∂z
+

A1

r
} −Nνθ. (35)

Using Eq. (35) in Eq. (25) we get

∂2νθ

∂r2
+

1
r

∂νθ

∂r
− (m2 +

1
r2

)νθ =

(1−N)m2

(2−N)
{r

2
∂p

∂x
+

A1

r
}, (36)

and its general solution is

νθ = A2I1(mr)+A2K1(mr)− 1−N

2−N
{r

2
∂p

∂x
+

A1

r
},(37)

whereI1(mr) andK1(mr) are modified Bessel functions
of first order, first and second kind respectively. Substitut-
ing Eq. (37) into Eq. (35) and integrating we obtain

Vz = (
1−N

2−N
){r2

2
∂p

∂x
+ A1 log(r)}

+
N

m
{−A2I0(mr) + A3K0(mr)}+ A4, (38)

whereA1(z), A2(z), A3(z) and A4(z) are the constants
of integration,Io(mr) andKo(mr) are modified Bessel
functions of zeroth - order and by using the boundary con-
ditions, we can get the axial velocity and the circumferen-
tial microrotation in the form

Vz(r, z, t) =
1−N

2(2−N)
dp

dz
(r2 −R2 +

NR

m

(
I0(mR)− I0(mr)

I1(mR)
)), (39)

νθ(r, z, t) =
1−N

2(2−N)
dp

dz
(
RI1(mr)
I1(mR)

− r), (40)

To find the general solution of the temperature, we Substi-
tute Eq. (39) into Eq. (28) and integrating we get

Θ = −BrΞ
2[

r4

4
− 4Π

m3
(mrI1(mr) + 2(1− Io(mr))

+
Π2

2m2
((1−m2r2)I2

o (mr) + mrIo(mr)I1(mr)

+m2r2I2
1 (mr)− 1)] + A5 ln(r) + A6, (41)

whereA5 andA6 are the constants of integration,Io(x)
andI1(x) are the modified Bessel functions of zeroth and
first order respectively,Ξ = (1−N)

2(2−N) (
dp
dz ) andΠ = NR

I1(mR) .

By using the boundary conditions, we can get the tem-
perature as

Θ(r, z, t) = −BrΞ
2[

r4 −R4

4
− 4Π

m3
(m(rI1(mr)

−RI1(mR)) + 2(Io(mR)− Io(mr)))

+
Π2

2m2
((1−m2r2)I2

o (mr)− (1−m2R2)I2
o (mR)

+m2(r2I2
1 (mr)−R2I2

1 (mR))
+m(rIo(mr)I1(mr)−RIo(mR)I1(mR)))]. (42)

Using Eqs. (42) and (29), we can find the solution of the
concentration of fluid together with the corresponding bound-
ary conditions in the form

Σ(r, z, t) = −SrScBrΞ
2[

r4 −R4

4
− 4Π

m3
(m(rI1(mr)

−RI1(mR)) + 2(Io(mR)− Io(mr)))

+
Π2

2m2
((1−m2r2)I2

o (mr)− (1−m2R2)I2
o (mR)

+m2(r2I2
1 (mr)−R2I2

1 (mR))
+m(rIo(mr)I1(mr)−RIo(mR)I1(mR)))]. (43)

The corresponding stream function (Vz = 1
r

∂ψ
∂r with ψ =

0 at r = 0) is

ψ(r, z, t) =
1−N

2(2−N)
dp

dz
[
r4

4
− R2r2

2

+
NR

mI1(mR)
(
r2I0(mR)

2
− rI1(mr)

m
)]. (44)

We can find the flux through the tubeQ by

Q = 2π

∫ R

0

rVzdr = (−∂p

∂z
)

1
F (z)

, (45)

where

F (z) =
(2−N)mI1(mR)

R3(1−N)(RmI1(mR)− 2NI2(mR))
. (46)

SinceQ is constant for all the sections of the tube. The
pressure drop across the length of the overlapping stenosis
is

∆p =
∫ L∗

0

(−∂p

∂z
)dz = Q

∫ L∗

0

F (z)dz. (47)

The resistance to flow (resistance impedance) experienced
by the flowing blood in the arterial segment under consid-
eration using Eq. (47) may be defined as

λ =
∆p

Q
= [

∫ d∗

0

I(z)dz +
∫ d∗+ 3

2

d∗
F (z)dz

+
∫ L∗

d∗+ 3
2

I(z)dz], (48)

whereL∗ = L
Lo

andI(z) = F (z)|R=(m∗z+1)Ω(t).
It is very interesting to note for fluid in microcontinum

(couple stress fluids, micropolar fluids, polar fluids, dipo-
lar fluids, etc) the stress tensor is not symmetric. The nonzero
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dimensionaless shear stresses in our problem are given by
[20]

τzr =
∂Vz

∂r
− N

(1−N)
νθ, (49)

τrz =
−1

(1−N)
(
∂Vz

∂r
+ Nνθ). (50)

From Eq. (50) we can find the expression for the wall shear
stress by

τrz =
−1

(1−N)
∂Vz

∂r
|r=R, (51)

whereνθ = 0 at r = R, by using Eqs. (39) and (45) we
can find
∂Vz

∂r
|r=R =

−1
2

(1−N)
∂p

∂z
R(z) = 4QR(z)F (z). (52)

The final expressions for the dimensionless resistance to
flow λ̄ = λ

λ0
and the wall shear stressτ̄rz = τrz

τ0
(dropping

bars)

λ =
1
L∗

[
∫ d∗

0

I(z)dz +
∫ d∗+ 3

2

d∗
F (z)dz

+
∫ L∗

d∗ 3
2

I(z)dz], (53)

τrz =
(2−N)mI1(mR)

R2(1−N)(RmI1(mR)− 2NI2(mR))
, (54)

whereλ0 = L∗, τ0 = Q andλ0, τ0 are the resistance to
flow and the wall shear stress for a flow in a normal artery
(no stenosis).

4. Discussion of the results

Computer codes are developed to evaluate the analytic re-
sults obtained for the axial velocityVz, the circumferen-
tial microrotationνθ, the temperature distributionΘ, the
concentration of fluidΣ, the resistance impedanceλ and
the wall shear stress distributionτrz. In order to observe
the quantitative effects of the coupling parameterN , the
micropolar parameterm, the taper angleφ, the maximum
height of stenosisδ, the Soret numberSr, the Brickmann
numberBr, the degree of anisotropy of the vessel walln,
the initial circumferential viscoelastic stressTθo, the cir-
cumferential Poisson’s ratioσθ and the contribution of the
elastic constraints to the total tetheringK. For the purpose
of computational work, we use the following experimental
data [[1] ,[23] ,[28]]

Re = 1, b = 0.1, Lo = 1 , d∗ = 0.75 , k = 0.0021,

ω = 7.854, Tθo = 0.1, 104, 2x104, σθ = 0.5, 0.4, 0.3,

Eθ = 4x106 , h = 0.01, Kr = ReK = 104, 1.6x104.

The influence of the parameter which represent initial vis-
coelastic stress component acting along the circumferen-
tial directionTθo on propagation properties was previously
analyzed by Atabek and Lew [24]. The effect of the Pois-
son’s ratio in the circumferential directionσθ and the ef-
fect of the contribution of the elastic constraints to the total
tetheringK were investigated by Womersley [28].

The structure of the artery is quite complex and the
tissue that constitutes artery walls consists of four major
components are: (a)Smooth muscle cells(SMCs) repre-
sent the living component of the wall, where under the neu-
ral control they actively contract and expand thus chang-
ing the geometry and elastic modulus of the tissue. (b)
Elastin is a rubber-like protein (scleroprotein) synthesized
by the SMCs. It is present in artery walls in polymerized
form, constituting the fenestrated network of thin fibers
and can sustain large stresses and strains. (c)Collagen
is also a protein synthesized by SMCs and it has the ap-
pearance of nylon where there are several types of colla-
gen of which most common represent (66 percent in artery
walls). (d)Ground Substanceis a viscous substance like
gel that embeds (scleroprotein) and (SMCs), so it is usu-
ally considered not to contribute to elastic properties of
the wall. Many studies point out the arteries can be con-
sidered a focus for some diseases such as atherosclerosis
(stenosis) or aneurysms because of the complex structure
of the artery. The degree of anisotropy of the vessel wall
n that responsible for the artery wall material depends on
the material direction. The easiest way of understanding
this fact is the presence of fibres (collagen, elastine and
smooth muscle cells (SMCs)) in the wall such that the be-
havior in the direction of the fibres will be different than
the transverse directions to the fibres. In the other hand
if the fibres directions coincide with axial, circumferential
and radial directions of the artery, the arterial wall material
called orthotropic [30]. We take the data that represents a
free isotropic tube as:

Tθo = 0, σθ = 0.5, n = 1, K = 0, (55)

where in the case of an isotropic tubeσθ = 1
2 , n = 1 and

the tube is initially unstressed [31].
The effect of vessel tapering together with the shape

of stenosis on the blood flow characteristics seem to be
equally important and hence deserve special attention. The
tapering is a significant aspect of mammalian arterial sys-
tem. Thus, in this paper, we are interested in the flow through
a tapered artery with stenosis. In an actual situation, the ar-
terial wall thickness has not uniform shape, so we show the
influences of the diverging , converging and nontapering
arterial on the resistance to flow (resistance impedance)
and the wall shear stress. The analysis of blood flow through
tapered tubes is very important in understanding the be-
haviour of the flow as the taper of the tube is an important
factor in the pressure development. It has been pointed out
that the blood vessels bifurcate at frequent intervals and al-
though the individual segments of arteries may be treated
as uniform between bifurcations, the diameter of the artery
decreases quite fast at each bifurcation [32]. It has been ob-
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served that even for the small angles of taper (up to 2o), the
effects of tapering of the blood vessels cannot be neglected
[33]. As pointed out by How and Black [34], this study is
also very useful for the design of prosthetic blood vessels
as the use of grafts of tapered lumen has the advantage of
surgical benefits, the blood vessels being wider upstream.

Figs. (2-4) indicate how the axial velocityVz is influ-
enced by the unsteady behavior of the flowing blood as
well as by the coupling parameterN , the micropolar pa-
rameterm, the degree of anisotropy of the vessel walln,
the initial circumferential viscoelastic stressTθo, the cir-
cumferential Poisson’s ratioσθ and the contribution of the
elastic constraints to the total tetheringK. Fig. (2) indi-
cate that the magnitude of the axial velocityVz decreases
as the coupling parameterN increases (the particle size
increases) while it increases asm increases (micropolar
spin parameter increases) and the value of axial velocity
is higher for a Newtonian fluid than that for a micropolar
fluid. In Figs. (3) and (4) we use the data that represents
a free tube as(Tθo = 0, σθ = 0.5, n = 1,K = 0). Fig.
(3) indicate that the magnitude of the axial velocityVz in-
creases as the degree of anisotropy of the vessel walln
and the contribution of the elastic constraints to the total
tetheringK increases. Fig. (4) show that the magnitude
of the axial velocityVz increases as the circumferential
Poisson’s ratioσθ increases while it decreases by increas-
ing the initial circumferential viscoelastic stressTθo. Un-
der stenotic conditions, the curves through the converging
tapered arteryφ = −0.1 (< 0) are less than those in the
non-tapered arteryφ = 0 and the diverging tapered artery
φ = 0.1 (> 0) (see Figs. (2-4)).
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Figure 2 Variation of velocity profilesVz for N andm at t =
0.5, z = 1.5,δ = 0.05,n = 1, K = 104, σθ = 0.5,Tθo = 0.1 (panels
(a) and (b) respectively).
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Figure 3 Variation of velocity profilesVz for n andK at t = 0.5,
z = 1.5,δ = 0.05,N = 0.2, m = 5 (panels (a) and (b) respectively).

-1.0 -0.5 0.0 0.5 1.0

0

5

10

15

20

25

30

35

40

( b )

T
o
 = 2  10

4

T
o
 = 10

4

free tube
  Nontapered artery

  Diverging tapering

  Converging tapering

V
z

r

-1.0 -0.5 0.0 0.5 1.0

0

5

10

15

20

25

30

35

40

( a )

 = 0.3

 = 0.4

free tube

  Nontapered artery

  Diverging tapering

  Converging tapering

V
z

r

Figure 4 Variation of velocity profilesVz for σθ andTθo at t =
0.5, z = 1.5,δ = 0.1,N = 0.2, m = 5 (panels (a) and (b) respec-
tively).

Figs. (5-7) describe the distribution of the circumferen-
tial microrotationνθ with r for different values ofN , m, n,
K, σθ andTθo. Fig. (5) indicate that the magnitude of the
circumferential microrotationνθ decreases as the coupling
numberN increases while it increases as the micropolar
parameterm increases. In Figs. (6) and (7) we use the data
that represents a free tube as(Tθo = 0, σθ = 0.5, n =
1, K = 0). Fig. (6) indicate that the magnitude of the cir-
cumferential microrotationνθ increases as the degree of
anisotropy of the vessel walln and the contribution of the
elastic constraints to the total tetheringK increases. Also
Fig. (7) explain that the magnitude of the circumferential
microrotationνθ increases as the circumferential Poisson’s
ratioσθ increases while it decreases by increasing the ini-
tial circumferential viscoelastic stressTθo. Further in the
half region of the tube, the circumferential microrotation
is one direction and in the other half it is in the opposite
direction and it is zero atr = 0 (see Figs. (5-7)).
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Figure 5 Variation of microrotation profilesνθ for N andm at
t = 0.5, z = 1.5,δ = 0.05,n = 1, K = 104, σθ = 0.5,Tθo = 0.1
(panels (a) and (b) respectively).
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Figure 6 Variation of microrotation profilesνθ for n andK at
t = 0.5, z = 1.5,δ = 0.05,N = 0.2, m = 5 (panels (a) and (b)
respectively).

�

-1.0 -0.5 0.0 0.5 1.0

-15

-10

-5

0

5

10

15

T
qo
 = 2 � 10

4

( b )

free tube

T
qo
 = 10

4

  Nontapered artery

  Diverging tapering

  Converging tapering

n
q

r

-1.0 -0.5 0.0 0.5 1.0

-15

-10

-5

0

5

10

15

( a )

free tube

s
q
 = 0.3

s
q
 = 0.4

  Nontapered artery

  Diverging tapering

  Converging tapering

n
q

r

Figure 7 Variation of microrotation profilesνθ for σθ andTθo

at t = 0.5, z = 1.5,δ = 0.05,N = 0.2, m = 5 (panels (a) and (b)
respectively).

The variation of temperature profile for different val-
ues of the coupling parameterN , the degree of anisotropy
of the vessel walln, the contribution of the elastic con-
straints to the total tetheringK, the circumferential Pois-
son’s ratioσθ, the initial circumferential viscoelastic stress
Tθo and Brickmann numberBr is shown in Figs. (8-10). It
is observed that with an increase in the degree of anisotropy
of the vessel walln, the contributions of the elastic con-
straints to the total tetheringK, the circumferential Pois-
son’s ratioσθ and Brickmann numberBr, temperature pro-
file increases while it decreases with an increase in cou-
pling parameterN and the initial circumferential viscoelas-
tic stressTθo. Also the curves through the converging ta-
pered arteryφ = −0.1 (< 0) are less than those in the
non-tapered arteryφ = 0 and the diverging tapered artery
φ = 0.1 (> 0). Moreover, the value of temperature profile

is higher for a Newtonian fluid than that for a micropolar
fluid. Fig. (11-a) is prepared to see the variation of tem-
perature profile with micopolar parameterm for different
values of taper angleφ. It is interesting to record that the
temperature increases rapidly for small values of microp-
olar parameterm and then take a constant value asm in-
creases. It is clear that the temperature distribution profile
with the timet have a periodic oscillation form and there
are three time cycles where the length of the cycle is equal
to 1.6 approximately (see Fig. (11-b)). In the first cycle, the
magnitude of the temperature distribution starts increasing
to reach its maximum then starts decreasing to reach its
minimum then repeat its form again to reach the begin-
ning point of the second cycle and so on. Also we can see
that the magnitude of the temperature distribution possess
similar variations in the second and third cycles. Moreover,
this oscillation decaying as the timet increases. Also, we
can see that this oscillation is higher for the diverging ta-
pering than for a non-tapered and converging tapering.

Figs. (12-14) are prepared to see the variation of con-
centration profile for the coupling parameterN , the de-
gree of anisotropy of the vessel walln, the contribution
of the elastic constraints to the total tetheringK, the cir-
cumferential Poisson’s ratioσθ, the initial circumferential
viscoelastic stressTθo and Brickmann numberBr. It is ob-
served that concentration profile has an opposite behavior
as compared to the temperature profile. Fig. (15-a) explain
the variation of concentration profile for the Soret number
Sr to show the concentration of the fluid decreases as the
Soret numberSr increases. Fig. (15-b) represent the vari-
ation of concentration of fluid with micopolar parameter
m for different values of taper angleφ to show that the
concentration of fluid decreases rapidly for small values
of micropolar parameterm and then take a constant value
asm increases.

The wall shear stress and the resistance impedance are
important in understanding the development of arterial dis-
ease because of the strong correlation between the local-
ization of arteriosclerosis (stenosis) and arterial wall. It is
clear that wall shear stress and the resistance impedance
distributions profile with the timet have a periodic os-
cillation form and there are three time cycles where the
length of the cycle is equal to 1.6 approximately (see Figs.
(16-a) and (16-b)). In the first cycle, the magnitude of the
wall shear stress and the resistance impedance distribu-
tions start decreasing to reach its minimum then start in-
creasing to reach its maximum then repeat its form again
to reach the beginning point of the second cycle and so on.
Also we can see that the magnitude of the wall shear stress
and the resistance impedance distributions possess similar
variations in the second and third cycles. Moreover, this
oscillation decaying as the timet increases. Also, we can
see that this oscillation is higher for the converging taper-
ing than for a non-tapered and diverging tapering.

Trapping represent an interesting phenomenon for the
fluid flow. In the wave frame, streamlines under certain
conditions split to trap a bolus which moves as a whole
with the speed of the wave. The formation of an internally
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Figure 8 Variation of temperature profilesΘ for N andBr at t
= 0.5, z = 1.5,δ = 0.05,n = 1, K = 104, m = 5,σθ = 0.5,Tθo =
0.1 (panels (a) and (b) respectively).

circulating bolus of the fluid by closed streamline is called
trapping phenomena. The bolus defined as a volume of
fluid bounded by a closed streamlines in the wave frame
is transported at the wave. To study the effect of tethered
tube on blood flow, we will vary the previous correspond-
ing parameters, within a physiologically meaningful inter-
val, while keeping all the others fixed in their base values.
In choosing the interval of variation for the parameters,
we are guided by the following values of these parameters
which approximately represent descending aorta of dogs
[[1], [24],[29],[31]] as

Tθo = 0.1, σθ = 0.51, n = 0.63,K = 1.6x104. (56)

The effects of free and tethered tubes on stream lines are
illustrated in Fig. (17) to see that the size of the bolus in
the free tube smaller than tethered tube. To see the effects
of the the taper angleφ, the maximum height of stenosis
δ on the trapping, we prepared Fig. (18) for various values
of the parametersφ (= 0, 0.1, -0.1 with t = 0.5,δ = 0.05,
n = 1, K = 0, N = 0.2,m = 5) andδ (= 0.05 , 0.07 , 0.09
with t = 0.5,φ = 0,n = 1,K = 0,N = 0.2,m = 5). Fig. (18-
a) reveals that the size of trapping bolus increases toward
the left atφ = 0.1 (diverging tapering artery) and it in-
creases toward the right atφ = −0.1 (converging tapering
artery). The effect of the the maximum height of stenosis
δ on the trapping is also illustrated in Fig. (18-b), it is ob-
served that there is no separation of flow and the flow is
laminar atδ = 0.05 but separation occurs atδ = 0.07 and
δ = 0.09. Finally the effect of the coupling numberN and
the micropolar parameterm on the trapping, we prepared
Fig. (19) for various values of the parametersN (= 0, 0.4,
0.8 with t = 0.5,δ = 0.05,n = 1, K = 0, φ = 0, m = 5)
andm (= 0.001 , 5 , 100 with t = 0.5,δ = 0.005,n = 1,
K = 0, φ = 0, N = 0.2), it is observed that the trapping
is about the center line and the trapped bolus increase in
size as the coupling numberN increases (the particle size
increases) and the inverse occurs such that the volume of
the bolus decreases by increasing of micropolar parameter
m (micropolar spin parameter).
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Figure 9 Variation of temperature profilesΘ for n andK at t =
0.5, z = 1.5,δ = 0.05,N = 0.2, m = 5,Br = 0.2 (panels (a) and
(b) respectively).
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Figure 10 Variation of temperature profilesΘ for σθ andTθo at
t = 0.5, z = 1.5,δ = 0.1,N = 0.2, m = 5,Br = 0.3 (panels (a) and
(b) respectively).
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Figure 11 Variation of temperature profilesΘ with micopolar
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(panels (a) and (b) respectively).
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Figure 12 Variation of concentration profilesΣ for N andBr

at t = 0.5, z = 1.5,δ = 0.05, K =104, m = 5,n = 1,Sr = Sc = 0.3,
σθ = 0.5,Tθo = 0.1 (panels (a) and (b) respectively).
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Figure 13 Variation of concentration profilesΣ for n andK at
t = 0.5, z = 1.5,δ = 0.1,N = 0.2, m = 5,Br = 0.2,Sr = Sc = 0.3
(panels (a) and (b) respectively).
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Figure 14 Variation of concentration profilesΣ for σθ andTθo

at t = 0.5, z = 1.5,δ = 0.1,N = 0.2, m = 5,Br = 0.3,Sr = Sc =
0.2 (panels (a) and (b) respectively).
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Figure 15 Variation ofΣ for Sr (panel (a)) at t = 0.5, z = 1.5,δ
= 0.05,N = 0.2, m = 5,n = 1, K = 104, Br = 0.2 and the effect
of m onσ (panel (b)).
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Figure 16 Variation of resistance impedance (resistance to flow)
and the wall shear stress distributionτrz λ with the timet (panels
(a) and (b) respectively).
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Figure 17 Plot showing streamlines for free and tethered tubes
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5. Concluding remarks

The effect of heat and chemical reactions on micropolar
fluid model of blood flow through an anisotropically ta-
pered elastic arteries with overlapping stenosis is studied.
The exact expressions for stream function, axial velocity,
the circumferential microrotation, the temperature and the
concentration of fluid are obtained analytically. Graphical
results are presented for the wall shear stress distributions
and resistance to flow (resistance impedance), axial veloc-
ity, the circumferential microrotation, the temperature and
the concentration of fluid and trapping. The main finding
can be summarized as follows:

• The magnitude of the axial velocityVz is higher for
a Newtonian fluid (N = 0) than that for a micropolar
fluid these results agree closely with those of Mekheimer
and Elkot [13], Srinivasacharya et al. [20] and Devanathan
and Parvathamma [25] and the transmission of axial ve-
locity curves through a free tube(Tθo = 0, σθ = 0.5, n =
1, K = 0) is substantially higher than that through the
tethered tube.

• The transmission of circumferential microrotation
curves through a free tube(Tθo = 0, σθ = 0.5, n = 1, K =
0) is substantially higher than that through the tethered
tube in the half region but in the other half it is in the op-
posite direction.

• The temperature profile increase rapidly for small
values of micropolar parameterm (micropolar spin param-
eter) and then take a constant value asm increases these
results agree closely with those of Ikbal et al. [10] while
the concentration profile has an opposite behavior as com-
pared to the temperature profile.

• The effect of vessel tapering is an important factor
considered in this paper. The results considered three dif-
ferent taper angles of artery which are the converging ta-
peringφ < 0, non-taperedφ = 0 and the diverging taper-
ing φ > 0 in the presence of overlapping stenosis. Under
stenotic conditions, the curves through the converging ta-
pered arteryφ = −0.1 (< 0) are higher than those in the
non-tapered arteryφ = 0 and the diverging tapered artery
φ = 0.1 (> 0).

• The wall shear stress and resistance impedance pro-
files have an oscillation form through the tapered over-
lapping stenosed arteries and this oscillation decaying as
the time increases. Also, we can see that this oscillation is
higher for the converging tapering than for a non-tapered
and diverging tapering.

• The size of trapped bolus for the stream lines in the
free isotropic tube is smaller than those in the tethered
tube.

• The size of trapping bolus increases toward the left at
diverging tapering artery and it increases toward the right
at converging tapering artery.

• In the overlapping stenotic region, by increasing the
maximum height of the stenosisδ, the stream lines sepa-
rate and trapping bolus appear.

• The rapping bolus increase in size as the coupling
numberN increases (the particle size increases) and the

inverse occurs such that the volume of the bolus decreases
by increasing of micropolar parameterm (micropolar spin
parameter).
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