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Abstract: This article proposes a new coherent risk measure called iso-entropic risk measure, which is based on relative entropy under
the theory framework of Artzner et al.(1999). It is pointed that this measure is just the negative expectation of the risk portfolio position
under the probability measure through Esscher transformation. This iso-entropic risk measure is not a 0-1 risk measure and very smooth
in contrast with another important coherent risk meastiveQ R (Average Value at Ri3kAnd it is a little larger thanAV QR at the

same level, namely it is has more prudence. So it maybe a better coherent risk measure.
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1. Introduction risk measures has rapidly been evolving; it already occu-
) ) ) pies a considerable part of the modern financial mathemat-
How to measure the risk of the uncertainty in the futurejcs Some of these papers are [1,4,5,7,8,10,11,14,16-18,
value of a position is one of the basic tasks in finance. Theg_22 30]. Excellent reviews on the theory of coherent
most well-known and widely used in practice methods t0jsk measure are given in [12]. Recently, the most fash-
this task are variance and subsequeénti(Value atRisk jonaple coherent risk measured$” @R (also called Con-
In the finance context the standard deviation of continuougjitional Value at Risk, Expected Shortfall,or Tail Value at
growth rates usually is called volatility. However, both of Risk). As compared td/@QR, it measures not only the
them have serious drawbacks. One important drawback foprobapility of loss but its severity as well. Kusuoka (2001)[20]
variance is that it is not monotonic: a better gamble, i.€., &yroved thatAV@R is the smallest law invariant coher-
gamble with higher gains and lower losses, may well havean risk measure that dominatésaR. It is seemly that
a higher variance and thus be wrongly viewed as havingsy @ might be the most important subclass of coherent

a higher riskiness. About @R, it takes into account only ik measures. However, its disadvantage is that it depends
the quantile of the distribution without caring about what only on the tail of the distribution, i.e. it is a 0-1 risk mea-

is happening to the left and to the right of the quantile. gre 5o it is not smooth6].

And it is concerned only with the probability of the loss , i
and does not care about the size of the loss. However, jt  OUr article here propose a new coherent risk measure

is obvious that the size of loss should be taken into acPased on relative entropy, which is obtained under the the

count(Cherny and Madan, 2008)[6]. Further criticism of theory framework of coherent risk measure from Artzner

variance and’ @R can be found in Artzner et al.(1997)[2] €t &l-(1999)[3]. We call this new risk measure iso-entropic
as well as in numerous discussions in financial journals. 1Sk measure. Itis pointed that this risk measure is not 0-1
At the final of last century, a new very promising method Sk measure, so itis a smooth one. And, we prove that at
to quantify risk was proposed in the landmark paper bythe same level, the iso-entropic risk measure is more large
Artzner, Delbaen, Eber and Heath(1999)[3]. They intro- thanAV@Z for the same position or portfolio.
duced the notion of coherent risk measure, and gave the ax- The remainder of the article is organized as follows.
ioms for the measure. And later, the coherent risk measur&ection 2 give a brief introduction for monetary, convex
was extended to the class of convex risk measures in[11and coherent risk measures; Section 3 propose the iso-
14,15]. Since their seminal work, the theory of coherententropic risk measure based on relative entropy. Section 4
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compare our iso-entropic risk measure to several importanit acceptable. Note that we work with discounted quanti-

risk measures in detail. And at last, Section 5 concludes. ties; cf.[3,19] for a discussion of forward risk measures
and interest rate ambiguity.

Definition 2.4. Acceptance set associated to a risk mea-

2. Acceptance set, monetary, convex, and sure the acceptance set associated to a risk meassitiee
coherent risk measures set denoted byl, and defined by

A, =inf{X e G|p(X)<0}.

Here, We introduce some concepts related to coherent risgefinition 2.5. A measure of riskpis called amonetary
measures. More detail seélffner and Schied(2008)[13]  risk measuréf p (0) is finite and ifp satisfies the following
and Artzner et al.(1999)[3]. conditions for allX, Y € G.

In financial theory, the uncertainty of value for a po- Monotonicity If X <Y, thenp (X) > p(Y).
sition (a asset or a portfolio) in the future is usually de-  Translation invariancelf ¢ € R, thenp (X +¢) =
scribed by a random variabl€ : {2 — R on a probability — , (x) — ¢,
space({2, 7,P), where(2 is a fixed set of scenarios. For ~  The financial meaning of monotonicity is clear: the
instance, X' can be the (discounted) value of the portfolio gownside risk of a position is reduced if the payoff profile
or some economic capital. The goal of risk measure is t9s jncreased. Translation invariance is also called cash in-
determine a number (X) that quantifies the risk and can variance. This is motivated by the interpretationpgfX )
serve as a Capltal requlrement, l.e., as the minimal amourﬁs a Capita' requirement, |®(X) is the amount which
of Capital which, if added to the pOSition and invested in dshould be raised in order to make acceptab|e from the
risk-free manner, makes the position acceptable. The folpoint of view of a investor/supervisor, as Definition 2.3.
lowing axiomatic approach to such risk measures was ini-Thys, if the risk-free amount is appropriately added to

tiated in the coherent case by[2, 3] and later extended to thene position or to the economic capital, then the capital re-
class of convex risk measures in [11, 14, 15]. In the sequelguirement is reduced by the same amount.

G denotes a given linear space of functiokis: 2 — R Definition 2.6. A monetary risk measurg is called a
containing the constants. Lgtbe the set of all risks, that  convex risk measuié p satisfies the following conditions
is the set of all real valued functions ¢h Convexityp (AX + (1 = A\)Y) < Ap (X)+(1 = A) p(Y),

As Artzner et al.[3] point that a first, crude but crucial, foro < )\ < 1.
measurement of the risk of a pOSition will be whether its The axiom of Convexity gives a precise meaning to the
future value belongs or does not belong to the subset ofgea that diversification should not increase the risk.
acceptable risks, as decided by a investor or a supervisor. pDefinition 2.7. A convex risk measurgis called aco-
For an unacceptable risk (i.e. a position with an unacceptherent risk measuri p satisfies the following conditions
able future value) one remedy may be to alter the position.  positive Homogeneityf A > 0, thenp (AX) = Ap (X).

Another remedy is to look for some commonly accepted  ynder the assumption of positive homogeneity, the con-
Instruments Wthh, added to the current position, make |t$/exity ofa monetary risk measure is equiva|ent to

future value become acceptable to the investor/supervisor.  sybadditivity p (X +Y) < p (X) + p (V).
The current cost of getting enough of this or these instru- 5o, a coherent risk measure must satisfies four axioms:

ment(s) is a good candidate for a measure of risk of themonotonicity, translation invariance, positive homogeneity
initially unacceptable position. Based on this, a series ofand convexity or subadditivity.

definitions are given as follows.
Definition 2.1. A measure of risk is a mapping from

GintoR. 3. Coherent risk based on relative entropy
Definition 2.2. An acceptance seiVe call A a set of

final values, expressed in currency, are accepted by ong, thjs setction, one new coherent risk measure is proposed
investor/supervisor. ) based on the given relative entropy.

It must be pointed that there are different acceptance  gyppose now thag consists of measureable functions
sets for different investors/supervisors because they are hejp (2, F). According to the basic representation theorem
erogeneous when faced with risk assets. There is a COgsroved by Artzner, Delbaen, Eber, and Heath (1999)[3] for
spondence between acceptance sets and measures of risk finite (2 and by Delbaen (2002)[8] in the general case,

Definition 2.3. Risk measure associated to an accep- any coherent risk measupeadmits a representation of the
tance setthe risk measure associated to the acceptance sebrm

A is the mapping frong into R denoted by 4 and defined

by p(X) = —52% Eg[X]tol1.51 1)
pa(X)=inf{meR|m+ X € A}. with a certain setD of probability measures absolutely
The risk measure is the smallest amount of units of dat gontinuous with respect t5. Here, we apply relative en-

0 money which invested in the admissible asset, must b ropy to define the seb of probability measures.
added at date O to the planned future net wdftto make D ={Q: H(Q|P)= H} (2)
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WhereH (Q|P) = E [% log %} is relative entropy of Wherem = —1/my. And E [o] = Ep [e], the subscript

Q < P. Relative entropy is also called Kullback—Leibler iS omitin the sequel. We can see the fomula (7) is just a
divergence or information divergence. From Jensen’s inEsscher transformation gf(x)[9]. - .
equality, we know thatf (Q |P) > 0. Here, we can inter- Then, applying iso-relative-entropy condition(the first
pret the meaning for the formula (1), (2): the probability constraint);n is determined. Denotg(m) = H (Qo |P)—

P is the observation, an@ may be the true one which - We need to findn to satisfy f (m) = 0. About zero-
generatesY, but the investor/supervisor don't knowg  Point for functionf (m), we have theorem as follows.
well, she only knows the ‘distance’ frot to @, namely ‘Theorem 3.1.If H = 0,thenf (m) has only one zero-
Kullback—Leibler divergence here. Kullback—Leibler di- Point which is atm = 0; and if H > 0,then f (m) have
vergence is just a pseudo-distance, becdiige) |P) £ W0 zero-points which are at € (0, 00) andm € (—o,0),
H (P|Q). Now, the investor/supervisor try to find the worst "€Spectively. _

expectation of a position (a asset or a portfolio)given The brief proofs is as follows:

the divergence? (Q |P) = H from P to (). Because the _ Q@) 7., _

setD of probability measures is induced under the samef (m) fg @ (2) kiif(””)jf H

relative entropy, so we call it iso-entropy induction set of — [ (_mx_IOEg"[EIiHI] De } _H

probability measures. ‘

Apparently, this is a functional extremum problem with = £ lg (m,2)] — H
equality constraints. Denot# = ¢(z)dz anddP = B9 _ qo(z) 2 —ma
p (z) dz, rewrite the problem (1), (2) as follows: om = py (ma? +alog Ble™™] )
—z — (1 — ma + log E [e"™%]) %)
p(X)=— 1{1f) [ gwq (z) dx = q;((;)) (ma? + zlog E[e”™*] —
o () — (1 —mz +log E[e™]) Eq, [])
st.H= [ q(x)log L) 1 (3) % =F {g—i] =m (EQ0 [2%] — (Eq, [ac])2>
G p(z) _ 2
=maog,
/g ¢(@)de Because of, > 0, so there is only one extremum point

) . for function f (m),and further it is minimum point, which
Where the second constraint must be satisfied naturally. is a5t/ — 0. Because of the minmum of (m)is f (0) =

Now, we use calculus of variations to solve the prob- _ 7 < ( so we can get the theorem. The proof is com-
lem. Write functional with Lagrange multipliers as fol- ,eted,

lows: From theorem 3.1., we have following corollary.
Corollary 3.2. If H = 0,then functional7 has only
J (q(z)) = /gﬂfq () dz —mq /Q(J(l“) dx one extremum which is af () = p(z); and if H >
0,thenJ have two extremums which aig () = p (v) g
_ q(x) atm € (0,00) andm € (—o0, 0), respectively.
m2/ ¢ (x)log p(x) de @ So we have the following proposition about coherent

_ o risk measure based on relative entropy.
In which my,m, are Lagrange multipliers. The calculus  Proposition 3.3.Given the relative entropf (Q |P) =

of variations of functionaly is H, the coherent risk measure has the form
aj((J(l') + aéq(x)) E [Xe—mX]
5 ' = o= = — = -
J(q()) e la=0 p(X) =—Eq, [X] Ele—mX] (8)
= / (x —my — mg — mg log q((xx))) 5q(x)dx  (5) In whichm satisfy f (m) = 0, andm > 0.
g b The reason forn > 0 is because o (Ejgl[x]) =
According to Lemma of calculus of variations, functional —03,.
J gets extremum aj, (), thendJ (qo (z)) = 0, and so And from iso-relative-entropy condition:
we get (7mx710gE[e—m,x])e—nwn
@ (2) . o -
T —my —mg — mylog v @) 0 (6) the coherent risk measure can take another form
o " - H +logE [e”™]
Utilizing unitary condition of probability(the second con- p(X) = 9)
straint), we get . . o . .
Inwhich,m is determined by uniquely. For convenience,
B e~ me 7 we call it iso-entropic risk measure for our new coherent
90 () = p(x) E[e—ma] (M) risk measure, and dengt& (X).
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In order to apply our iso-entropic risk measure sim- Delbaen, Eber, and Heath (1999)[3]. It satisfies four ax-
ilar like VQR(Value at Risk) orAV@R (Average Value ioms: monotonicity, translation invariance, positive homo-
at Risk), we discuss relative entropy further. Entropy cangeneity and subadditivity. From formula (15), we know
describe the uncertainty, and relative entropy describe théhat it depends only on the tail of the distribution, i.e. it is
‘distance’ or divergence of two uncertaintys. Confidencea 0-1risk measure, so itis not smooth. In contrast with this,
level has the similar meaning. So we denkte= log +, A €  our coherent risk measure based on relative entpéfpyX ) =
(0, 1] . Then we can get iso-entropic risk measure at confi-log §+10gE[ —mX]
dence leveh:

log % +log E [e‘mX]

depends on the whole dietribution, it
is very smooth. Concerning @R, AV@Rand our risk
measure’® (X), we have the following theorem.

Px (X)) = m (10) Theorem 4.1.At same level\ € (0, 1], the following
In which, m is determined by uniquely. formula exists
Here, ) serves as the risk aversion parameter. We have?y (X) > AVQAR, (X) > VAR, (X) (16)

_ The brief proofs is as follows:
) 210 —essinf, X(w) andpi® (X) = ~E[X]. AV@QR, (X) > VQR, (X) is apparent. Let us see
When X has Gaussian distributiony ~ N (u,0),  why p}¢ (X) > AV@R, (X). .

thenm = v/2H /o. So we have iso-entropic risk measure Pay attention that the solution @fforo optimum prob-

for Gaussian distribution: lem (14) sat]icsfiesiQA/éiP = +1x<.,(x). And the rela-
) tive entropy fromP to Q) is:
px (X) =0V2H — (11) d d
_ Q,\ aox| . 1
2 H(Q\|P)=FE P P =log—=H
Whereu:E[X],GQ:E{(X—u)} P 7d A

So,Qxisoneelementdd = {Q: H (Q|P) = H =log 1 }.
However, from the result of section 3, we know that the
4. Comparison for several risk measures optimization for—infoep Eq[X],

so we gep¥ (X) > AVQR, (X). The proof is com-
In this section,we compare our coherent risk measure basédeted. )
on relative entropy with other several important risk mea- I fact, for arbitrarydQ /dP = {1x¢(a), if

sures. Elxe@n] = A
The first one id/QR(Value at Risk which is the most then
fashionable one nowWw/ QR at level € (0, 1], defined for H(Qx\|P) = [dQ* log 49 2| =logy =H.

X on a probability spacg?, 7,P) is Figure 1. is the illustration of these three risk measures

V@R, (X)=inf{m e R|P[X +m < 0] <A} (12) supposedthak has Gaussian distributiof ~ N (u,0).
Pay attention that when — 0, all the three measures
V@R satisfies monotonicty, translation invariance and pos-—. " cssin f,, X (w), but when

itive homogeneity, but not subadditivity, so it is just a mon- 10 )
etary risk measure, not a convex one. A =1,VaAR, (X) o esssupX (w) pr*(X) =
The second risk measure A/ @R(Average Value at AVQR, (X) = —E[X].

RisK. Atlevel A € (0, 1], AV@Ris defined as The last risk measure is entropic risk measure, defined

1 ™ by
AVQAR, (X) = —/ VAR, (X)da (13) log E [e—0X
Ao gt o) = BELTT] g (7)
AV@RIs also calledConditional Value at Risk, Expected — e . .
. . . The entropic risk measure satisfies three axioms: mono-
ggr?iretzfg(uz%rogill\é?h::e?é Eiﬁﬁfﬁgrrglenf?nmofggshd tonicity, translation invariance, and convexity but not for
' ' positive homogeneity, so it is just a convex risk measure,

AV@R,(X) = — inf Eq[X] not a coherent one. Compare it With our iso-entropic risk
QED measurey’ (X) in formula (9), we will find that they are
dQ very analogous in form. In fact, they are diffierent. The pa-
forD = {Q ap = )\} (14)  rameten in entropic risk measurg®™* (X)) is free, but pa-
rameterm in our iso-entropic risk measuyg¢ (X) is not
Soitgets free, it is defined by and X, namelym = m (H, X).
1 If X has Gaussian distributiod ~ N (u,0), then
AVAR, (X) = Y E[-X|X < 23 (X)], entropic risk measure has the forpf"* (X) = 202 —
o (X) =inf[z: F(z) > A (15) u, 0¢0. Itis interesting to mention here that the iso-entropic

risk measure used in this paper is different from the quan-
Apparently, AV@Ris coherent risk measure accord- tum entropy which has been used to measure the entangle-
ing to the basic representation theorem proved by Artznerment between two or more parties [24-30].
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