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Abstract: The objective of this article is to apply the improvgd /G)- expansion method for constructing many exact solutions with
parameters of the nonlinear partial differential equation (PDE) daésgribe model of DNA double helices. The stretch of the hydrogen
bonds is considered as a nonlinear chain with cubic and quadratic potévitiah the parameters take special values, many solitary
wave solutions and periodic wave solutions can be found. Comparisaed® some of our new results and the well-known results are
given.
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1 Introduction expansion method to find many exact traveling wave
solutions of the model 1), namely the hyperbolic,

Nonlinear phenomena play crucial roles in appliedtrigonometric and rational  function  solutions.

mathematics and physics. Exact solutions for n0n|ineaI’Comparison between some of our new results and the

partial differential equations (PDEs) play an important well-known results obtained ir3[l] will be given later.

role in many phenomena in such as fluid mechanics;The rest of this article is organized as follows: In Sec. 2,

hydrodynamics, optics, plasma physics and so on. Withthe derivation of the modellf is given. In Sec. 3 the

the development of solitary theory many powerful description of the improvedG'/G)- expansion method is

methods for obtaining the exact solutions of the nonlinearobtained. In Sec. 4 some conclusions are given.

evolution equations are presented and can be found in

Refs. [1-20]. An attractive nonlinear model of the

nonlinear science is the deoxynbonucleic acid (DNA).2 Derivation of the mode of DNA double

The DNA molecule encodes the information that di 1

organisms need to live and reproduce themselves. ThgI ices (1)

DNA structure has been studied last decades (see foWith reference to 31], the helical axis for the

ggﬁgﬁﬁ Ef—t?r»é]).D'Nrgemdélsgg\J/Ieeryhazf ggindggggl-ir;ﬁgﬁ é/rVatson-Crick model of DNA is taken in the x-direction.
strong relationship between its structure and function.og]eerbgzigaphde I(;?recc(:)trigﬁli?hi/rg%éeaasgn?:%\g%r:;g s:i(r:h

Zhang et al. 31] have studied the following nonlinear o X
partial differential equation describing the model of DNA Thus,_ itis assumed that the displacements of Fhe r_1th base
and its complementary base along the direction of

double helices using the homogeneous balance method: H-bonds are given byn andy., respectively. Since the

Vit — Pyt By~ AA2+ 8331y =0, (1) H-bond interaction has a remarkable nonlinearity due to
its charge-transfer interaction, then the H- bond can be
where ¢2, @, AZ, 52 are well-known constants, which approximately described by the formula
can be found in31], andn is the damping constant. The
objective of this article is to apply the imprové@' /G)- V(ry) =Vo+Ar2 —Br3+Cra, 2)
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where rp, = y, — Yy, and A/B,C are constants. The nonlinear terms are involved. In the following, we give
stacking energy between two neighboring base pairs ishe main steps of this metho@(, 21] as follows:
indicated by
Step 1. We use the traveling wave transformation

1 1
Alp = E'—(Yn *Yn—l)ZJr EL(ynH *Yn)z, (3 ux,t) =u(é), &=1-¢(x+pt+k), (11)

whereL is a parameter. Lé¥l be the average mass of  to reduce Eq.10) to the following ordinary differential
a base, then the Hamiltonian of the DNA system can befdquation (ODE):

written as: P(u,u,u’,...) =0 (12)
L2 12 herel, B, k hile P i lynomial i
H— MO V) +V (yn — + where/, 3, k are constants while P is a polynomial in
; { 2 (n +¥n) +V 0 y”)} u(é) and its total derivatives, while the dashes denote the

(4) derivatives with respect té.

> {5t (00300 + a-va 0]}

n

Step 2.We assume that EqL?) has the formal solution

The differential equations may be written as: m G'(&) [
oH w63 a(5e) )
My = — o= = —2A (yn —¥n) +3B(¥n —Yh)?— =
Yn ®) where & (i = —m,...,m) are constants to be
— V)3 L(Yni1— 2¥n+Yn-1) — NYn, determined, an (&) satisfies the following linear ODE:
// /
) oH 2 G'(§)+AG (&) +uG(&) =0, (14)
My, = — = 2A(Yn— —3B(Yn—
i oYy (yn y“) (Y —¥n) "+ (6) whereA andy are constants.
3 .
ACOYn—Yn) + LY i1 =Y n+Yn 1) — NV, Step 3.The positive integem in Eq. (13) can be
wheren is the damping constant. We shall limit us to determined by balancing the highest-order derivatives
study the relative motion of the base such that with the nonlinear terms appearing in E42).
Yn = —Yn- (7) Step 4. We substitute 13) along with Eq. 14) into

Eq. @2 to obtain polynomials in

/ I . . .
) _ (GG) (i=0,+£1,+2,...). Equating all the coefficients of
My = —4AYn + 1287 — 3Ly +L(Yne1 = Dn+¥n-1) =M. thede polynomials to zero, yields a set of algebraic

(8) i hich | ing the Maple to fi
The base spacing equals 3.4A° for B-DNA, it is ;q%atfns' which can be solved using the Maple to find

obtained using the continuum approximation

Consequently, we have the differential equation

Step 5. Since the solutions of Eq.4) are well-known

1
() = y(x 1), 3 = /dX- (9)  forus, then we have the following ratios:
“ .
: 2
Hence, the equation of motion can be reduced to the form () If A©—4u >0, we have
of the model 1) where / N2 A5
G(¢&) 2 2

L= A= 52:V clsinh<%\/M)+czcosh<%\/M)
clcosh(%\/A2—4u) +czsinh(% )\2—4;1) 7
(15)
3 Description of theimproved (i) If A2—4u <0, we have
G'/G)-expansion method
( / ) p G/(E):7A+ /4”_)\2><
Suppose that we have the following nonlinear evolution  G(&) 2 2
equation: JA1 — A2 / 2
F (U, U, Ux, U, Uy, ...) = 0, (10) c15|n< A=A )+C2COS( -2 )
where F is a polynomial inu(x,t) and its partial 01005( VA — Az) +023|n( VAl — AZ)
derivatives, in which the highest order derivatives and the (16)
@© 2014 NSP
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(iii) If A%2—4u =0, we have Casel.
G(&) A c1 _ 27 —A(9ag-2A]) _ad g
SE =3 , (17) =352 0= Tpuenz 1= g2 =0
(€) C1+C28 M=A,c=c, (=1,
_ 1
wherec; andc; are arbitrary constants. B= 18 1% °
Step 6. We substitute the values af, 3, ¢ as well as [\/324a§1£2c256 — 228+ 1802020 — %lwgé“} )
the ratios 15)-(17) into (13) to obtain many exact (20)
solutions of Eq.10). Case 2
a0 = <wo+m/c2 P 22 4, -0
4 Exact solutions of the DNA model (1) °
232132 02
_ _ %,n 0,A2 = fwoéc_cﬁ B,l=1¢,
In this section, we apply the proposed method of Sec. 3, (21)
to construct the exact solutions of the DNA double helices Case3
modeling @). To this end, we use the wave transformation '
(12) to reduce Eq.X) to the following ODE: A 12) n0BS2
ag = ( 1+2A12r35213 )7a1:2,)27f2% y ELJ_:O’

(P(B? =)y + gy — ALY+ 8% +neBy =0, (18)
_ (—AB 482N +45%N2B2A%0%)

H= ] 7Al:)\17B:B7‘€:‘€7
where 32 — ¢ # 0. Balancingy” with y® we getm= 1. 16'72[3%25/342 4 5
Consequently, we have n=nA=2Ac= ﬁ(/\l +2n<6).
(22)
G’(E)) (G'(s)>—1
=a +ap+a_ 19
y(&) l(G(E) a+a 1 (o) (19)

4.1 Exact solutions of the DNA model (1) for

wherea;, ap,a_; are constants to be determined , such case 1

thata; # 0 ora_1 # 0. Substituting 19) along with Eq.
(14) into Eq. @8) and equating all the coefficients of
% |’ (i = 041,42,43) to zero, we obtain the Substituting 0) into (19) and using 15) - (17), we have
i ) S the following exact solutions for the modédl)(
following algebraic equations: ()If A2—4u > 0 (Hyperbolic function solutions), we have

1\ 3 ;
(%) : 2a U202 (B? —c?) + 6%a3 ; =0, the exact solution

A3
(%) 2au2(p2—?) + %3 =0, 2] A o)

) y(& - 12u62A2
A - 4 N é 2
(%) " 3a-1mA2(B2— )~ AZad + 3aga? 5%+ {g YT s § VI o §3 4#)] }
a_luggﬁ — O, cg:os%(% ) czsmh % A2 4;.1) .
/ f Nx=m
(%) : 3&1A€2(B2 ) )\2a1+3a0 52 +3f\1212 7%4» /\22 n clslnh<Z )+czcos ? A —4;1 .
alr’gB — 07 clcosr< Az >+czsmh(2\/)\2 4u)
23)
Substituting the formulas (8), (10), (12) and (14) obtained
(%) D (2ai1p+aA?)P(B? —P) +wfa i in [33] into (23) we have respectively the following kink-
2a0a_1A2 + 0%(3a?, +3a_1a3) +a_1An¢B =0, type traveling wave solutions:
(%) L (@A 2+ 201 1) 2(B? — ) + wfay — 280 AP+ (1) If [ca| > |c2|, then
0%(3aGay +3a_185) —auAn(B =0, 22 (9229
y1(é) = 355 — W
0 ,/A
(%) © (A +a 1A )2(B2 — ) + wlao— { 5+ tanh( \//\24u+sgn(01Cz)w1)}
AZ(a5+2a1a 1) + 6%(a3 + 6apa_1a1)+ LN
(a1—aiu)ntB =0, 3ro -1
)\ /A2 _
On solving the above algebraic equations using the Maple{ 2t tanh( A% —au +Sgn(c1c2)l’u1)} '
or Mathematica, we obtain the following cases: (24)
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(2) If |c] > |e1] # O, then

207 A(9wBd%—2A1
y2(£) = 3‘512 - 12‘152/\12 L%

2uAZ
+3r52 X

.

-1

44 @ coth(%\/erSgn(ClCZ)‘l’Z) }
S

2 coth (% VAZ 4+ sgn(cscy) wz) }

(25)
(3) If |c2| > |c1] =0, then
222 A(9wg5%-2)7)
352 128277
{ COth( A2 — 4[.1) } (26)
2

(4) If [c1| = |cy|, then

202 A(9wBd%—20% A A/A2—4pu
y4(5):3<55_;b2m52)\fl{_2+ >
-1 (27)
L 202 {_A N \//\2—4;1}
3102 2 2 ’

where ¢y = taniri(\2), y, =

[ca]
sgn(cicp) is the sign function.

coth’l(%) and

(il 22—
have the exact solution

222 A(9w %227
y(E) = ?é - 12[,162)\2
3 2 2
_A_;’_\/W (:1S|n<2 4pu—A )+czcos( 4/.1 A
2 2 clcos(g /\2>+c23|n( 4p— )\2>
2uA? B
T a2 X

-1

2 2 clcos("(\/zly /\2>+c23|n<6\/4u )\2> ’
) - (28)
Now, simplify (28) to get the following periodic
solutions:

{ A \/‘W _—clsin<%\/m)+czcos<gm>_
+

222 A(9w3%-2A7)
— 1 1
y1(&) = 355 — 12015277

{—A2+V‘1“2’\2tan(fo—‘;\/4u—)\2)}

-1
2 _A2
+§;‘Jz{—§+ VA tan(51—§\/4u—}\2)} ,
(29)

and
222 A(9w@5%-2)7)
=352 uenz ~
{ A4 cot(é 4 —)\2)}
7 T+ H

4u 7,\2) }_1,
(30)
where&; =tan?! ( ) & =cot? (CZ) andc? +c3 # 0.

{2+ VA cot(ferg

(iii) If A2 —4u = 0 (Rational function solutions),then
we have
202 A(9wd%—2A
(€)= 3512 12u52A2 . { 2T C1+02€} T

(31)

2uA? -
AR aieEl -

4.2 Exact solutions of the DNA model (1) for
case 2

Substituting 21) into (19) and using 15) - (17), we have
the following exact solutions for the moddl)(

()If A2—4u > 0 (Hyperbolic function solutions),then
we have the exact solution

y(g) ﬁé OJ(H-)\E /2 — /32)+ /2 c2 ﬁf

_A_t_ \/m clslnh(%m)-kczcost(i\/M)
2 2 clcosl-<%\/m>+czsinh<%\/m>
(32)

Substituting the formulas (8), (10), (12) and (14)
obtained in B3] into (32) we have respectively the

4y < 0 (Trigonometric function solutions), We - ¢q)1owing kink-type traveling wave solutions:

(1) If |ca] > |ez|, then

Vi(8) = As(an+ Aey/2—p2) 4 VAT

4
{_2 + Wtanh(f\/f+sgn ClCZ wl) },
(33)
(2) If |co| > |ca| # O, then
Va(€) = s+ Aoy /P~ B2+ VAT
{—QJF \/AZTCOth(zx/ersgn (c1c2 tpz)}
(34)
(3) If |c2| > |c1| = O, then
¥a(&) = A (aw+ A0\ /F—B2) + ECET
A, V/A2-4u (35)
{—2+Zcoth(2\/M)}_
(4) If |c1] = |2/, then
Ya() = s (@ +A0y/P —B?) + ECET
{ )4 VAT } (36)
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W, = cothrl(/%) and

where @y = tanhr (12, 2

[ca]
sgn(cicp) is the sign function.

Remark: On comparing our result3@) with the
well-known result (18) of Ref. 31] we deduce the
following results:

(1) Settingwy = ¢4/c2— B2 and sgn(cycz) = 0, the
solitary wave solution33) can be simplified to become

yi(§) = I'+l'tanh<2(x+[3t+k)> (37)

wherelr = féx/cz—BZ.

(2) If we seta = 0 andn = 0 in the formulas (17)-
(19) of Ref. [31] we have the same formulzzf while I
is given by m = i%\/CZ—BZ. Herel is called the
amplitude. Wher™ > 0 we get the kink solution, while if
" < 0, we get the antikink solution.

(i)if A% — 4u < 0O (Trigonometric
solutions),then we have the exact solution

Y(E) = b5 (wo+ALy/cF—B?) + VAT

)\+\/‘W cls|n<§m>+c2cos<§ 4“,,\2> |
! COS( $ \/‘W) +Czs|n< d m)

function

Now, simplify (38) to get the following periodic
solutions:

VA(8) = Jhg e+ A/ 7) 4 VG

39
{—2+V4‘;’\tan(l—2\/m)}, )
and

y2(§) = a5 (an+ALy/c?— B2) + tv2 CZ WaARp?) .

{AZJrV‘; cot(Eer 4u — )\2)}

where & = tan'! (E—i) & = cotl (%) and
G+G#0.

(iii)lf A2 —4u = 0 (Rational function solutions),then
we have
A/ B2) + AR
+ C1+sz

4.3 Exact solutions of the DNA model (1) for
case 3

Substituting 22) into (19) and using 15) - (17), we have
the following exact solutions for the modédl)(

()If A%2—4u > 0 (Hyperbolic function solutions),then
we have the exact solution

y(§) = 2085 x

1
{ A \/m clsinh<% )\274y>+c2(:osy-< 22— 4“)]}
-5+

€
2
2 2
A2 4u) +Cp smh(% VA 274[,1)

¢y coS E

2/\252 (Af+2A0nB6?)

(42)
Substituting the formulas (8), (10), (12) and (14) obtained
in [33] into (42) we have respectively the following kink-
type traveling wave solutions:

(1) If |e1| > |2, then

Vi(8) = itz (AL +24(nBS?) + 2Bt
{2+V2tanh(Z\/Az4u+sgn(c1c2)t,u1)},
(43)
(2) If |cz| > |ea] # O, then
¥o(&) = mids (AL + 200 po?) + 215
{—)Z‘Jr MZ au coth( VA2 —4p +sgn( clcz)wz)}
(44)
(3) If |c2| > |c1| = 0O, then
Y3(E) = ks (Af + 220 62) + 2080
e rm M 45
{ 2+ ’\2 2 coth(zs/)\z—4u)}. (43)
(4) If [c2| =]c4], then
Ya(&) = 53z (A + 24N BO%) + 25t
{ A ﬂzw} (46)
2t

where ¢y = tanir}(l2), g, = COthil(%) and

[ca]
sgn(c;cp) is the sign function.

(i))If A2—4u < 0 (Trigonometric function solutions),then
we have the exact solution

Y(&) =55 x
A Ny cls|n<5 \/AW) +c2cos(2 m) :| }

2 2 clcos<§\/4u )\2>+c25m<5\/4p /\2>
5ikss (AL +20nBo?)

(47)
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Now, simplify (47) to get the following periodic
solutions:

Y1(E) = it (M +2AnBE%) + 25 o
4u—A2
{—)\2+ d tan(51—§\/4u—/\2)}7
and
V2(8) = g3t (M + 24N BE%) + 55 .

{—’2‘4— v 4‘;’\2c0t(62+% 4;1—/\2>},

whereé;, = tan?! (%) & =cot? (%) andc? +c3 #
0.

5 Some conclusions and discussions
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