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Abstract: The objective of this article is to apply the improved(G′/G)- expansion method for constructing many exact solutions with
parameters of the nonlinear partial differential equation (PDE) describing the model of DNA double helices. The stretch of the hydrogen
bonds is considered as a nonlinear chain with cubic and quadratic potential.When the parameters take special values, many solitary
wave solutions and periodic wave solutions can be found. Comparison between some of our new results and the well-known results are
given.
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1 Introduction

Nonlinear phenomena play crucial roles in applied
mathematics and physics. Exact solutions for nonlinear
partial differential equations (PDEs) play an important
role in many phenomena in such as fluid mechanics,
hydrodynamics, optics, plasma physics and so on. With
the development of solitary theory many powerful
methods for obtaining the exact solutions of the nonlinear
evolution equations are presented and can be found in
Refs. [1–20]. An attractive nonlinear model of the
nonlinear science is the deoxynbonucleic acid (DNA).
The DNA molecule encodes the information that
organisms need to live and reproduce themselves. The
DNA structure has been studied last decades (see for
example [22–32]). The discovery of the double-helix
structure of the DNA molecule has been established a
strong relationship between its structure and function.
Zhang et al. [31] have studied the following nonlinear
partial differential equation describing the model of DNA
double helices using the homogeneous balance method:

ytt − c2yxx +ω2
0y−λ 2

1 y2+δ 2y3+ηyt = 0, (1)

where c2, ω2
0 , λ 2

1 , δ 2 are well-known constants, which
can be found in [31], andη is the damping constant. The
objective of this article is to apply the improved(G′/G)-

expansion method to find many exact traveling wave
solutions of the model (1), namely the hyperbolic,
trigonometric and rational function solutions.
Comparison between some of our new results and the
well-known results obtained in [31] will be given later.
The rest of this article is organized as follows: In Sec. 2,
the derivation of the model (1) is given. In Sec. 3 the
description of the improved(G′/G)- expansion method is
obtained. In Sec. 4 some conclusions are given.

2 Derivation of the model of DNA double
helices (1)

With reference to [31], the helical axis for the
Watson-Crick model of DNA is taken in the x-direction.
The base and its complementary base may vibrate each
other along the direction of hydrogen bonds in a base pair.
Thus, it is assumed that the displacements of the nth base
and its complementary base along the direction of
H-bonds are given byyn and y′n respectively. Since the
H-bond interaction has a remarkable nonlinearity due to
its charge-transfer interaction, then the H- bond can be
approximately described by the formula

V (rn) =V0+Ar2
n −Br3

n +Cr4
n, (2)
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where rn = yn − y′n and A,B,C are constants. The
stacking energy between two neighboring base pairs is
indicated by

∆Ln =
1
2

L(yn − yn−1)
2+

1
2

L(yn+1− yn)
2, (3)

whereL is a parameter. LetM be the average mass of
a base, then the Hamiltonian of the DNA system can be
written as:

H = ∑
n

{

1
2

M(ẏ2
n + ẏ′

2
n)+V (yn − y′n)

}

+

∑
n

{

1
2

L
[

(yn − yn−1)
2+

(

y′n − y′n−1

)2
]

}

,

(4)

The differential equations may be written as:

M ÿn =− ∂H
∂yn

=−2A
(

yn − y′n
)

+3B(yn − y′n)
2−

4C(yn − y′n)
3+L(yn+1−2yn + yn−1)−η ẏn,

(5)

M ÿ′n =− ∂H
∂y′n

= 2A
(

yn − y′n
)

−3B(yn − y′n)
2
+

4C(yn − y′n)
3
+L(y′n+1−2y′n + y′n−1)−η ẏ′n,

(6)

whereη is the damping constant. We shall limit us to
study the relative motion of the base such that

yn =−y′n. (7)

Consequently, we have the differential equation

M ÿn =−4Ayn +12By2
n −32Cy3

n +L(yn+1−2yn + yn−1)−η ẏn.
(8)

The base spacingd equals 3.4A0 for B-DNA, it is
obtained using the continuum approximation

yn(t)→ y(x, t), ∑
n
→ 1

d

∫

dx. (9)

Hence, the equation of motion can be reduced to the form
of the model (1) where

c2 =
L
M

d2, ω2
0 =

4A
M

, λ 2
1 =

12B
M

, δ 2 =
32c
M

.

3 Description of the improved
(G′/G)-expansion method

Suppose that we have the following nonlinear evolution
equation:

F(u, ut , ux, utt , uxx, ...) = 0, (10)

where F is a polynomial in u(x, t) and its partial
derivatives, in which the highest order derivatives and the

nonlinear terms are involved. In the following, we give
the main steps of this method [20,21] as follows:

Step 1. We use the traveling wave transformation

u(x, t) = u(ξ ), ξ = ℓ(x+β t + k), (11)

to reduce Eq. (10) to the following ordinary differential
equation (ODE):

P(u,u′,u′′, ...) = 0, (12)

whereℓ,β , k are constants while P is a polynomial in
u(ξ ) and its total derivatives, while the dashes denote the
derivatives with respect toξ .

Step 2.We assume that Eq. (12) has the formal solution

u(ξ ) =
m

∑
i=−m

ai

(

G′(ξ )
G(ξ )

)i

, (13)

where ai (i = −m, ...,m) are constants to be
determined, andG(ξ ) satisfies the following linear ODE:

G′′(ξ )+λG′(ξ )+µG(ξ ) = 0, (14)

whereλ andµ are constants.

Step 3.The positive integerm in Eq. (13) can be
determined by balancing the highest-order derivatives
with the nonlinear terms appearing in Eq. (12).

Step 4. We substitute (13) along with Eq. (14) into
Eq. (12) to obtain polynomials in
(

G′
G

)i
, (i = 0,±1,±2, ...). Equating all the coefficients of

these polynomials to zero, yields a set of algebraic
equations, which can be solved using the Maple to find
ai, β , ℓ.

Step 5. Since the solutions of Eq.(14) are well-known
for us, then we have the following ratios:

(i) If λ 2−4µ > 0, we have

G′(ξ )
G(ξ )

=−λ
2
+

√

λ 2−4µ
2

×




c1sinh
(

ξ
2

√

λ 2−4µ
)

+ c2cosh
(

ξ
2

√

λ 2−4µ
)

c1cosh
(

ξ
2

√

λ 2−4µ
)

+ c2sinh
(

ξ
2

√

λ 2−4µ
)



 ,

(15)

(ii) If λ 2−4µ < 0, we have

G′(ξ )
G(ξ )

=−λ
2
+

√

4µ −λ 2

2
×





−c1sin
(

ξ
2

√

4µ −λ 2
)

+ c2cos
(

ξ
2

√

4µ −λ 2
)

c1cos
(

ξ
2

√

4µ −λ 2
)

+ c2sin
(

ξ
2

√

4µ −λ 2
)





(16)
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(iii) If λ 2−4µ = 0, we have

G′(ξ )
G(ξ )

=−λ
2
+

c1

c1+ c2ξ
, (17)

wherec1 andc2 are arbitrary constants.
Step 6. We substitute the values ofai, β , ℓ as well as

the ratios (15)-(17) into (13) to obtain many exact
solutions of Eq.(10).

4 Exact solutions of the DNA model (1)

In this section, we apply the proposed method of Sec. 3,
to construct the exact solutions of the DNA double helices
modeling (1). To this end, we use the wave transformation
(11) to reduce Eq. (1) to the following ODE:

ℓ2(β 2− c2)y′′+ω2
0y−λ 2

1 y2+δ 2y3+ηℓβy′ = 0, (18)

whereβ 2−c2 6= 0. Balancingy′′ with y3 we getm = 1.
Consequently, we have

y(ξ ) = a1

(

G′(ξ )
G(ξ )

)

+a0+a−1

(

G′(ξ )
G(ξ )

)−1

(19)

wherea1,a0,a−1 are constants to be determined , such
that a1 6= 0 or a−1 6= 0. Substituting (19) along with Eq.
(14) into Eq. (18) and equating all the coefficients of
(

G′
G

)i
, (i = 0,±1,±2,±3) to zero, we obtain the

following algebraic equations:
(

G′
G

)−3
: 2a−1µ2ℓ2(β 2− c2)+δ 2a3

−1 = 0,
(

G′
G

)3
: 2a1ℓ

2(β 2− c2)+δ 2a3
1 = 0,

(

G′
G

)−2
: 3a−1µλℓ2(β 2− c2)−λ 2

1 a2
1+3a0a2

−1δ 2+

a−1µηℓβ = 0,
(

G′
G

)2
: 3a1λℓ2(β 2− c2)−λ 2

1 a2
1+3a0a2

1δ 2−
a1ηℓβ = 0,

(

G′
G

)−1
: (2a−1µ +a−1λ 2)ℓ2(β 2− c2)+ω2

0a−1−
2a0a−1λ 2

1 +δ 2(3a1a2
−1+3a−1a2

0)+a−1ληℓβ = 0,
(

G′
G

)

: (a1λ 2+2a1µ)ℓ2(β 2− c2)+ω2
0a1−2a0a1λ 2

1+

δ 2(3a2
0a1+3a−1a2

1)−a1ληℓβ = 0,

(

G′
G

)0
: (a1µλ +a−1λ )ℓ2(β 2− c2)+ω2

0a0−
λ 2

1 (a
2
0+2a1a−1)+δ 2(a3

0+6a0a−1a1)+
(a−1−a1µ)ηℓβ = 0,

On solving the above algebraic equations using the Maple
or Mathematica, we obtain the following cases:

Case 1.

a0 =
2λ 2

1
3δ 2 , a1 =

−λ (9ω2
0−2λ 4

1 )

12µδ 2λ 2
1

, a−1 =
2µλ 2

1
3λδ 2 , η = 0,

λ1 = λ1, c = c, ℓ= ℓ,
β = 1

18a−1δ 3ℓ
×

[
√

324a2
−1ℓ

2c2δ 6−2λ 8
1 +18λ 2

1 δ 2ω2
0 − 81

2 ω4
0δ 4

]

,

(20)
Case 2.

a0 =
(ω0+λℓ

√
c2−β 2)√

2δ , a1 =
ℓ
√

2(c2−β 2)
δ , a−1 = 0,

µ =
ℓ2λ 2(β 2−c2)+ω2

0
4(β 2−c2)ℓ2 ,η = 0,λ 2

1 = 3√
2
ω0δ , c = c, β = β , ℓ= ℓ,

(21)
Case 3.

a0 =
(λ 4

1+2ληℓβδ 2)

2λ 2
1 δ 2 , a1 =

2ηβℓ
λ 2

1
, a−1 = 0,

µ =
(−λ 8

1+4δ 2ω2
0λ 4

1+4δ 4η2β 2λ 2ℓ2)

16η2β 2ℓ2δ 4 ,λ1 = λ1, β = β , ℓ= ℓ,

η = η , λ = λ , c2 = β 2

λ 4
1
(λ 4

1 +2η2δ 2).

(22)

4.1 Exact solutions of the DNA model (1) for
case 1

Substituting (20) into (19) and using (15) - (17), we have
the following exact solutions for the model (1):
(i)If λ 2−4µ > 0 (Hyperbolic function solutions), we have
the exact solution

y(ξ ) = 2λ 2
1

3δ 2 −
λ (9ω2

0δ 2−2λ 4
1 )

12µδ 2λ 2
1

×






−λ
2 +

√
λ 2−4µ

2





c1 sinh

(

ξ
2

√
λ 2−4µ

)

+c2 cosh

(

ξ
2

√
λ 2−4µ

)

c1 cosh

(

ξ
2

√
λ 2−4µ

)

+c2 sinh

(

ξ
2

√
λ 2−4µ

)











+
2µλ 2

1
3λδ 2







−λ
2 +

√
λ 2−4µ

2





c1 sinh

(

ξ
2

√
λ 2−4µ

)

+c2 cosh

(

ξ
2

√
λ 2−4µ

)

c1 cosh

(

ξ
2

√
λ 2−4µ

)

+c2 sinh

(

ξ
2

√
λ 2−4µ

)











−1

.

(23)
Substituting the formulas (8), (10), (12) and (14) obtained
in [33] into (23) we have respectively the following kink-
type traveling wave solutions:
(1) If |c1|> |c2| , then

y1(ξ ) =
2λ 2

1
3δ 2 −

λ (9ω2
0δ 2−2λ 4

1 )

12µδ 2λ 2
1

×
{

−λ
2 +

√
λ 2−4µ

2 tanh
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ1

)

}

+
2µλ 2

1
3λδ 2×

{

−λ
2 +

√
λ 2−4µ

2 tanh
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ1

)

}−1

.

(24)
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(2) If |c2|> |c1| 6= 0, then

y2(ξ ) =
2λ 2

1
3δ 2 −

λ (9ω2
0δ 2−2λ 4

1 )

12µδ 2λ 2
1

×
{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ2

)

}

+
2µλ 2

1
3λδ 2×

{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ2

)

}−1

.

(25)
(3) If |c2|> |c1|= 0, then

y3(ξ ) =
2λ 2

1
3δ 2 −

λ (9ω2
0δ 2−2λ 4

1 )

12µδ 2λ 2
1

×
{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ
)

}

+
2µλ 2

1
3λδ 2

{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ
)

}−1

.

(26)

(4) If |c1|= |c2| , then

y4(ξ ) =
2λ 2

1
3δ 2 −

λ (9ω2
0δ 2−2λ 4

1 )

12µδ 2λ 2
1

{

−λ
2 +

√
λ 2−4µ

2

}

+
2µλ 2

1
3λδ 2

{

−λ
2 +

√
λ 2−4µ

2

}−1

,

(27)

where ψ1 = tanh−1( |c2|
|c1| ), ψ2 = coth−1( |c2|

|c1| ) and
sgn(c1c2) is the sign function.

(ii)If λ 2−4µ < 0 (Trigonometric function solutions), we
have the exact solution

y(ξ ) = 2λ 2
1

3δ 2 −
λ (9ω2

0δ 2−2λ 4
1 )

12µδ 2λ 2
1

×






−λ
2 +

√
4µ−λ 2

2





−c1 sin

(

ξ
2

√
4µ−λ 2

)

+c2 cos

(

ξ
2

√
4µ−λ 2

)

c1 cos

(

ξ
2

√
4µ−λ 2

)

+c2 sin

(

ξ
2

√
4µ−λ 2

)











+
2µλ 2

1
3λδ 2×







−λ
2 +

√
4µ−λ 2

2





−c1 sin

(

ξ
2

√
4µ−λ 2

)

+c2 cos

(

ξ
2

√
4µ−λ 2

)

c1 cos

(

ξ
2

√
4µ−λ 2

)

+c2 sin

(

ξ
2

√
4µ−λ 2

)











−1

,

(28)
Now, simplify (28) to get the following periodic

solutions:

y1(ξ ) =
2λ 2

1
3δ 2 −

λ (9ω2
0δ 2−2λ 4

1 )

12µδ 2λ 2
1

×
{

−λ
2 +

√
4µ−λ 2

2 tan
(

ξ0− ξ
2

√

4µ −λ 2
)

}

+
2µλ 2

1
3λδ 2

{

−λ
2 +

√
4µ−λ 2

2 tan
(

ξ1− ξ
2

√

4µ −λ 2
)

}−1

,

(29)

and

y2(ξ ) =
2λ 2

1
3δ 2 −

λ (9ω2
0δ 2−2λ 4

1 )

12µδ 2λ 2
1

×
{

−λ
2 +

√
4µ−λ 2

2 cot
(

ξ0− ξ
2

√

4µ −λ 2
)

}

+
2µλ 2

1
3λδ 2

{

−λ
2 +

√
4µ−λ 2

2 cot
(

ξ2+
ξ
2

√

4µ −λ 2
)

}−1

,

(30)

whereξ1 = tan−1
(

c2
c1

)

, ξ2 = cot−1
(

c2
c1

)

andc2
1+ c2

2 6= 0.

(iii) If λ 2−4µ = 0 (Rational function solutions),then
we have

y(ξ ) = 2λ 2
1

3δ 2 −
λ (9ω2

0δ 2−2λ 4
1 )

12µδ 2λ 2
1

{

−λ
2 + c1

c1+c2ξ

}

+

2µλ 2
1

3λδ 2

{

−λ
2 + c1

c1+c2ξ

}−1
.

(31)

4.2 Exact solutions of the DNA model (1) for
case 2

Substituting (21) into (19) and using (15) - (17), we have
the following exact solutions for the model (1):

(i)If λ 2−4µ > 0 (Hyperbolic function solutions),then
we have the exact solution

y(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×







−λ
2 +

√
λ 2−4µ

2





c1 sinh

(

ξ
2

√
λ 2−4µ

)

+c2 cosh

(

ξ
2

√
λ 2−4µ

)

c1 cosh

(

ξ
2

√
λ 2−4µ

)

+c2 sinh

(

ξ
2

√
λ 2−4µ

)











(32)
Substituting the formulas (8), (10), (12) and (14)

obtained in [33] into (32) we have respectively the
following kink-type traveling wave solutions:
(1) If |c1|> |c2| , then

y1(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×

{

−λ
2 +

√
λ 2−4µ

2 tanh
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ1

)

}

,

(33)
(2) If |c2|> |c1| 6= 0, then

y2(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×

{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ2

)

}

.

(34)
(3) If |c2|> |c1|= 0, then

y3(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×

{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ
)

}

.
(35)

(4) If |c1|= |c2| , then

y4(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×

{

−λ
2 +

√
λ 2−4µ

2

}

.
(36)
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where ψ1 = tanh−1( |c2|
|c1| ), ψ2 = coth−1( |c2|

|c1| ) and
sgn(c1c2) is the sign function.

Remark: On comparing our result (33) with the
well-known result (18) of Ref. [31] we deduce the
following results:

(1) Settingω0 = ℓ
√

c2−β 2 and sgn(c1c2) = 0, the
solitary wave solution (33) can be simplified to become

y1(ξ ) = Γ +Γ tanh

(

ℓ

2
(x+β t + k)

)

(37)

whereΓ = ℓ√
2δ

√

c2−β 2.

(2) If we setα = 0 andη = 0 in the formulas (17)-
(19) of Ref. [31] we have the same formula (37) while Γ
is given by Γ = ± 3ℓ√

2δ

√

c2−β 2. Here Γ is called the
amplitude. WhenΓ > 0 we get the kink solution, while if
Γ < 0, we get the antikink solution.

(ii)If λ 2 − 4µ < 0 (Trigonometric function
solutions),then we have the exact solution

y(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×







−λ
2 +

√
4µ−λ 2

2





−c1 sin

(

ξ
2

√
4µ−λ 2

)

+c2 cos

(

ξ
2

√
4µ−λ 2

)

c1 cos

(

ξ
2

√
4µ−λ 2

)

+c2 sin

(

ξ
2

√
4µ−λ 2

)











.

(38)
Now, simplify (38) to get the following periodic

solutions:

y1(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×

{

−λ
2 +

√
4µ−λ 2

2 tan
(

ξ1− ξ
2

√

4µ −λ 2
)

}

,
(39)

and

y2(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×

{

−λ
2 +

√
4µ−λ 2

2 cot
(

ξ2+
ξ
2

√

4µ −λ 2
)

}

,
(40)

where ξ1 = tan−1
(

c2
c1

)

, ξ2 = cot−1
(

c2
c1

)

and

c2
1+ c2

2 6= 0.

(iii)If λ 2 − 4µ = 0 (Rational function solutions),then
we have

y(ξ ) = 1√
2δ (ω0+λℓ

√

c2−β 2)+
ℓ
√

2(c2−β 2)
δ ×

{

−λ
2 + c1

c1+c2ξ

}

.
(41)

4.3 Exact solutions of the DNA model (1) for
case 3

Substituting (22) into (19) and using (15) - (17), we have
the following exact solutions for the model (1):

(i)If λ 2−4µ > 0 (Hyperbolic function solutions),then
we have the exact solution

y(ξ ) = 2ηβℓ
λ 2

1
×







−λ
2 +

√
λ 2−4µ

2





c1 sinh

(

ξ
2

√
λ 2−4µ

)

+c2 cosh

(

ξ
2

√
λ 2−4µ

)

c1 cosh

(

ξ
2

√
λ 2−4µ

)

+c2 sinh

(

ξ
2

√
λ 2−4µ

)











+ 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)

(42)
Substituting the formulas (8), (10), (12) and (14) obtained
in [33] into (42) we have respectively the following kink-
type traveling wave solutions:
(1) If |c1|> |c2| , then

y1(ξ ) = 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)+ 2ηβℓ

λ 2
1
×

{

−λ
2 +

√
λ 2−4µ

2 tanh
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ1

)

}

,

(43)
(2) If |c2|> |c1| 6= 0, then

y2(ξ ) = 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)+ 2ηβℓ

λ 2
1
×

{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ + sgn(c1c2)ψ2

)

}

.

(44)
(3) If |c2|> |c1|= 0, then

y3(ξ ) = 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)+ 2ηβℓ

λ 2
1
×

{

−λ
2 +

√
λ 2−4µ

2 coth
(

ξ
2

√

λ 2−4µ
)

}

.
(45)

(4) If |c2|= |c1| , then

y4(ξ ) = 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)+ 2ηβℓ

λ 2
1
×

{

−λ
2 +

√
λ 2−4µ

2

}

.
(46)

where ψ1 = tanh−1( |c2|
|c1| ), ψ2 = coth−1( |c2|

|c1| ) and
sgn(c1c2) is the sign function.

(ii)If λ 2−4µ < 0 (Trigonometric function solutions),then
we have the exact solution

y(ξ ) = 2ηβℓ
λ 2

1
×







−λ
2 +

√
4µ−λ 2

2





−c1 sin

(

ξ
2

√
4µ−λ 2

)

+c2 cos

(

ξ
2

√
4µ−λ 2

)

c1 cos

(

ξ
2

√
4µ−λ 2

)

+c2 sin

(

ξ
2

√
4µ−λ 2

)











+ 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)

(47)
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Now, simplify (47) to get the following periodic
solutions:

y1(ξ ) = 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)+ 2ηβℓ

λ 2
1
×

{

−λ
2 +

√
4µ−λ 2

2 tan
(

ξ1− ξ
2

√

4µ −λ 2
)

}

,
(48)

and

y2(ξ ) = 1
2λ 2

1 δ 2 (λ 4
1 +2λℓηβδ 2)+ 2ηβℓ

λ 2
1
×

{

−λ
2 +

√
4µ−λ 2

2 cot
(

ξ2+
ξ
2

√

4µ −λ 2
)

}

,
(49)

whereξ1 = tan−1
(

c2
c1

)

, ξ2 = cot−1
(

c2
c1

)

andc2
1+c2

2 6=
0.

5 Some conclusions and discussions

In this article, we have employed the improved(G′/G)-
expansion method described in Sec. 3, to find many exact
solutions as well as many solitary wave solutions and
many periodic solutions (23)-(49) of the nonlinear PDE
(1) describing the DNA double helices modeling which
look new. This model has been discussed in [31] using the
homogeneous balance method, where some solitary wave
solutions have been found. On comparing our new results
(23)-(49) with that obtained in [31] we conclude that the
improved(G′/G)- expansion method used in this article
is more effective and giving more exact solutions than the
homogeneous balance method used in [31]. According to
our knowledge, we deduce that the DNA model (1) and
its solutions (23)-(49) have not been discussed elsewhere
using the improved(G′/G)- expansion method. Finally,
all the solutions of Eq. (1) obtained in this article have
been checked with the Maple by putting them back into
the original Eq. (1).
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