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Abstract: In this article, we generalize the generalized Rayleiglridigtion using the quadratic rank transmutation map stidiy
Shaw et al. §] to develop a transmuted generalized Rayleigh distribbutid/e provide a comprehensive description of the
mathematical properties of the subject distribution alavitl its reliability behavior. The usefulness of the tranged generalized
Rayleigh distribution for modeling data is illustratedngieal data.
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1 Introduction

In many applied sciences such as medicine, engineeringraartt®, amongst others, modeling and analyzing lifetime dat
are crucial. Several lifetime distributions have been useadodel such kinds of data. The quality of the procedured use
in a statistical analysis depends heavily on the assumdzhpiiity model or distributions. Because of this, consatde
effort has been expended in the development of large cladsstandard probability distributions along with relevant
statistical methodologies. However, there still remaimynianportant problems where the real data does not follow any
of the classical or standard probability models.

Burr [3] introduced twelve different forms of cumulative distrtlmn functions for modeling lifetime data. Among
those twelve distribution functions, Burr-Typéand Burr-TypeXI| received the maximum attention. For more detail
about those two distributions seg.[Recently,Surles and Padgett] introduced two-parameter Burr Type X distribution
and correctly named as the generalized Rayleigh distdbuth this paper, we also prefer to call the two-parameter Bu
Type X distribution as the generalized Rayleigh (GR) disttion. Fora > 0 andp > 0, the two-parameter GR distribution
has the cumulative distribution function(cdf):

Fxa,B) = (1—e—<5X>2)°', x>0, (1)

and the respective probability density function(pdf) is:

-1
f(x,a,B) = 2aB?xe B¥* (1— e‘<5x)2)a . x>0. 2)

In this article we present a new generalization of the gdizexdh Rayleigh distribution called the transmuted
generalized Rayleigh distribution.

Definition 1(Shaw et al.(2009))A randomvariable X is said to have transmuted distribution if its cumulative distribution
function(cdf) is given by

G(X) = (1+A)F(X) —AF2(x),|A| < 1. 3)
where F (x) isthe cdf of the base distribution.
Observe that at = 0 we have the distribution of the base random variable. Agyal. [1] studied the transmuted Gumbel
distribution and it has been observed that transmuted GLoidigbution can be used to model climate data. In the prese

study we will provide mathematical formulations of the saruted generalized Rayleigh distribution and also somis of i
properties.
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Fig. 1: The pdf’s of various transmuted generalized Rayleigh ithistions3 = 2).
2 Transmuted generalized Rayleigh Distribution

Definition 2.The pdf of transmuted generalized Rayleigh distribution is:
-1
g a,B,A) = 2aBxe B¥’ (1— e‘<5x)2) ! [1+)\ —2A (1— e‘<5x)2) a} (4)
and the respective cdf is:

G(xa,B,1) = (1-e () ! (1422 (1-e®) a} (5)

Note that the transmuted generalized Rayleigh distribuigsoan extended model to analyze more complex data. The
generalized Rayleigh distribution is clearly a speciakcfms A = 0. Figure 1 illustrates some of the possible shapes of
the pdf of a transmuted generalized Rayleigh distributmrselected values of the parametérsr andf3.
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Fig. 2: The cdf’s of various transmuted generalized Rayleigh ithstiong 3 = 2).

3 Moments

Theorem 1 The r'" moment E(X") of a transmuted generalized Rayleigh distributed random variable X is given as

r+2

e e (CDI(+D) T (A A)M(@) AT (2a)
E(X) =ap ”_(E)J; i [Zr(a—j) _I'(Za—j)] (6)
Especially we have
S (DI(+) I [+ NM(@) AT (2a)
E(X)=ap 1\/7—11; i {Zr(a—j) _F(Za—j)}’ (7)
e (-DI(j+D)2[(A+A)(a) Al (2a)
var(X) =ap ZJZOZ i {Zl'(a—j) _r(2a—j)} (8)

. A[A4+M)M(a) AT (2a)
X{”“"““) i ‘r<2a—j>]}'
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Proof.

) 32/ e (B2 (1 _ o B2 1A —2a (1— e B9%) g
a / X '"e ( e ) { + ( e ) } X

~2apa ) Xt (1 e 5)
0

—4a B2\ /x”le’(BX)z(1—e*<’3")2)2a_1dx

= 2a? (1+)\) 2 J)OJ’ /xr+1 - 1)(BX% g
0

r(2a) 7
2 r+l —(j+1)(Bx)?
40{3)\2 l'Zor—J)J O/X dx

r+2

:aB2(1+A)%I’(%)§D(— b [(J/'+(;)—BT])J!TF( )
rapar(” JZ) [(J+21;B_]J)J! r(2a)
:aﬁ‘rrl'(%)go( 1)) (JJJ!rl) [(1+(A)_(J>) B I_)\(QO(IZLJ?)
Here, we used i
O/ XV~Te gy — pu,v/pr(p) ©)
for p,v, u > 0 (see Gradshtein and Ryzhnik(2000), Sec. 3.478), and{fer1

L),
2 reoni "o

By puttingr = 1, we have:

o 2 (DY) 2 A+ (@) AT (2a)
E(X)=ap Wﬁgo il [Zr(a—j) _r(za—j)] (11)
The second moment is
Con2e GV Pr(A+A)M(a) AT (2a)
E(X?)=2ap ZJZD [ HCE) _I'(Za—j)] (12)

and the variance is
var (X) = E(X?) - [ (X)J?
® (—=1)i( J+1 [(1+)\)F(a) AT (2a) }

—ap” ZO
. {2+ (] *1)_1[(2;(?5(3) - FA(;Z:’?)H.

2r(a—j) r@a—j)

(@© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro3, No. 1, 9-20 (2014) ywww.naturalspublishing.com/Journals.asp NS = 13

The skewness and kurtosis measures are:

E(X3) - 3E(X?)u+2us
a3 -

1 2 D0+
g-{BaB ZJZO

Skewness =

-2
1) [(12?();)5(1'0){) _r/\(gém))} [05\/—;3 (J+1)_0'5—2u}+2u3},

E(X*) —4E(X3)u + 6E(X?)u? — 3u*
0-4
J+1 [(1+)\)F(a) Al (2a) }

Kurtosis=

3 sz

x [B2(1+ 1) - 15vAB Y+ 1705+ 37 + Su“}.

r@—j) r@a-j

Theorem 2Let X have a transmuted generalized Rayleigh distribution. Then the moment generating function of X, say
Mx(t), is

Mx(t) =1+a — (13)

i < J+1) A+M)(a) Al(2a)
{ D2 “[5 2 a—J) ‘r<2a—j>}}'

Proof.

My (t) = E() :/metxf(x)dx

tx"

_/ <1+tx+—+ +—+ )f(x)dx
> t'E(X))

12“

—1+0!

i (—DI(j+1)""F @A+ MM (a) Al (2q)
X{B 'F(E)Zo |z ‘r<2a—j>]}'

Theq" quantilexq of the transmuted generalized Rayleigh distribution caoliiained from$%) as

} : (14)

XO.S:%{_m [1 \/1+)\ 2/\\/1+)\ ‘} s)
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4 Random Number Generation and Parameters Estimation
Using the method of inversion we can generate random nunfitmersthe transmuted generalized Rayleigh distribution
as
a a
(1-e ) [1ea-a (1-e )]

whereu ~ U(0,1). After simple calculation this yields

X:% o {1_f\,/1+/\—\/(;)\+/\)2—4m‘. 6

One can use equatiof®) to generate random numbers when the parametgdsandA are known.
Let Xp,Xz,--+, Xy be a sample of siza from a transmuted generalized Rayleigh distribution. Ttrenlikelihood
function is given by

— (2aB?)" _Ezzy”zﬁm(l e () ) {1+/\—2)\(1—e‘(5x‘>2)a] (17)
so, the log-likelihood function is:

LL:InL:n(In2+Ina+2InB)—Bz_ixi2 (18)

+ iln(x.-) +(a—1) iln (1—e (B
+§im [142-22 (1 ®7)°]

For ease of notation, we will denote, for any functibix;y), the first partial derivatives b¥, fy, and the second partial
derivatives byfyy, fyy, fxy, fyx.

Now setting
LLg=0, LLg=0 and LL, =0,
we have
| B0 o n (1 e(Bm)‘H (1 e(BX.))_
aranie Lo A ewr)] o
% — 2 iix? —(a—1) ii e_(Bm?fil(;Xiijz) (20)
_405)\2 XI.Ze—(Bmz(l_e—(Bmz)a;lz:O
i [1+A—2A (1—e—<ﬁmz) }
and Na
n 1—2(1—e*<3xi)) . o1

S144-2) (1—e—<ﬁmz)

The maximum likelihood estimato® = (6{,[3,3\)’ of 6 = (a,B,)\)’ is obtained by solving this nonlinear system of
equations. It is usually more convenient to use nonlinedéinopation algorithms such as the quasi-Newton algorithm
to numerically maximize the log-likelihood function givém(17). Applying the usual large sample approximation, the
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maximum likelihood estimators @ can be treated as being approximately trivariate normdd miéan6 and variance-
covariance matrix equal to the inverse of the expectedmndédion matrix. That is,

V(8 —8) = N3(0,17(8))
Wherelfl(é) is the variance-covariance matrix of the unknown paraméier (a,3,A). The elements of the 83

matrix! =%, 1;j(8),i,] = 1,2,3 can be approximated by (8), wherel;j (8) = —LLgg|s_s-
From (19)-(21), the second partial derivatives of the log likelihood ftioe are found to be

0 n (Bx) In (Bx)
) (107" [m(a-e07)]
LLO,O,__?—Z)\(1+/\)I; [1+A_2/\(1—e—<ﬁm2)ar : (22)

n x2e(Bx)? (In(1—e (BXa)Z)_e—(bmz

LLBB:—B2+ZB(G 1);l PP (23)
n 1—2(1—e—<ﬂﬁ>2)a ’
LLMz—iZl 1+)\—2)\(1—e*<l3xi>2)a ; (24)
a—1
)ge (Bx) n x2e~(Bx)? (1 e(ﬁm) A
LL"B_ZBZ ~B? BZ[HA 24 (1-e-00) "] .
where
A= [(1+/\)[a|n (1—e’(BX‘)2) +1] -2 (1—e’<3x4)2)},
n — e (Bx)? aln 1_e*(BXi)2
g (e nfaeoy
o __2;1 [1+)\—2)\ (1—ef<BYv'>2)a}2 7 (20)
and
" )(1.28*(ﬁxi>2(1—e*(ﬁxi)2)a_1 -

Hhas = _4aBi; (14422 (1_e—<ﬁm2)°j2'

Approximate 1001 — a )% two sided confidence intervals far, 3 andA are, respectively, given by

a iZG/Z \/ IIll(é)vé iZG/Z \/ |£21(é)7
TN

wherez, is the uppen —th percentiles of the standard normal distribution. UsingeRcan easily compute the Hessian
matrix and its inverse and hence the values of the standerdard asymptotic confidence intervals.

We can compute the maximized unrestricted and restrictgd likelihoods to construct the likelihood ratio (LR)
statistics for testing some transmuted Rayleigh sub-nsofer example, we can use LR statistics to check whether the
fitted transmuted Rayleigh distribution for a given dataisstatistically "superior” to the fitted Rayleigh distrifian. In
any case, hypothesis tests of the tifig © = G versusHp : © # 6 can be performed using LR statistics. In this case,
the LR statistic for testingdo versusH; is w = 2(L(©) — L(®y)), where® and@, are the MLEs undel; andHp. The
statisticw is asymptotically( a; — o) distributed as(kz, wherek is the dimension of the subs& of interest. The LR
test reject$ if w > &, whereé, denotes the upper 19% point of thex? distribution.

and
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5 Reliability Analysis

The reliability functionR(t), which is the probability of an item not failing prior to somene t, is defined byR(t) =
1—F(t). The reliability function of a transmuted generalized Rafedistribution is given by

Rt =1 (1- e*<ﬁt>2)°' [EEESY(E e*<ﬁt>2)°'] (28)

The other characteristic of interest of a random variabthéshazard rate function defined by

which is an important quantity characterizing life phenowm It can be loosely interpreted as the conditional priihab
of failure, given it has survived to tinte The hazard rate function for a transmuted generalized Reytandom variable
is given by

Zapztefw(1_ef<ﬁt>2)"’l[1+A_zA(l_ewaZ)“]
h(t) = ~a ~
1—(1—e—<Bt>) {1+/\—/\(1—e—<ﬁt>) }

(29)

Figure 3 illustrates the reliability function of a transradigeneralized Rayleigh distribution for different condiians
of parameterst andA , wheref3 = 2.
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Fig. 3: The reliability function of a transmuted generalized Raghedistribution.
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6 Order Statistics

In statistics, thek order statistic of a statistical sample is equal tokifssmallest value. Together with rank statistics,
order statistics are among the most fundamental tools irpaoametric statistics and inference. For a sample ofrsize
then'™™ order statistic (or largest order statistic) is the maximthmat is,

X(n) = max{Xl,Xz, ce. ,Xn}
The sample range is the difference between the maximum amidhonin. It is clearly a function of the order statistics:
Range{Xl,Xz, .. ,Xn} = X(n) — X(l)'

We know that ifX1) < X5 < ... < X, denotes the order statistics of a random sampl&p, . .., X, from a continuous
population with cdfFx (x) and pdffx (x) then the pdf o ;) is given by

n! o .
fi 09 = gy X 091 L= Rl (30)
for j = 1,2,...,n. The pdf of thej" order statistic for transmuted generalized Rayleigh ithistions is given by
2aB2%xe (B’nl ~(px2\ it (507
b= o (e ) [Lea-2a (e )] @)

x [1+/\ ~A (1_e*<ﬁX>2)a] o

: [1_ (1-e®) [14a-2(1- e<ﬁ><>2)°ﬂ

Therefore, the pdf of the largest order statistjg, is given by

n—j

fx(n) (x) = ZHGBZX@_(BX)2 (1 — e_(ﬁx)z) an-t [1—}— A—2A (1 _ e—(Ex)z) a} )

« {1+ A=A (1— e—<BX>2) a} "

and the pdf of the smallest order statistig, is given by

fy 09 = 2napixe P (1-e ®9) 10220 (1- e 19°) ] (33)
x ll— (1-e®) 142 -2 (1~ e—(ﬁxﬂ)"ﬂ nfl_

7 Application

In this section, we use a real data set to show that the traesihgeneralized Rayleigh distribution can be a better model
than the generalized Rayleigh, Rayleigh and transmuteteRgdistribution.

We work with nicotine measurements made in several brancigafettes in 1998. The data have been collected by the
Federal Trade Commission which is an independent agentyedd$ government, whose main mission is the promotion
of consumer protection.

The report entitled tar, nicotine, and carbon monoxide efgmoke of 1206 varieties of domestic cigarettes for the
year of 1998 at

http://www.ftc.gov/reports/tobacco and consists of thtadsets and some information about the source of the data,
smokers behaviour and beliefs about nicotine, tar and cammmoxide contents in cigarettes. The free form data set can
be found at http://pwl1.netcom.com/ rdavis2/ smoke.html.

The site http://home.att.net/ rdavis2/cigra.html camai = 384 observations. We analysed data about nicotine,
measured in milligrams per cigarette, from several cigaf@tands. Some summary statistics for the nicotine datasare
follows: mean =0.852, median = 0.9, minimum = 0.1 and maxinun
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Fig. 4: Empirical, fitted generalized Rayleigh and transmuted geized Rayleigh cdf of nicotine measurements data.
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Fig. 5: Estimated densities of the models for nicotine measuresdata.

The variance covariance matrix of transmuted generaRagteigh(a = 1.173f3 = 1.317,5\ = —0.681) is computed

as
0.199x 10710.313x 10720.121x 101

1(6)"*= [ 0.313x 10720.155x 1072 0.389x 103
0.121x 10710.389x 1073 0.145%x 101

Thus, the variances of the MLE of, B andA becomeVar (&) = 0.199x 10~ Var () = 0.155x 10-2 andVar (A ) =
0.145x 10°L.
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Table 1: Estimated Parameters of the Rayleigh, transmuted Rayl€Bhand transmuted GR distribution for nicotine measurdsnen
data

Model Parameter Estimates 96% -LL
Transmuted a=1173 [0.89711.45] 112.443
Generalized B=1317 [1.239,1.394
Rayleigh A =-0.681 [~0.917,—0.445

Generalized a=1579 [1.346 1811 119.457
Rayleigh B =1.250 [1.326.1.175

Transmuted 0 =0.555 [0.528 0.582 121.224
Rayleigh A =-07718095  [-0.914 —0.629
Rayleigh 6=0.6475387 [0.618 0.687 142.3572

Table 2: Criteria for Comparison.
Model K-S -2LL AIC AICC BIC
GR 0.281 238.914 242.914 242.949 250.606
TGR 0.122 224.886 230.886 230.956 242.4%25

The LR statistics to test the hypothests: A = 0 versusH; : A #0: w = 14.028> 3.841= x2(a = 0.05), so we
reject the null hypothesis.

In order to compare the distributions, we consider some rothiterion like K — S Kolmogorow Smirnow),
—2log(L),AIC (Akaike Information Criterion), AICC(Akaike Informtaon Criterion Corrected) and BIC(Bayesian
information criterion)for the real data set. The best dstiion corresponds to lowdf — S, —2log(L), AIC, AICC and
BIC values:
2k(k+1)

AIC=2k-2logL), AICC=AIC+_———

and
BIC = klog(n) — 2logL.

wherek is the number of parameters in the statistical modehe sample size anHd is the maximized value of the
likelihood function for the estimated model. Also, heredafculating the values ¢ — Swe use the sample estimates of
A ando. Table 1 shows parameter MLEs to each one of the two fittediloligions, table 2 shows the valueskf- S,
—2log(L), AIC, AICC and BIC values. The values in table 2 indicate thattransmuted generalized Rayleigh distribution
leads to a better fit than the generalized Rayleigh distohut

8 Conclusion

In this article, we propose a new model: the so-called thestrauted generalized Rayleigh distribution which extends
the generalized Rayleigh distribution in the analysis dafdaith real support. An obvious reason for generalizing a
standard distribution is because the generalized fornaistiprovides greater flexibility in modeling real data. Werige
expansions for the expectation, variance, moments and ¢imeemt generating function. The estimation of parameters is
approached by the method of maximum likelihood, also thermftion matrix is derived. We consider the likelihoodaati
statistic to compare the model with its baseline model. Apliagtion of the transmuted generalized Rayleigh distidyu

to real data show that the new distribution can be used dffi@etely to provide better fits than the generalized Riglie
distribution.
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