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Abstract: We establish sufficient conditions for the existence and exponentiatmpence of positive almost periodic solutions for a
discrete Nicholson's blowflies model with nonlinear harvesting term. Alt&®ncerning the persistence of the solutions is provided
prior to proving the main theorems. The validity of the main results is denairgtby a numerical example.

Keywords: Almost periodic solution; Exponential stability; Discrete Nicholson’s blowfligodel; Nonlinear harvesting term.

1 Introduction estimate of the true population, the authors 13][have

put forward a question about the asymptotic behavior of
One of the most popular population models is the wellNicholson’s model containing linear harvesting term of
known Nicholson’s blowflies model the form

X (t) = —ax(t) + Bx(t — 1)e ), (1) X (t) = —ax(t) + Bx(t— 1)e D _Hxt — o), (2)

which was proposed by Gurngy et al. ity ffo describe wherea,B,7,y,0,H € (0,»). In response to the raised
the population of the Australian sheep-blowfly and to question, there have appeared many results concerning the
agree with Nicholson’s experimental dafd.[Herex(t) is  jnvestigation of periodic and almost periodic behaviors of
the size of the population at tinief3 is the maximum per  gquation 2) via employing several utilities such as fixed
capita daily egg production,/¥ is the size at which the  point theorems and coincidence degree thea8/14, 15,
blowfly population reproduces at its maximum rateis 16 17,18]. The generalized Nicholson’s blowflies model

the pair capita daily adult death rate amdis the \ith a nonlinear harvesting term of the form
generation time. The dynamical behavior of solutions for

various modifications of this model and its discrete N (- Tu(t
analogue has been extensively studied by many authors (V) = —a(t)x(t)+kzlﬁk(t)x(t— w(t))e Y

during the last couple of decades. For the background of ~H(X() B 3)
model (), we suggest the reader to consult some relevant ’

papers 8,4,5,6,7,8,9,10,11]. has been recently attacked in the new pafté}. Indeed,

It is well-known that the optimal management of the standard Leray-Schauder degree techniques are used
renewable resources has direct relationship to sust&inabko establish necessary and sufficient conditions for the
development of population. One way to handle this is toexistence of at least orle—periodic solutions.
study population models subject to harvesting, dispersal Besides their theoretical significance, difference
or competition. Biologists have purported that the procesequations with almost periodic coefficients have shown
of harvesting of population species, in particular, is of important influence in mathematical biology. A model
great significance in exploitation of biological resourcesgoverned by these types of equations could be used to
such as in fishery, forestry and wildlife management.mimic a population’s response to seasonal fluctuations in
Assuming that the harvesting is a function of the delayedits environment; see for instance the remarkable
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monographs 20,21,22]. Motivated by the above that each discrete interval of length | contains an integer
justifications, numerous number of papers studyingt = 7(¢) € E{¢g,x} such that

population models described by difference equations have

been published by many researches over the last three [x(n+ 1) —x(n)| < €,

decades. Following this trend, the investigation of the

almost periodic solutions for the discrete counterpart offor alln € Z, 1 is called thee —translation number of ¢n).
equation ) has been recently investigated by Alzabut et

al. in [23). In this paper, however, we shall consider the Definition 2.[24] Let f : Z x D — R™, where D is an
discrete Nicholson’s blowflies model with nonlinear open set inR™, f(n,x) is said to be almost periodic in n

harvesting term of the form uniformly for xe D if for any € > 0 and any compact set
—X(n—T(n) S in D, there exists a positive integée|S) such that any
Ax(n) = —a(nx(n+1)+B(nx(n—1(n))e interval of length (&, S) contains an integert for which
— H(n,x(n—a(n))), 4)
where n € Z and a,B,y, 7,0 : Z — [0,0) and [f(n+1.x) —f(nx)] <é,

H:Z xZ™ — [0,0). We shall employ the contraction
mapping principle to establish sufficient conditions for
the existence of an almost periodic solution fdj. (By
constructing an appropriate Lyapunov functional, we als
prove that the solutions of{ converge exponentially to
an almost periodic solution. We provide a numerical
example to illustrate the effectiveness of the main
theorems. To the best of author’s observation, no paper
has been published regarding the investigation of almosH.2H : Z x Z™ — [0, ) is almost periodic sequence and

for all n € Z and xe S, 1 is called thee—translation
number of fn,x).

O\We consider equatiord] under the assumptions:

H.la,B,y,1,0 : Z — [0,0) are almost periodic
sequences;

periodicity of equation4). Comparing with some earlier there existd.y > 0 such that
works, the result of this paper is novel and presents a
different approach. [[H(n,x) —H(n,y)|| < Lu|Ix—Y|-

Further, we assume that
2 Preliminary Assertions

Let Z and Z™ be the sets of integer numbers and theA‘lThere exist two constanty andf? such that

m—dimensional integer vectors, respectively. For a B+ 1 B- H+
bounded sequencesand f defined onZ and Z x Z™, (—) — < I, —+I'1e‘V+rl -——> I
respectively, we defing™,g—,f+ and f~ as follows y/ a-e a a
gt = SUhez g(n), g = infaez 9(N) and andl > I-
fr= SuRn,x)%(Z,Zm) f(n,x), f== mf(n,x)ﬁ(Z,Zm) f(n,x). ' &
In the sequel, we assume that The following result tells that every solution off)(
ersists.
a >0, >0,y >0 (5) P
and Lemma 1lLet Al hold. Then for
pcCOl:={¢p: < d(n <I,Vnel}, the solution
r=max{t", 0"} >0. (6)  x(n,no,¢) of (4) and (7) satisfies
Letl={-r,—r+1,...,—10},C={¢:1 -»Z}andC" =
{¢ €C: ¢ >0,¢(0) > 0}. For eachp € C, we define the l2 <X(n,no, @) <T1, V ne [ng, ). ®)

norm of ¢ as||¢|y =maxc |¢|. Denotex, = x(n+s) for
all se 1. For any¢ € C*, it is easy to see that there is a ProofSetx(n) = x(n,no,¢). Let [ng, T) C [ng,%) be an

unique solutiorx(n,0, ¢) of (4) with interval such that
Xo=¢ (7) x(n) >0, Yne[ny,T). (9)
andx(n,0,¢) > 0forallne Z. We claim that

Definition 1.[24] A sequence xZ — R™M is said to be

almost periodic sequence if tlie-translation set of x: 0<x(n) <l1, Vne[no,T). (10)

E{e,x} = {r eZ:|x(n+T1)—x(n)| < g}’ For the sake of contradiction, we assume th#) (s not
true. Then, one can fingy € (no, T) such that
foralln € Z is arelatively dense set i for all € > 0, that
is, for any givens > 0, there exists an integer+ 0 such X(m+1) > and 0<x(n) <, (11)
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forallne [np—r,ny+1). In view of 4), A.1, (12) and the
fact that sug.que™ = %, we have
0<Ax(n) = —a(n)x(n+1)
+ B(ny)x(ny — T(nl))efv(nl)X(an(m))
—H(ng,x(n — a(ny)))
< —a(ng)x(n1+1)

N L)?/ ((:11)) y(n)x(ny — T(ny))e VX —T(n)

< —a7x(np+1)+ (€)+i
oo (8) 4
<0,

which is a contradiction and this implies that0f holds.
Next, we show that

X(n) >, ¥Ynen,T). (12)
On the contrary, assume that there exists (no, T) such
that

X(np+1) <y, and x(n) > Iy, (13)

for all n € [ng—r,nz+1). In virtue of A.1 and 10), we
obtain

<x(n) <, yxn >yt —>1 (14)

1
v
for all n € [ng—r,nz+1). In view of (4), A.1, (13), (14)
and the fact that mip< sue " = 669, we have

0> Ax(np) = —a(n)x(nz+1)

B(ny) _ —Y(n2)x(N2—1(n2))
+ Vi) y(n2)x(nz — T(np))e™”

H(n2,x(nz — a(ny)))

2—a+Fz+B—y+I'1e‘V+’—1—H+
W
- +
+|_ B povn_ H”
>a [ I'2+a+l'1e 1 s > 0,

which is a contradiction and this implies tha?{ holds.
In view of (10) and (L2), it follows that relation 8) is true.
Hence the proof is complete.

3 The Main Results
Consider the linear difference system
x(n+1) = A(n)x(n), (15)

wherex € Z™ and A : Z — Z™™ is a matrix sequence.
In what follows, we denote by - || any convenient norm
either of a vector or of a matrix.

Definition 3.The difference systemf) is said to possess
an exponential dichotomy &hif there exist a projection P,
that is, an mx m matrix P such that = P, and constants
K >0, v > 0such that

1 r—s-1
-t <K(— >
IXOPX M+l <K(555) o=

and

X0 -PX s+ 0l <K (1) sz

where Xt) is the fundamental solution matrix df%) and
r,seZ.

Consider the following almost periodic difference
system
x(n+1) = A(n)x(n) + f(n,x), (16)

whereA : Z — Z™™M is almost periodic matrix sequence
andf : Z x Z™ — Z™Mis almost periodic vector sequence.

Theorem 1[23] If the linear system 15) admits
exponential dichotomy, then systef®)(has a bounded
solution Xn) in the form

x(n) = nil X(n)PX t(k+ 1) f(k,x(k))
k=—00
S X = PIX Yk Dk x(K),
k=n

(17)

where Xn) is the fundamental solution matrix cf%).

The following result can be easily extracted from
Lemma 2.15in25.

Theorem 2Let a(n) > 0 be an almost periodic sequence
onZ and

a(n)
T a( (18)
then the linear system
Ax(n) = —a(n)x(n+1) (19)

admits an exponential dichotomy @n
Set
P ={¢ : ¢ is an almost periodic sequence Bh.

If we define the norm|@ ||, =Supz ¢ ()|, for any ¢ €
A, then one can easily deduce tldtis a Banach space.
We assume that

A2BLL b g

Theorem 3Let A.1 and A.2 hold. Then, there exists a
unique positive almost periodic solution o#)(in
B ={p:pcB,L<p(n)<l1,VneZ}.
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ProofFor anyg € %, we consider an auxiliary equation

Ax(n) = —a(n)x(n+1) + B(n)e(n— T(n))efv(n)wmfr(n))
— H()o(n—a(n)). (20)

Since inﬁez% > 0, it follows from Theoren®? that

the linear system

Ax(n) = —a(n)x(n+1) (21)

admits an exponential dichotomy d¢h By Theoreml
and Theorem2, we deduce that systen?@ has a
bounded solution of the form

n-1 n-1

= 5 N(em)

M=—or=

X [B(m)fp(m— T(m))e V(me(m-t(m)

~ H(m g(m—a(m))].
By wusing H.1-H.2,

(22)

the almost

deduce thax? is also almost periodic.
Define a mapping : & — £ by setting

T(p(n) =x*(n),V pc Z.

It is easy to see tha¥* is a closed subset a®. For any
@ € B*, we have

W; L_l (1+a )
< mg(m-—t(me VeI
-5 Nlsw )
. Bm _ —y(m)g(m-—T(m)
% ) Y(m@(m=—T(m)e :

By the fact that sup.que™ =

< 5 ) (‘3
)

(23)

1

periodicity  of
-t (T},(r)) and the fact that the uniform limit of
almost periodic sequences is also almost periodic, we

By virtue of the fact that mipy<xue ™ = ke %, we

obtain

x?(n) > B—Jrl'le*wrl——Jr >, VNeZ.

This tells that the mapping is a self-mapping froms*
to #*.

Next, we claim thaf is a contractive mapping o%*.
Letg,p € #*. Then

IT(8) =T (W)l =SUpIT (9 () ~T(w()
n-1 n-1
—sup| 5 |‘|(1+a ;) B(m)[#(m-—r(m)

e VmB(m-T(m) _ T(m))efvm)w(mfr(m»)}

= H(m, ¢ (= o(m))) +H(m,y(m-o(m)))|
n-1 n-1 1

B
S (1+a(r>)y(my<m>¢<m—“m”

M=—o =

e VMeM=T(m) _ y/(m)y(m— T(m))e—v(m)W(m—Nm)))}

~ H(m ¢(m—o(m))) +H(m y(m-o(m)))|.

= sup
nez

In virtue of the fact that syp ; | 45| = %, we observe that
_ _ 1—(x+06(y—x))
xe > —ye Y| = ex+6y><‘| —y (25)

1
< SIX—yl, xyelLe),0<6<1.

By (8), we also observe
M9 (m—T(m) = (mF > y(m) o= > 1, ¥ meZ.

Therefore, by4), (5) and @5), we have

n-1 n-1 1

TWla<suw 3 T (1757)

neZ m=—cor=m

IT(¢) -

< [P e(m) — i ()|

+ [H(m ¢ (m= o(m))) ~ H(m ¢(m- o (m)|

Using thaty i . =2, (1+1 = 5, We end up with n-1 n-1 B+
—+L -y .
e < (w3 T (7a)) (g ) ie-vi
@ Ll I
X*(n) < ( y> a-e <l, Vnez. (24) Therefore, we end up with
B™ Lu
On the other hand, we have IT(@)=T(W)|x < (a*eZ + F) o —wll,
ot 1 P o ,
n) > z |'| (7) which implies by (A.2) that the mapping is contractive
m&erm 1+ a(r) on%*. Therefore, the mappin possesses a unique fixed
B v o(me point¢* € #* such thaflT ¢* = ¢*. Thus,¢* is an almost
[7 @(m—1(m))e”¥ M) H+]' periodic solution of4) in the *. The proof is complete.
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We assume that

A3a~ > 1+%+LH.

Theorem 4Let A.1 and A.3 hold. Further, assum&m)
is positive almost periodic solution off)(in the set#*.
Then, the solution(x, no, ¢) of (4) with ¢ € C° converges
exponentially to X(n) as n— oo.

ProofSetx(n) =x(n, g, ¢ ) andy(n)
ne [ng—r,). Then

Ay(n) = —a(ny(n+1) +B(n) [x(n—7(n))e VT

—x*(n— T(n))efwn)X*(nfT(n))]

— [H(n,x(n=0o(n))) —H(n,x*(n—a(n)))]. (26)

The result of Lemmal tells thatx(n) is positive and
bounded oring, «) and

=x(n)—x*(n), where

[ <x(n) <, ¥ neng—r,o). (27)

Define a function®(u) by setting

o) =¢e"—a" 4—B+ ) 4 Ly ue [0,1).

(28)
Itis clear that® is continuous o1f0, 1]. Then, by (A.3) we
have
B-‘r
P0)=1-0a" +?+LH <0,
which implies that there exist two constants> 0 and 0<
A <1 such that

o(A)=¢€ —a~ +B+ée/‘<”rl) +Lpe Y < —p <o.
(29)

We consider the discrete Lyapunov functional
V() = ly(n)[ e (30)

Calculating the difference &f (n) along the solutiory(n)
of (26), we have

Av(n) = A(ly(n)e*")
= Aly(n)[e ™ +|y(n)|aer"
< —a(n)y(n+1)e!™v
+ B(n)x(n—1 (”))e_y(mx(n_r(n))
— X*(n—T1(n))e VX |ef\ (n+1)
+ [H(n,x(n—a(n))) — H(n,x*(
+ ly(m)] (Y — et

’e(\ (n+1)

< [y(n)[e* ™Y —a(n)\y(n+1)|e/\(n+l)
+ [Bm)(n—t(n))e- T
— X" (n—1(n))e" y(nx*(n—t(n ))|

+ [H(n.x(n— o)) - H(n.x (n—o(n)))|| & "

for all n > ng.
Let

M :e/‘”°< max ¢(n)—x*(n)|—|—1), ¥ n> no.
ne[ng,)

Then, we claim that
V(n) = |y(n)|e" <M, V¥ n>no. (31)

Assume, on the contrarily, that there exists> ng such
that

V(n,)>M andV(n) <M, ¥ ne[ng—r,n,), (32)

which implies that
V(n,)—M >0 andV(n)—

M <O, ¥V neln—rn,).

(33)
In virtue of (25), (31) and B2), we obtain

0<A(V(n)—M)=4V(n,)
< ly(no)|@ ™D —a(n,)|y(n, + 1)+

+ [B(n*)lx(n* —1(n,))e Y X(n—1(n.))

— X' (N, — T(ny))e VX (T
G(n)))*H(n*,X*(n*—o'(n)))”eﬂ(nwl)
< [y(n.)[e ™+ —a(n,)ly(n, +1)[e} ™D
+ Bgz]*) ly(n, — 1(n,))|e} (M-H1-T()hTing

. —a(n,)) |eﬂ(n*+1*0(n*))ef\0’<m)

+ B Mo Lyme

+ |H(n.,x(n, —

+ LH]y(n
< (e —a" )M

+
- —a*+%e"(”1)+LHe"(’+1)]M

Thus,
Bt
e —a + —Ze/\(”l) +Lyet D >0

which contradicts Z9). Hence 81) holds. It follows that
ly(n)| < Me~" for all n > ng. The proof is complete.

In what follows, we construct an example whose aim
is not standing at generality but illustrating how the main
theorems can be used.

Example 1Consider the following Nicholson’s blowflies
model with a nonlinear harvesting term of the form

Ax(n) = —(18+con)x(n+1)
—1(20+0.01/ sinv/5 n|)x(n— <°V31) (34)
« e_x(n_ez|cos\/§n\)
|cosy/3n|
\smn+cosﬂn| X¥(n—¢ )

1+ x2(n e2/cosv3 n|)
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