A Result Concerning the Ratio of Consecutive Prime Numbers

Yilun Shang*
Institute for Cyber Security, University of Texas at San Antonio, San Antonio, Texas 78249, USA

Received: 23 Feb. 2013, Revised: 27 Apr. 2013, Accepted: 28 Apr. 2013
Published online: 1 Sep. 2013

Abstract

Let p_{n} be the nth prime number and $\pi(n)$ be the number of primes less than or equal to n. In this note, we show that the limit of $\left(p_{n+1} / p_{n}\right)^{\pi(n)}$ does not exist.

Keywords: Prime number, arithmetic function, asymptotics.

1 Introduction and main results

Denote by p_{n} the nth prime number. The prime number theorem (see e.g. [1,2]) implies that

$$
\begin{equation*}
p_{n} \sim n \ln n \tag{1}
\end{equation*}
$$

as $n \rightarrow \infty$; i.e. $\lim _{n \rightarrow \infty} p_{n} /(n \ln n)=1$. Let $\pi(n)$ be the number of primes less than or equal to n. It is easy to see that $\pi(n) \sim n / \ln n$ as $n \rightarrow \infty$. Thus, it follows from (1) that

$$
\begin{equation*}
\left(\frac{p_{n+1}}{p_{n}}\right)^{\pi(n) / n} \rightarrow 1 \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$. A recent result [3] on the ratio of consecutive prime numbers shows that the limit of $\left(p_{n+1} / p_{n}\right)^{n}$ does not exist. More interesting results regarding consecutive prime numbers can be found in e.g. $[4,5]$.

In this note, we will prove the following result:

Proposition 1.1

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\frac{p_{n+1}}{p_{n}}\right)^{\pi(n)}=e \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\frac{p_{n+1}}{p_{n}}\right)^{\pi(n)}=0 . \tag{4}
\end{equation*}
$$

For $n \geq 1$, let $a_{n}=\left(p_{n+1}-p_{n}\right) / \ln p_{n}$. It is well known that the limit of a_{n} does not exist. In particular, it is shown that [6]

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n}=+\infty \tag{5}
\end{equation*}
$$

and [7]

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} a_{n}=0 \tag{6}
\end{equation*}
$$

More properties of the sequence $\left\{a_{n}\right\}$ can be found in the monograph [8].

The following weaker corollary can be obtained from Proposition 1.1.
Corollary 1.1

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{a_{n}}{\ln n}=0 \tag{7}
\end{equation*}
$$

A sequence $\left\{b_{n}\right\}$ is said to be an Erdős-Turán type sequence [9] if $\Delta_{k}=b_{k+1}-b_{k}$ changes its sign infinitely many times. In view of Proposition 1.1, a natural question would be to ask if $\left(p_{n+1} / p_{n}\right)^{\pi(n)}$ is an Erdős-Turán type sequence. For more general background, we refer the interested reader to [10] and references therein.

2 Proofs

In this section, we present the proofs of our main results.
Proof of Proposition 1.1. By the prime number theorem (1), we obtain

$$
\frac{\ln p_{n}}{\ln n} \rightarrow 1
$$

as $n \rightarrow \infty$. Therefore,

$$
\frac{\pi(n) \ln p_{n}}{n} \sim \frac{\pi(n) \ln n}{n} \sim 1
$$

[^0]A more careful examination shows that

$$
\frac{\pi(n) \ln p_{n}}{n} \sim 1+\Theta\left(\frac{\ln \ln n}{\ln n}\right)
$$

and hence

$$
p_{n}^{\pi(n)} \sim e^{n} \cdot e^{\Theta\left(\frac{n \ln \ln n}{\ln n}\right)},
$$

as $n \rightarrow \infty$.
By some basic manipulations, we obtain

$$
\begin{aligned}
\left(\frac{p_{n+1}}{p_{n}}\right)^{\pi(n)} & =\frac{p_{n+1}^{\pi(n+1)}}{p_{n}^{\pi(n)}} \cdot p_{n+1}^{\pi(n)-\pi(n+1)} \\
& \sim e \cdot p_{n+1}^{\pi(n)-\pi(n+1)} \\
& \sim e(n \ln n)^{\pi(n)-\pi(n+1)}
\end{aligned}
$$

Since $\pi(n)-\pi(n+1)$ equals to either -1 or 0 depending on $n+1$ is a prime number or not, we derive (3) and (4) as desired.
Proof of Corollary 1.1. We have

$$
\begin{aligned}
\left(\frac{p_{n+1}}{p_{n}}\right)^{\pi(n)} & \sim\left(\frac{p_{n+1}}{p_{n}}\right)^{\frac{n}{\ln n}} \\
& =\left(\left(1+\frac{p_{n+1}-p_{n}}{p_{n}}\right)^{\frac{p_{n}}{\left(p_{n+1}-p_{n}\right) \ln n}}\right)^{\frac{\left(p_{n+1}-p_{n}\right) n}{p_{n}}}
\end{aligned}
$$

as $n \rightarrow \infty$.
From (1), it yields $\left(p_{n+1}-p_{n}\right) / p_{n} \rightarrow 0$ and

$$
\frac{\left(p_{n+1}-p_{n}\right) n}{p_{n}} \sim \frac{p_{n+1}-p_{n}}{\ln n} \sim \frac{p_{n+1}-p_{n}}{\ln p_{n}}=a_{n}
$$

as $n \rightarrow \infty$.
Inserting these estimates into (8), we obtain

$$
\left(\frac{p_{n+1}}{p_{n}}\right)^{\pi(n)} \ll e^{\frac{a_{n}}{\ln n}}
$$

as $n \rightarrow \infty$. The result (7) then follows from (3).

Acknowledgement

The author is grateful to the anonymous referee for helpful comments that improved this paper.

References

[1] A. E. Ingham, The Distribution of Prime Numbers, Cambridge University Press, Cambridge, (1990).
[2] D. J. Newman, Simple analytic proof of the prime number theorem, Am. Math. Mon., 87, 693-696 (1980).
[3] J. Sándor, On certain bounds and limits for prime numbers, Notes Number Theory Discrete Math., 18, 1-5 (2012).
[4] V. Copil and L. Panaitopol, On the ratio of consecutive primes, Int. J. Number Theory, 6, 203-210 (2010).
[5] Y. Shang, On a limit for the product of powers of primes, Sci. Magna, 7, 31-33 (2011).
[6] E. Westzynthius, Über die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors, 25, 1-37 (1931).
[7] D. A. Goldston, J. Pintz, and C. Y. Yildirim, Primes in tuples I, Ann. Math., 170, 819-862 (2009).
[8] E. Bach and J. Shallit, Algorithmic Number Theory, MIT Press, (1996).
[9] P. Erdős and P. Turán, On some new questions on the distribution of prime numbers, Bull. Amer. Math. Soc., 64, 371-378 (1948).
[10] K. Goto, On monotone almost (P, μ)-u.d. mod 1 sequence, Math. Nachr., 205, 5-17 (1999).

[^0]: * Corresponding author e-mail: shylmath@hotmail.com

