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Abstract: Response surface methodology is widely used for developing, improving and optimizing processes in various fields. In this
paper, we present a general algorithmic method for constructing 2q14q2 mixed-level designs in order to explore and optimize response
surfaces with respect toD-efficiency, where the predictor variables are at two and four equally spaced levels, by utilizing a hybrid
genetic algorithm. Emphasis is given on various properties that arise from the implementation of the genetic algorithm, such as using
genetic operators as local optimizers and the representation of the four levels of the design with a 2-bit Gray Code. We applied the
genetic algorithm in several cases and the optimized mixed-level designs achieve good properties, thus demonstrating the efficiency of
the proposed hybrid heuristic.
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1 Introduction

Response surface methodology is an effective tool for the exploration and the description of the relation between a
response of interest and a number of experimental factors assumed affecting the response. In cases where an
experimenter wishes to explore a quadratic relation between the response and the factors a design with three levels or
more must be used. Factorial designs and fractional factorial designs in three or more levels are applied in such cases,
while second-order designs with three-level factors have concentrated much interest. Box-Behnken ([2], [3]) designs are
the most popular three-level designs used in a response surface framework. Central composite designs, introduced by
Box and Wilson [6], are also employed when five levels for each involved factorare required. For a nice overview on
second-order designs and response surfaces the interestedreader can refer to the textbooks of Box and Draper [4], [5], of
Khuri and Cornell [14] and of Myers and Montgomery [17].

Experimenters often come across with problems where different number of levels are assigned to the factors. These
cases can be confronted by designing the experiment via mixed-level orthogonal arrays or near orthogonal arrays. Several
authors have dealt with the construction and the propertiesof such designs ([16], [18], [20], [21]). However, the approach
of a response surface problem using orthogonal arrays of this type is not always sufficient for exploring a second-order
model. In this paper we focus on the algorithmic construction of mixed-level designs, where factors are in two and four
levels (denoted by 2q14q2), having high estimation efficiency of the linear and quadratic components of the effects and
the two-factors interactions. In the following sections weprovide some preliminary concepts, describe our construction
method and explore the properties of the new designs.

2 Design selection and evaluation

In a response surface framework, the objective is to model and optimize a response variable that is affected by several
experimental factors. Since the real relation between the response and the factors is unknown, the first step is to find an
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approximation of the true functional relationship betweenthem. The observed responsey, can be written as a function of
the exploratory variablesx1,x2, . . . ,xk, as follows:

y= f (x1,x2, . . . ,xk)+ ε ,

whereε is a random error.
Generally, the first attempt is to approximate the shape of the response surface by fitting a first-order model to the

response,

y= β0+
k

∑
j=1

β jx j + ε , (1)

whereβ0, β j , j = 1, . . . ,k are unknown parameters andε is a random error term. When the first-order model appears
inadequate to describe the true relationship between the response and the predictor variables due to the existence of
surface curvature, it is upgraded to a second-order model. In cases that mixed-level designs in two and four levels are
used, model (2) is employed to explore a quadratic relation between the response variabley andk exploratory variables in
total (q1 variables in two levels andq2 variables in four levels),

y= β0+
q1

∑
j=1

β jx j +
k

∑
j=q1+1

β jx j +
k

∑
j=q1+1

β j j x
2
j +

k

∑
i=1

k

∑
j=1

︸ ︷︷ ︸

i< j

βi j xix j + ε (2)

whereβ0 corresponds to the general mean,β j , j = 1, . . . ,k are the coefficients of the first order effects,β j j , j = q1+1, . . . ,k
are the coefficients of the second order effects,βi j , i = 1, . . . ,k−1, j = i +1, . . . ,k correspond to the interactions between
first order main effects, andε is a random error term.

Furthermore, it is needed to have an estimation efficiency measure in order to evaluate and compare the available
designs. Box and Draper [7] discussed as a measure of design efficiency the determinantmaximization of the information
matrix. In this paper we useD-efficiency introduced by Wang and Wu [19] for determining the overall efficiency for
estimating a set ofp effects

De f f = |X′X|1/p, (3)

whereX is the model matrix with its columns standardized,X = [x0/||x0||,x1/||x1||, . . . ,xp/||xp||], x0 stands for the vector
with all elements equal to 1, andxi is the coefficient vector of thei-th effect, i = 1, . . . , p. Since the columns ofX are
standardized,D-efficiency achieves its maximum value, which equals to 1, ifand only if thexi ’s are orthogonal to each
other. More details can be found in [19]. In the case of a second-order (SOD) mixed-level design with k predictor variables
in total (q1 two-level factors andq2 four-level factors), the matrixX consists ofp= k(k+1)+2(q2+1)

2 columns, corresponding
to the coefficient vectors of constant, linear, quadratic and product terms defined as in Equation2.

Also, we use theJ2 optimality criterion introduced in [21] for the evaluation of the new designs. Consider ann× k
matrix D = [xi j ], and that weightω j > 0 is assigned to thej-th column, which hassj levels. The similarity between the
i-th andr-th rows ofD can be measured by theδi,r(D) value, given by:

δi,r(D) =
k

∑
j=1

ω jδ (xi j ,xr j ),

whereδ (x,y) = 1 if x= y and 0 otherwise. Ifω j = 1 for all j, thenδi,r(D) is the number of coincidences between thei-th
andr-th rows and

J2(D) = ∑
16i6r6n

[δi,r(D)]2. (4)

A design isJ2-optimal if it minimizesJ2. Xu [21] gave a lower bound forJ2 calculated as:

L(k) = 2−1
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A design achieves the lower bound if and only if it is an orthogonal array. For more details see [21].
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3 Construction via (n/q1,n/q2)-circulant generators

In this section we propose a new construction method of mixed-level 2q14q2 response surface designs from two circulant
generators. Our goal is to construct a second-order design with n rows andq1 two-level andq2 four-level balanced
columns. The(n/q1,n/q2)-circulant generated design will be a two-block circulant design.

Definition 1.A two-block circulant design is a2q14q2 design with n runs when the following conditions hold:

1.n≡ 0 (mod 4),
2.n/q1 and n/q2 are positive integers,
3.the2q1 and4q2 blocks are generated by n/q1 and n/q2 shifts, respectively.

For the construction of a(n/q1,n/q2)-circulant design, the two generators are column vectors oflengthn and comprise
the first and the(q1+1)-th column of then× (q1+q2) design matrix. Each of the 2q1 columns of this matrix is obtained
from each previous column by moving the lastn/q1 elements to the first positions and cyclicly permutating theother
elements downwards. Similarly, the rest 4q2 columns are constructed byn/q2 shifts.

Remark: The choice of balanced generators ensures the construction of a(n/q1,n/q2)-circulant balanced design.

The next example illustrates the construction of a 2342 mixed-level design in 24 runs. First, consider the following
two generators which are used for the construction of a design matrix with three balanced columns in two levels, coded
as−1 and+1, and two balanced columns in four levels, coded as−3,−1, 1, 3:

g1 = -1 -1 -1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 -1
g2 = 1 -3 -3 -3 -3 3 3 3 -3 -1 3 -3 3 1 -3 3 1 -1 -1 3 3 1 -1 -3

The first generatorg1 is the first column of the design matrix. The second column is obtained from the first by moving
the last 8 elements to the first positions and cyclicly permutating the other elements downwards. The third column is
produced in a similar way from the second column. The fourth column of the design is the second generatorg2, while the
fifth column occurs by moving the last 12 elements of the fourth column to the first positions and cyclicly permutating the
other elements downwards. So, we obtain the following design matrix in the transpose form:

-1 -1 -1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 -1
-1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 1
1 1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1
1 -3 -3 -3 -3 3 3 3 -3 -1 3 -3 3 1 -3 3 1 -1 -1 3 3 1 -1 -3
3 1 -3 3 1 -1 -1 3 3 1 -1 -3 1 -3 -3 -3 -3 3 3 3 -3 -1 3 -3

Next, we create the two columns that correspond to the quadratic effects of the two four-level factors, and the 10 columns
corresponding to the two-factor interactions between the five main effects. The produced design requires only 6 more runs
than the saturated model and can estimate efficiently a second-order response surface model with 18 unknown parameters
since it has 90.24%D-efficiency.

4 Optimization of response surface designs by means of genetic algorithms

Genetic algorithms form a powerful metaheuristic that mimicks processes from the Theory of Evolution to establish
search algorithms by defining algorithmic analogues of biological concepts such as reproduction, crossover and mutation.
Genetic algorithms were introduced in 1970 by John Holland [13] aiming to design an artificial system having properties
similar to natural systems. In this paper, we assume some basic familiarity with Genetic Algorithm concepts. The concepts
necessary for a description of the Genetic Algorithm (GA) can be found in Goldberg [12], in Stefanie Forrest’s article
[11] and in the Handbook of Genetic Algorithms edited by Davis [8].

GAs are attractive because of their robustness and flexibility in terms of a computer implementation and,
mathematically, they do not require a differentiable objective function thereby reducing the chance of reporting local
optima. Some earlier attempts utilizing a GA in the construction of response surface designs have been given by Drain et
al. [10]. However, this approach, while promising, lacked of an efficient coding of the chromosomes i.e. the number of
the experimental runs forming the design. In particular, the authors proposed utilizing and constructing the whole design;
thus restricting the GA to evolve in finding optimal responsesurface designs in several cases. A successful reduction in
terms of computational complexity of an efficient representation of the candidate design, has been proposed in [15]. In
this application, the authors integrated as a core ingredient of the GA the use of sequential juxtaposition of suitable
generators forming block circulant matrices.
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4.1 A hybrid genetic algorithm for response surface designs

Chromosomes representation The two circulant generators considered in the case of a 2q14q2 response surface design
will be represented by binary vectors of total length 3n bits when constructing an× (q1+q2) design matrix. In particular
the firstn bits of the binary vector represent the 2q1 block of the design, while we restrain the rest 2n bits to represent the
4q2 block. This construction is valid when we represent a two-block circulant design. In the case of mixed level response
surface designs, the genes constitute of four possible values representing the two and four levels of the designs. This
encoding process add to the compactness of the GA, since a small amount of storage is needed for an× (q1+q2) design
matrix to be represented by the GA. In particular for a 2q14q2 design having an× (q1+q2) design matrix it is required
3n bits to be reserved in memory. In contrast, if we had to represent the whole design matrix we would have to reserve
n(q1 + q2) bits. Therefore the space complexity is reduced fromO(n2) to O(n) sinceq1 + q2 < n in a 2q14q2 response
surface design.

Chromosomes encoding and decoding A suitable encoding to binary variables was needed since the genetic operators
behave better in binary arithmetic (Goldberg, [12]). The answer to this vital question found in the field of Combinatorics
and Computer Science in terms of representing a 2-bit Gray Code,GC2 = {00,01,11,10} when considering the 4q2 block
of the design. For more details, on Gray Codes we refer the interested reader to Carla [9]. More precisely, we mapped
each level of the 4q2 block to a codeword of the 2-bit Gray Code, i.e.{−3,−1,1,3}→ {00,01,11,10}, and each level of
the 2q1 block to binary values{−1,1}→ {1,0}, thus transforming the problem on its binary equivalent which allowed us
to carry on with the next stages of utilizing a GA.

4.2 Tuning GA parameters

Initial population consists of random chromosomes. We found it useful to generate these chromosomes by retrieving
samples of binary sequences of length 3n retrieved from the uniform distribution. The option to generate random binary
sequences of lengthn and 2n which correspond to the 2q1 and 4q2 block of the design was discarded because the
probability of these sequences to be balanced, i.e. having the same number of zeros and ones (corresponding to balanced
designs), is smaller than the probability of the initial sequences of length 3n to be balanced. A sample chromosome of
the aforementioned construction for a response surface design with 8 runs is the concatenation of the following binary
strings 01101100| 1001110110001100 where the first 8 bits corresponds to the 2q1 block and the rest 16 bits to the 4q2

block of the design, respectively.

An objective function for response surface designs The crucial choice of the objective function (OF) subject to be
optimized arise naturally from the theoretical framework of D-efficient designs.D-efficiency is the most widely known
and used optimality criterion. As stated in Xu (2002),J2 and A2 optimality criteria are good surrogates for theDe f f
criterion. We have computed theJ2 optimality criterion for our designs and its correspondinglower bound, which we
achieve for several cases as it can be seen at Table 1. Moreover, the last optimality criteria perform a smaller
discrimination between the designs thus making them a less robust choice choice for OF. The genetic algorithm attempts
in both cases to maximize the value ofD-efficiency with respect to its upper bound which is equal to 1, in the orthogonal
case. Due to the theoretical background and statistical justifications, given below, when a value ofD-efficiency was
detected in the range of[0.65,1.00] we considered we have found an acceptable (feasible) solution. The theoretical
background is that whenq1 ≥ 2 andq2 ≥ 2 then it is known that OA exist whenn≡ 0 (mod 16). Therefore, since we
have run our algorithm for a wide variety of cases forn and the ones that OA do not exist, in these cases we have
De f f < 1. Moreover, a statistical justification for accepting values ofDe f f within the aforementioned range is that when
considering the statistical model defined in equation (2), avalue ofDe f f ≥ 0.65 provides at least a moderate safeguard
against multicollinearity, which effects the estimates ofthe model parameters.
We are now able to describe the three genetic operators of reproduction, crossover and mutation as specifically have been
applied by the genetic algorithm we have used.

Crossover We defined the basic genetic operation, crossover, that splits a pair of binary integers at a random position and
combines the head of one with the tail of the other and vice versa. We implement an additional variant of crossover where
the crossover point is fixed to then+1 position of a chromosome of length 3n. In this variant we exchange the firstn
positions of the parents and keep the rest chromosome unchanged. In this way, we model the phenomenon of two response
surface designs having a 2q1 block of good quality with respect toD-efficiency. Moreover, the selection of parents that will
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contribute to this mutual exchange of 2q1 blocks is not limited to elitist solutions, but was allowed to inferior solutions to
contribute to the procedure because we observed that a chromosome with low overallD-efficiency may have a 2q1 block
that is of superior quality when it is mixed with other candidate 4q2 blocks.

Mutation Additional operations, such as inverting a section of the binary representation (inversion) or randomly changing
the state (0 or 1) of individual bits (mutation), also transform the population. We used the mutation operator as a local
optimizer where it was taken into account that only an even number of bits was changed until a balanced solution was
found. From the produced list of neighbors of the original solution the optimizer discards solutions that differ in odd bit
positions or even same bits, i.e. “00” or “11”, because the produced solution is not balanced. From the set of produced
solutions we keep the one with the best fitness, and apply the same procedure of mutation to a portion of the population
according to a probability retrieved from the uniform distribution.

Selection and reproduction Before each such cycle (generation), population members are selected on the basis of their
fitness (the value of the objective function for that solution) to be the “parents” of the new generation. This operator acts
by imposing a minimum degree of performance of the objectivefunction in every generation. We implemented a ranking
selection procedure where the solutions are ordered according to their objective value in descending order until the desired
fixed number of parents is obtained. The rest of the population is selected through hybridization of proportional selection
where inferior solutions have less chance of being selected, but are not excluded because even not very good chromosomes
can contain useful genes that should remain available for recombination. Ranking selection first ranks the population and
then every chromosome receives fitness from this ranking. The worst will have fitness 1, second worst 2 etc. and the best
will have fitnessN (where isN is the number of chromosomes in population).

Termination condition of the genetic algorithm was set a predefined number of evolved generations. This number of
generations was proportional to the size of the response surface design that the genetic algorithm was searching for in
each case. Thus the GA required only a few generations to find asmall sized optimal response surface design, while
a larger design required additional generations to be evolved. We note that, the time complexity of the algorithm was
relatively small compared to exhaustive search algorithms.
We give below a description of our hybrid GA in pseudo-code form in the case of mixed-level RSD’s.

Algorithm 1 Hybrid GA for mixed-level response surface designs
function HGA2MRSD(n,q1,q2,N)

Require: n,q1,q2 > 0 ⊲ Input runsn, number ofq1 two-level andq2 four-level balanced columns, andN maximum iterations
gen← 1 ⊲ Reset number of generations
initpop← GENERATEINITIAL POPULATION(n) ⊲ Generate sequences of length 3n
EVALUATE (OF(initpop)) ⊲ Evaluate initial population
maxgen← N
pop← initpop
while gen≤maxgen do

chrom← ENCODE(n,q1,q2, pop)
chrom(gen)← SELECT((n,q1,q2,chrom))(gen−1)
RANKING(chrom(gen))
CROSSOVER(chrom(gen))
MUTATION(chrom(gen))
repeat

PROPORTIONALSELECT(chrom(gen))
until chrom(gen) == chrom
pop← DECODE(chrom)
EVALUATE (OF(pop))
if OF(pop) ∈ [0.65,1.00] then

report acceptable design found
end if
gen← gen+1

end while
end function
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5 Results

Table 1 summarizes the best results occurred from the proposed constructive method for designs with run size between 8
and 64 and 2-8 factors. The first column corresponds to the number of runsn of the design,q1 andq2 denote the number
of two-level and four-level factors respectively,k is the total number of factors andp is the total number of parameters
with respect to model2. The calculated values of the designs estimation efficiencyaccording to relation3 are listed in the
sixth column. The values of theJ2 criterion (equation4) and the lower boundL(k) (equation5) are reported in the next
two columns respectively, while the fractionL(k)/J2, as an efficiency measure of the designs, is given in the last column.
The designs are available by the authors on request.

Table 1: Results of the proposed constructive method.

n q1 q2 k p D-eff J2 L(k) L(k)/J2 n q1 q2 k p D-eff J2 L(k) L(k)/J2

8 1 1 2 5 100,00% 16 16 100,00% 44 2 4 6 26 92,18% 4680 4290 91,67%
8 2 1 3 8 91,97% 36 36 100,00% 44 4 2 6 24 93,71% 6714 6589 98,14%
12 1 2 3 9 92,38% 78 63 80,77% 48 1 6 7 35 74,40% 5642 5016 88,90%
12 2 1 3 8 92,27% 118 108 91,53% 48 2 3 5 19 96,75% 4267 4152 97,30%
16 1 2 3 9 96,21% 144 136 94,44% 48 2 4 6 26 94,65% 5488 5184 94,46%
16 2 1 3 8 100,00% 216 216 100,00 % 48 2 6 8 43 72,70% 8008 7536 94,11%
16 2 2 4 13 90,99% 304 272 89,47% 48 3 2 5 18 97,67% 5358 5304 98,99%
20 1 2 3 9 97,76% 266 235 88,35% 48 3 3 6 25 96,19% 6627 6480 97,78%
20 1 4 5 20 66,22% 502 400 79,68% 48 3 4 7 33 85,39% 7980 7752 97,14%
20 2 2 4 13 93,85% 504 465 92,26% 48 4 2 6 24 95,15% 8144 7920 97,25%
20 4 1 5 17 74,78% 1107 1000 90,33% 48 4 3 7 32 83,24% 9448 9336 98,81%
24 1 3 4 14 91,14% 544 492 90,44% 48 4 4 8 41 75,79% 11500 10848 94,33%
24 1 4 5 20 79,37% 824 636 77,18% 48 6 1 7 30 88,23% 13146 12936 98,40%
24 2 2 4 13 96,65% 772 708 91,71% 48 6 2 8 39 76,38% 15040 14736 97,98%
24 2 3 5 19 90,82% 988 888 89,88% 52 2 4 6 26 95,82% 6436 6162 95,74%
24 3 1 4 12 98,48% 996 960 96,39% 52 4 4 8 41 82,84% 13860 12870 92,86%
24 3 2 5 18 90,24% 1278 1176 92,02% 56 1 7 8 44 70,06% 10061 8596 85,44%
24 4 1 5 17 87,12% 1545 1500 97,09% 56 2 7 9 53 68,23% 13720 12432 90,61%
28 1 4 5 20 81,07% 1342 924 68,85% 56 4 1 5 17 98,76% 9161 9100 99,33%
28 2 2 4 13 97,55% 1040 1001 96,25% 56 4 2 6 24 97,04% 11138 10948 98,29%
28 4 1 5 17 93,43% 2138 2100 98,22% 56 4 4 8 41 87,49% 15672 15064 96,12%
28 4 2 6 24 78,88% 2654 2485 93,63% 56 7 1 8 38 86,78% 23676 23296 98,39%
32 1 4 5 20 85,48% 1388 1264 91,07% 56 7 2 9 48 70,89% 26542 26152 98,53%
32 2 4 6 26 88,12% 2388 2112 88,44% 56 8 1 9 47 75,23% 29700 29484 99,27%
32 4 1 5 17 92,70% 2825 2800 99,12% 60 1 5 6 27 88,16% 7410 6570 88,66%
32 4 2 6 24 86,86% 3402 3328 97,82% 60 1 6 7 35 81,43% 8928 8205 91,90%
36 1 3 4 14 94,71% 1393 1251 89,81% 60 2 5 7 34 90,68% 11219 10230 91,18%
36 1 4 5 20 86,13% 1818 1656 91,09% 60 2 6 8 43 86,92% 13020 12255 94,12%
36 2 3 5 19 93,22% 2458 2223 90,44% 60 3 4 7 33 90,53% 12904 12480 96,71%
36 2 4 6 26 89,77% 3036 2754 90,71% 60 3 5 8 42 82,21% 15761 14730 93,46%
36 3 2 5 18 92,96% 3022 2871 95,00% 60 3 6 9 52 76,44% 18366 17145 93,35%
36 3 3 6 25 91,65% 3681 3483 94,62% 60 4 3 7 32 89,47% 15640 14955 95,62%
36 3 4 7 33 68,48% 4706 4140 87,97% 60 4 4 8 41 88,01% 17940 17430 97,16%
36 4 2 6 24 89,71% 4374 4293 98,15% 60 4 5 9 51 70,84% 21389 20070 93,83%
36 4 3 7 32 68,29% 5629 5031 89,38% 60 5 1 6 23 98,38% 15224 15120 99,32%
36 6 1 7 30 81,58% 7226 7056 97,65% 60 5 2 7 31 91,00% 18176 17655 97,13%
40 1 4 5 20 90,32% 2400 2100 87,50% 60 5 3 8 40 82,07% 20784 20355 97,94%
40 1 5 6 27 80,39% 2883 2680 92,96% 60 5 4 9 50 67,94% 23928 23220 97,04%
40 2 4 6 26 92,82% 3840 3480 90,63% 60 6 1 7 30 92,81% 20802 20580 98,93%
40 2 5 7 34 78,22% 4811 4220 87,72% 60 6 2 8 39 86,25% 23718 23505 99,10%
40 4 2 6 24 92,06% 5592 5380 96,21% 60 6 3 9 49 78,96% 27108 26595 98,11%
40 5 1 6 23 92,23% 6597 6480 98,23% 64 4 4 8 41 89,55% 20936 19968 95,38%
40 5 2 7 31 81,27% 7854 7520 95,75% 64 8 1 9 47 83,43% 39229 38880 99,11%

6 Conlcusion

Our main concern was to construct efficient designs with run size near to the saturated case. In order to provide designs
with higher estimation efficiency an increase to the number of total runs was required. The proposed method enabled us
to construct designs with economical run size and high efficiency for the estimation of a second order model. This fact is
the most significant advantage of these new designs over mixed-level orthogonal arrays available in the literature which,
in many cases, are inadequate to estimate a second-order model. The new mixed-level designs can be very practical in
design of experiments when a response surface model should be fitted.

The approach to construct optimal response surfance designs by means of optimization is of current interest [10,15].
Our efforts were concentrated on the maximization of the value ofD-efficiency via a hybrid heuristic search, because the
De f f criterion is one of the most well-known criteria for comparing response surface designs. The flexibility of genetic
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algorithms allows different objective functions to be optimized. Therefore, if another criterion (i.e.J2-optimality) was
under consideration our hybrid GA could be applied in a similar manner. However, we would have to evaluate a number
of parameters for the success of such an application. Due to the randomness of the genetic algorithms a different
approach may behave better or worse. Genetic algorithms appeared to be a successful and promising approach for the
construction ofD-optimal response surface designs since their compactnessof encoding allowed us to use OF
information (not derivatives) and probabilistic transition rules (not deterministic). Furthermore, the encoding process of
the chromosomes to generators significantly restrained thespace complexity, thus we were able to represent large
response surface designs with a few amount of storage space.A conceptual comparison of several optimization
algorithms can be found in [1] where their respective advantages and disadvantages are explained, in detail.
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