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Abstract: Response surface methodology is widely used for developing, imgrevid optimizing processes in various fields. In this
paper, we present a general algorithmic method for constructifz2mixed-level designs in order to explore and optimize response
surfaces with respect tD-efficiency, where the predictor variables are at two and four equpiged levels, by utilizing a hybrid
genetic algorithm. Emphasis is given on various properties that arisetfre implementation of the genetic algorithm, such as using
genetic operators as local optimizers and the representation of the Vels t# the design with a 2-bit Gray Code. We applied the
genetic algorithm in several cases and the optimized mixed-level desigiev@ good properties, thus demonstrating the efficiency of
the proposed hybrid heuristic.
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1 Introduction

Response surface methodology is an effective tool for th@oeation and the description of the relation between a
response of interest and a number of experimental factosanasd affecting the response. In cases where an
experimenter wishes to explore a quadratic relation betvilee response and the factors a design with three levels or
more must be used. Factorial designs and fractional fattdesigns in three or more levels are applied in such cases,
while second-order designs with three-level factors hareentrated much interest. Box-Behnke2i,([3]) designs are

the most popular three-level designs used in a responsacsufifamework. Central composite designs, introduced by
Box and Wilson ], are also employed when five levels for each involved faeter required. For a nice overview on
second-order designs and response surfaces the intereatkt can refer to the textbooks of Box and Draggr[p], of
Khuri and Cornell 4] and of Myers and Montgomeny[/].

Experimenters often come across with problems where diftenumber of levels are assigned to the factors. These
cases can be confronted by designing the experiment viadahixe| orthogonal arrays or near orthogonal arrays. S¢ver
authors have dealt with the construction and the propesfisach designs {[6], [18], [20], [21]). However, the approach
of a response surface problem using orthogonal arrays ®type is not always sufficient for exploring a second-order
model. In this paper we focus on the algorithmic constructbmixed-level designs, where factors are in two and four
levels (denoted by®4%), having high estimation efficiency of the linear and quédreomponents of the effects and
the two-factors interactions. In the following sections previde some preliminary concepts, describe our constmct
method and explore the properties of the new designs.

2 Design selection and evaluation

In a response surface framework, the objective is to modglogmimize a response variable that is affected by several
experimental factors. Since the real relation betweendhpanse and the factors is unknown, the first step is to find an
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approximation of the true functional relationship betwé®sm. The observed respongean be written as a function of
the exploratory variables;, xo, . .., Xk, as follows:

y= (X1, X2,...,X) + &,

wheree is a random error.
Generally, the first attempt is to approximate the shape ef¢isponse surface by fitting a first-order model to the
response,

K
y=Po+ ) BiXj+Ee, 1)
=1

wherefp, Bj, j = 1,...,k are unknown parameters agds a random error term. When the first-order model appears
inadequate to describe the true relationship between #$monse and the predictor variables due to the existence of
surface curvature, it is upgraded to a second-order modaases that mixed-level designs in two and four levels are
used, model?) is employed to explore a quadratic relation between theorese variablg andk exploratory variables in
total (g variables in two levels ang, variables in four levels),

y= BoJrzﬁJXJ+ Z Bix; + Z BiiX + ZZBIJXIXJJFS @)

j=o1+1 j=m+1

I<J

wheref3p corresponds to the general megp,j =1,...,kare the coefficients of the first order effeqds,, j = g1 +1,...,K
are the coefficients of the second order effefsi = 1,...,k—1,j =i+1,...,k correspond to the interactions between
first order main effects, anglis a random error term.

Furthermore, it is needed to have an estimation efficiencgsone in order to evaluate and compare the available
designs. Box and Draper]discussed as a measure of design efficiency the determimefiinization of the information
matrix. In this paper we usB-efficiency introduced by Wang and W9 for determining the overall efficiency for
estimating a set op effects

Dett = [X'X|Y/P, 3)

whereX is the model matrix with its columns standardiz¥ds= [Xo/|[%ol[,X1/[[X1]], - - -, Xp/|Xp||], X0 Stands for the vector
with all elements equal to 1, angl is the coefficient vector of theth effect,i = 1, .., p. Since the columns oX are
standardizedD-efficiency achieves its maximum value, which equals to anid only if thex;’s are orthogonal to each
other. More details can be found ih9). In the case of a second-order (SOD) mixed-level desigh kyitredictor variables
in total (g; two-level factors andp four-level factors), the matriX consists opp = Kt D)+2(% 4D columns, corresponding
to the coefficient vectors of constant, linear, quadratit product terms defined as in Equat&n

Also, we use thé, optimality criterion introduced ing1] for the evaluation of the new designs. Considemank
matrix D = [x;;], and that weighty; > 0 is assigned to th¢-th column, which has; levels. The similarity between the
i-th andr-th rows ofD can be measured by tidg; (D) value, given by:

k
Z Xl]vxfj

whered(x,y) = 1 if x=yand 0 otherwise. Ifv; = 1 for all j, theng (D) is the number of coincidences betweenititie
andr-th rows and

2D)= Y [8:D)> (4)

1<i<r<n

A design isJy-optimal if it minimizesJ,. Xu [21] gave a lower bound fal, calculated as:

K 2 k k 2
<Zlnsjle> + (Zl(Sj - 1)(n5j1wj)2> -n (lej> : 5)
i= i= =

A design achieves the lower bound if and only if it is an orthiogl array. For more details se#].
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3 Construction via (n/qz,n/gz)-circulant generators

In this section we propose a new construction method of mieeel Z14% response surface designs from two circulant
generators. Our goal is to construct a second-order desidgnnarows andq; two-level andq, four-level balanced
columns. Thgn/q1,n/ge)-circulant generated design will be a two-block circulaesidn.

Definition 1.A two-block circulant design is 2114% design with n runs when the following conditions hold:

1.n=0 (mod 4,
2.n/q; and /gy are positive integers,
3.the2% and4% blocks are generated by/g; and r/q; shifts, respectively.

For the construction of én/d1,n/d2)-circulant design, the two generators are column vectdengfthn and comprise
the first and the€q; + 1)-th column of then x (g; + ) design matrix. Each of the®2columns of this matrix is obtained
from each previous column by moving the lagig; elements to the first positions and cyclicly permutating akteer
elements downwards. Similarly, the re§t 4dolumns are constructed oy o shifts.

Remark: The choice of balanced generators ensures thewctitst of a(n/gi1,n/gz)-circulant balanced design.

The next example illustrates the construction offd?2mixed-level design in 24 runs. First, consider the follogvin
two generators which are used for the construction of a desigtrix with three balanced columns in two levels, coded
as—1 and-+1, and two balanced columns in four levels, coded-8s—1, 1, 3:

¢=- -1 1 -1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 -1
¢= 1 3 3 3 3 3 3 3 3 1 3 3 3 1 3 3 1 -1 -1 3 3 1 -1 -3

The first generatog; is the first column of the design matrix. The second columrbisioed from the first by moving
the last 8 elements to the first positions and cyclicly peating the other elements downwards. The third column is
produced in a similar way from the second column. The foustbron of the design is the second generaigwhile the
fifth column occurs by moving the last 12 elements of the toadlumn to the first positions and cyclicly permutating the
other elements downwards. So, we obtain the following daesigtrix in the transpose form:

-1 -1 -1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 -1
-1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 1
11 -1 1 -1 -1 1 1 -1 -1 -2 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1

1 3 3 33 3 3.3 8324 3 38 3 1 3 3 1 -1 -1 3 3 1 -1 -3
31+ -3 3.1 -1 -1 3 3 1 -1 3 1 3 383 3 3 3 3 3 3 -1 3 -3

Next, we create the two columns that correspond to the gtia@féects of the two four-level factors, and the 10 columns
corresponding to the two-factor interactions between theerfiain effects. The produced design requires only 6 more run
than the saturated model and can estimate efficiently a demaler response surface model with 18 unknown parameters
since it has 924% D-efficiency.

4 Optimization of response surface designs by means of gerealgorithms

Genetic algorithms form a powerful metaheuristic that noksi processes from the Theory of Evolution to establish
search algorithms by defining algorithmic analogues ofdgjimal concepts such as reproduction, crossover and ronitati
Genetic algorithms were introduced in 1970 by John Holld8l §iming to design an artificial system having properties
similar to natural systems. In this paper, we assume soniefaasiliarity with Genetic Algorithm concepts. The contgp
necessary for a description of the Genetic Algorithm (GA) ba found in Goldbergl]?], in Stefanie Forrest’s article
[11] and in the Handbook of Genetic Algorithms edited by Dagjs [

GAs are attractive because of their robustness and fleyibii terms of a computer implementation and,
mathematically, they do not require a differentiable otijecfunction thereby reducing the chance of reporting lloca
optima. Some earlier attempts utilizing a GA in the congtamncof response surface designs have been given by Drain et
al. [10]. However, this approach, while promising, lacked of ancedfit coding of the chromosomes i.e. the number of
the experimental runs forming the design. In particulag,ahthors proposed utilizing and constructing the wholédes
thus restricting the GA to evolve in finding optimal resposséface designs in several cases. A successful reduction in
terms of computational complexity of an efficient repreaéoh of the candidate design, has been proposetSh [n
this application, the authors integrated as a core ingnediethe GA the use of sequential juxtaposition of suitable
generators forming block circulant matrices.
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4.1 A hybrid genetic algorithm for response surface designs

Chromosomes representation The two circulant generatorsidered in the case of &'2% response surface design
will be represented by binary vectors of total lengthbts when constructing ax (g; + gz) design matrix. In particular
the firstn bits of the binary vector represent th& Dlock of the design, while we restrain the restifits to represent the
4% block. This construction is valid when we represent a twazblcirculant design. In the case of mixed level response
surface designs, the genes constitute of four possibleesakepresenting the two and four levels of the designs. This
encoding process add to the compactness of the GA, sincelbasnuaunt of storage is needed fona (g; + d2) design
matrix to be represented by the GA. In particular for'a4® design having & x (q1 + gz) design matrix it is required

3n bits to be reserved in memory. In contrast, if we had to regrethe whole design matrix we would have to reserve
n(g: + gp) bits. Therefore the space complexity is reduced fi®Mm?) to O(n) sinceq; +gp < nin a 214% response
surface design.

Chromosomes encoding and decoding A suitable encodingherbvariables was needed since the genetic operators
behave better in binary arithmetic (GoldbergZ]). The answer to this vital question found in the field of Canalorics

and Computer Science in terms of representing a 2-bit Grale@C, = {00,01,11, 10} when considering the®d block

of the design. For more details, on Gray Codes we refer tleedsted reader to Carl8][ More precisely, we mapped
each level of the % block to a codeword of the 2-bit Gray Code, {e-3,—1,1,3} — {00,01,11,10}, and each level of

the 21 block to binary value§—1,1} — {1,0}, thus transforming the problem on its binary equivalentolutdllowed us

to carry on with the next stages of utilizing a GA.

4.2 Tuning GA parameters

Initial population consists of random chromosomes. We ¢bifruseful to generate these chromosomes by retrieving
samples of binary sequences of lengthr8trieved from the uniform distribution. The option to geste random binary
sequences of length and 2 which correspond to the2 and 42 block of the design was discarded because the
probability of these sequences to be balanced, i.e. hakilngame number of zeros and ones (corresponding to balanced
designs), is smaller than the probability of the initial sexces of lengthr8to be balanced. A sample chromosome of
the aforementioned construction for a response surfadgrdesth 8 runs is the concatenation of the following binary
strings 011011001001110110001100 where the first 8 bits corresponds to%hkl@ck and the rest 16 bits to th&4
block of the design, respectively.

An objective function for response surface designs Theiarwhoice of the objective function (OF) subject to be
optimized arise naturally from the theoretical framewofkDeefficient designsD-efficiency is the most widely known
and used optimality criterion. As stated in Xu (2002),and A, optimality criteria are good surrogates for tBgs¢
criterion. We have computed thle optimality criterion for our designs and its correspondiager bound, which we
achieve for several cases as it can be seen at Table 1. Mordebeelast optimality criteria perform a smaller
discrimination between the designs thus making them a tdasst choice choice for OF. The genetic algorithm attempts
in both cases to maximize the value{efficiency with respect to its upper bound which is equal,tm the orthogonal
case. Due to the theoretical background and statisticéfipadions, given below, when a value &f-efficiency was
detected in the range 90.65,1.00] we considered we have found an acceptable (feasible) solufihe theoretical
background is that whegy > 2 andqy > 2 then it is known that OA exist whem= 0 (mod 16. Therefore, since we
have run our algorithm for a wide variety of cases foand the ones that OA do not exist, in these cases we have
Detf < 1. Moreover, a statistical justification for accepting \edwfDe+ within the aforementioned range is that when
considering the statistical model defined in equation (2jglae of D¢ > 0.65 provides at least a moderate safeguard
against multicollinearity, which effects the estimatestwf model parameters.

We are now able to describe the three genetic operators @fdegtion, crossover and mutation as specifically have been
applied by the genetic algorithm we have used.

Crossover We defined the basic genetic operation, crossbeesplits a pair of binary integers at a random positiah an
combines the head of one with the tail of the other and vicearalVe implement an additional variant of crossover where
the crossover point is fixed to thret 1 position of a chromosome of lengtim.3n this variant we exchange the finst
positions of the parents and keep the rest chromosome ugetiaim this way, we model the phenomenon of two response
surface designs having &tdblock of good quality with respect ©@-efficiency. Moreover, the selection of parents that will
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contribute to this mutual exchange &k dlocks is not limited to elitist solutions, but was allowednferior solutions to
contribute to the procedure because we observed that a okoone with low overalD-efficiency may have a® block
that is of superior quality when it is mixed with other caratigl 42 blocks.

Mutation Additional operations, such as inverting a sectibthe binary representation (inversion) or randomly cfirag

the state (0 or 1) of individual bits (mutation), also tramef the population. We used the mutation operator as a local
optimizer where it was taken into account that only an evember of bits was changed until a balanced solution was
found. From the produced list of neighbors of the origindlison the optimizer discards solutions that differ in odtl b
positions or even same bits, i.e. “00” or “11”, because thepced solution is not balanced. From the set of produced
solutions we keep the one with the best fithess, and applyatine procedure of mutation to a portion of the population
according to a probability retrieved from the uniform distition.

Selection and reproduction Before each such cycle (gaoejapopulation members are selected on the basis of their
fithess (the value of the objective function for that solajito be the “parents” of the new generation. This operatts ac
by imposing a minimum degree of performance of the objedtinetion in every generation. We implemented a ranking
selection procedure where the solutions are ordered aogdaitheir objective value in descending order until theicksl

fixed number of parents is obtained. The rest of the populasiselected through hybridization of proportional se@ect
where inferior solutions have less chance of being selebtadre not excluded because even not very good chromosomes
can contain useful genes that should remain available éamnbination. Ranking selection first ranks the populatioth a
then every chromosome receives fitness from this ranking warst will have fithess 1, second worst 2 etc. and the best
will have fitnessN (where isN is the number of chromosomes in population).

Termination condition of the genetic algorithm was set adpfimed number of evolved generations. This number of
generations was proportional to the size of the respongacsudesign that the genetic algorithm was searching for in
each case. Thus the GA required only a few generations to ferdal sized optimal response surface design, while
a larger design required additional generations to be edolWe note that, the time complexity of the algorithm was
relatively small compared to exhaustive search algorithms

We give below a description of our hybrid GA in pseudo-codafin the case of mixed-level RSD’s.

Algorithm 1 Hybrid GA for mixed-level response surface designs
function HGA2MRsSD(n, gy, 2, N)

Require: n,qi,02 >0 > Input runsn, number ofg; two-level andg, four-level balanced columns, ahimaximum iterations
gen+1 > Reset number of generations
initpop <~ GENERATEINITIAL POPULATION(n) > Generate sequences of length 3
EVALUATE (OF (initpop)) > Evaluate initial population
Mmadgen<— N
pop<— initpop

while gen< maxyendo
chrom<«— ENCODE(N, s, J2, POp)
chrom(gen) < SELECT((n,q1,qp, chrom))(gen— 1)
RANKING (chrom(gen))
CrossovERchromgen))
MUTATION (chrom(gen))
repeat
PROPORTIONALSELECT(Cchrom(gen))
until chrom(gen == chrom
pop+ DecoDEchrom)
EVALUATE (OF(pop))
if OF(pop) € [0.65,1.00 then
report acceptable design found
end if
gen« gen+1
end while
end function
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5 Results

Table 1 summarizes the best results occurred from the pedpanstructive method for designs with run size between 8
and 64 and 2-8 factors. The first column corresponds to théoruof runsn of the designg; andg, denote the number

of two-level and four-level factors respectivekyjs the total number of factors amalis the total number of parameters
with respect to modeé?. The calculated values of the designs estimation effici@ecprding to relatio® are listed in the
sixth column. The values of th& criterion (equatiord) and the lower bountl(k) (equation5) are reported in the next
two columns respectively, while the fractituik) /J», as an efficiency measure of the designs, is given in the ddistrm.

The designs are available by the authors on request.

Table 1: Results of the proposed constructive method.

n_ g G Kk p D-eff 5 L(k) L(k)/J n_ a g k p D-eff 5 Lk Lk)/%

8 1 1 2 5 10000% 16 16 100,009 44 2 4 6 26 92,18% 4680 4290 9167%
8 2 1 3 8 91,97% 36 36  100,00% 44 4 2 6 24 9371% 6714 6589  98,14%
2 1 2 3 9 9238% 78 63 80,77%|| 48 1 6 7 35 7440% 5642 5016  88,90%
2 2 1 3 8 9227% 118 108  9153%| 48 2 3 5 19 96,75% 4267 4152  97,30%
6 1 2 3 9 9621% 144 136  94,44%| 48 2 4 6 26 9465% 5488 5184  94,46%
6 2 1 3 8 10000% 216 216 100,00% 48 2 6 8 43 7270% 8008 7536  94,11%
6 2 2 4 13 90,99% 304 272  89,47%| 48 3 2 5 18 97,67% 5358 5304  98,99%
20 1 2 3 9 97,76% 266 235 8835%| 48 3 3 6 25 96,19% 6627 6480  97,78%
20 1 4 5 20 6622% 502 400  79,68% 48 3 4 7 33 8539% 7980 7752  97,14%
20 2 2 4 13 9385% 504 465  9226% 48 4 2 6 24 9515% 8144 7920  97,25%
20 4 1 5 17 7478% 1107 1000 90,33%| 48 4 3 7 32 83,24% 9448 9336  98,81%
24 1 3 4 14 91,14% 544 492  90,44%| 48 4 4 8 41 7579% 11500 10848  94,33%
24 1 4 5 20 7937% 824 636  77,18%| 48 6 1 7 30 88,23% 13146 12936  98,40%
24 2 2 4 13 9665% 772 708  91,71%| 48 6 2 8 39 76,38% 15040 14736  97,98%
24 2 3 5 19 90,82% 988 888  89,88% 52 2 4 6 26 9582% 6436 6162  9574%
24 3 1 4 12 9848% 996 960  96,39%| 52 4 4 8 41 82,84% 13860 12870  92,86%
24 3 2 5 18 90,24% 1278 1176  92,02% 56 1 7 8 44 70,06% 10061 8596  85,44%
24 4 1 5 17 87,12% 1545 1500 97,09% 56 2 7 9 53 6823% 13720 12432  90,61%
28 1 4 5 20 8107% 1342 924  6885% 56 4 1 5 17 98,76% 9161 9100  99,33%
26 2 2 4 13 9755% 1040 1001  9625% 56 4 2 6 24 97,04% 11138 10948  98,29%
28 4 1 5 17 9343% 2138 2100 9822% 56 4 4 8 41 87,49% 15672 15064  96,12%
28 4 2 6 24 7888% 2654 2485 9363% 56 7 1 8 38 86,78% 23676 23296  98,39%
32 1 4 5 20 8548% 1388 1264 9107% 56 7 2 9 48 70,89% 26542 26152  98,53%
32 2 4 6 26 8812% 2388 2112 8844% 56 8 1 9 47 7523% 29700 29484  99,27%
32 4 1 5 17 9270% 2825 2800 99,12% 60 1 5 6 27 88,16% 7410 6570  88,66%
32 4 2 6 24 868% 3402 3328 97,82% 60 1 6 7 35 8143% 8928 8205  91,90%
36 1 3 4 14 9471% 1393 1251  89,81% 60 2 5 7 34 90,68% 11219 10230  91,18%
36 1 4 5 20 8613% 1818 1656 91,09% 60 2 6 8 43 86,92% 13020 12255  94,12%
36 2 3 5 19 9322% 2458 2223  90,44% 60 3 4 7 33 90,53% 12904 12480  96,71%
36 2 4 6 26 8977% 3036 2754 90,71% 60 3 5 8 42 82,21% 15761 14730  93,46%
36 3 2 5 18 92,96% 3022 2871 9500% 60 3 6 9 52 7644% 18366 17145 93,35%
36 3 3 6 25 91,65% 3681 3483  9462% 60 4 3 7 32 89,47% 15640 14955  95,62%
36 3 4 7 33 6848% 4706 4140 8797% 60 4 4 8 41 88,01% 17940 17430  97,16%
36 4 2 6 24 8971% 4374 4293 9815% 60 4 5 9 51 70,84% 21389 20070  93,83%
36 4 3 7 32 6829% 5629 5031 8938% 60 5 1 6 23 9838% 15224 15120  99,32%
3 6 1 7 30 8158% 7226 7056 97,65% 60 5 2 7 31 91,00% 18176 17655 97,13%
40 1 4 5 20 90,32% 2400 2100 87,50% 60 5 3 8 40 82,07% 20784 20355  97,94%
40 1 5 6 27 8039% 2883 2680 9296%| 60 5 4 9 50 67,94% 23928 23220  97,04%
40 2 4 6 26 92,82% 3840 3480 90,63% 60 6 1 7 30 92,81% 20802 20580  98,93%
40 2 5 7 34 7822% 4811 4220 87,72% 60 6 2 8 39 8625% 23718 23505  99,10%
40 4 2 6 24 92,06% 5592 5380 96,21% 60 6 3 9 49 78,96% 27108 26595  98,11%
40 5 1 6 23 92,23% 6597 6480 9823% 64 4 4 8 41 89,55% 20936 19968  95,38%

5 2 7 8 1 9

31 81,27% 7854 7520 95,75%| 64 47  83,43% 39229 38880 99,11%

6 Conlcusion

Our main concern was to construct efficient designs with iz@ sear to the saturated case. In order to provide designs
with higher estimation efficiency an increase to the numlibéotal runs was required. The proposed method enabled us
to construct designs with economical run size and high efiicy for the estimation of a second order model. This fact is
the most significant advantage of these new designs ovedrexel orthogonal arrays available in the literature wahic
in many cases, are inadequate to estimate a second-ordet.rmbeé new mixed-level designs can be very practical in
design of experiments when a response surface model shefildical.

The approach to construct optimal response surfance deligmeans of optimization is of current interesd,[L5)].
Our efforts were concentrated on the maximization of theevalf D-efficiency via a hybrid heuristic search, because the
Det criterion is one of the most well-known criteria for compayiresponse surface designs. The flexibility of genetic
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algorithms allows different objective functions to be optied. Therefore, if another criterion (i.&-optimality) was
under consideration our hybrid GA could be applied in a imihanner. However, we would have to evaluate a number
of parameters for the success of such an application. Dubeiaandomness of the genetic algorithms a different
approach may behave better or worse. Genetic algorithmsaapg to be a successful and promising approach for the
construction ofD-optimal response surface designs since their compactofesmncoding allowed us to use OF
information (not derivatives) and probabilistic transitirules (not deterministic). Furthermore, the encodiracess of

the chromosomes to generators significantly restrainedsplaee complexity, thus we were able to represent large
response surface designs with a few amount of storage spao®nceptual comparison of several optimization
algorithms can be found irl] where their respective advantages and disadvantageg@eened, in detail.
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