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Abstract: For an undirected simple gra@@) a variation of toughness is defined as

1(G) = min{ﬁ w(G—9) > 2}

if Gis not complete, and(G) =  if G is complete. In this paper, we determine the connected deapities.# such that every large
enough connecte& -free graph is-tough.
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1 Introduction is .Z-free if G is H-free for eachH € .%. Let G be a
connected graph ardbe a positive real number. A graph
We only consider simple undirected graphs in this paperG is said to bet-tough if 7. (w(G—- 9§ —1) < [§
The notation and terminology used but undefined in thisestablishes for every cuts&C V(G). The 1(G) is the
paper can be found inl]. The notion oftoughnesswas  maximumrt for which G is 7-tough.
first introduced by chvatal in2]: if G is complete graph, In this article, we first raise following problem far
t(G) = . If Gis not complete, and then solve the Problem 1.
Problem 1. Let 7 be a positive real number.
S| G_9>2 Characterize the connected graph famili&ssuch that
m’w( -9=22} every large enough connectégé-free graph ist-tough.

The answer is expressed in the following section. The
and where w(G — S) is the number of connected rest of this paper is organized as follows. In next Section,
components o6 — S. A variation of toughness is defined we present some definitions and show our main result. In
as Section 3, we give the detail proofs for our main result.

t(G) = min{

, S
= - = -9 >
1(G) mm{w(G_S)_l‘w(G 9 >2) S . |
efinitions and main result
if Gis not complete, and(G) = « if G is complete.
Several papers contributed to the properties (@ ). For two connected grapli$; andH,, the notionH; < H,

Enomoto B] proved that if7(G) > k, k|G| is even, and  denote thaH; is an induced subgraph éf,. If there are

|G| > k? — 1, thenG has a&-factor. Zhou §] presented that  two different graphsii, H, € .% such thatH; < Hp, then

a graph has a fractionkifactor if 7(G) > kwherek=1,2. we say a family of connected graph® is redundant.

Other related research can refersg [6], [7] and [8]. Hence, our problem is restricted to consider only
For two given connected grapfsandH, we sayG is nonredundant families. Let¥ be the set of all

H-free if G does not contaitd as an induced subgraph. nonredundant families of connected graphs, Hrid) be

Let.# be a family of connected graphs. We say a gré&ph the set of families.# € ¢ satisfies that all.%-free
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connected graphG with |V (G)| > ng are t-tough with a
constantng = ng(7,.%). In this sense, the answer of

3 Proof of Theorem1

Problem 1 is reduced to determine all the elements in thélhe process of the proof can be divided into a number of

setH (7).

For.%,,.%, € 4, if for eachH, € %5, there is arH; €
#1 such thatH; < Hy, then we say tha#; < .%>. Clearly,
any.7,-free graph is alsc#,-free if %1, < .%>.

Let Y be the graph obtained from identifying the
center of aKy, with the first vertex of a path om

vertices. The last vertex of the path is called the tail of the

Yh. Let ZT}, be the graph yielded by identifying one
vertex of a K, with the tail of a YN Let
FAm1,r) {Ka1,Pm, 23, } and
FBm 1) = {Ky, Ym0, 20 2
Now, we define the following subsets @f
FA={Z €97 < Z”m],r) forsomem> 4, >3
andr > 3}.
FE={Zc¥ .7 <.ZBm]l,r) for some
m>11>n-+2andr > 3}.

cases.

31Caser>1

Theorem 3Let T > 1. Then FA C H(1).

Proof. Let.# € FA. Letm> 4,1 > 3, andr > 3 such that
F < FZA(m|,r). Let G be a connected”-free graph.
Suppose thaB is not t-tough. Hence, there exist a cutset
S C V(G) such that|§ < 1(w(G—S) —1). We may
suppose thabis minimal under inclusion.

Claim.Thereis a vertey € N(S) — Ssuch thatN(y) NS <
IT.

Proof. On the contrary, suppose that for gle N(S) — S,
IN(y)n'S| > I1. Let k be the number of pairéx,C) with

Our main result to be proved in the next section can beX € SandC € C(x). We have,

stated as follows:

Theorem 1Let T be a positive real number. Then,
e IfT>1thenH (1) =FA

e IfO< 1 <1 thenH(1) =FB, wheren=[1].

Before on the way to proof our main result, we should give

some useful definitions.

Forve V(G), letNg(v) = {we V(G) :d(v,w) = i}.
Note thatNg(v) = v andN§(v) = Ng(v). We can denote
N'(v) for N5(v) if graph G is obvious from the context.

Let| andr be two positive integers. The Ramsey number

R(l,r) is the minimum positive integeR such that any

graph of order at lead® contains either an independent

set of cardinalityt or a clique of cardinality.
We denotev ~ w if vw € E(G) for v,w € V(G). Let
SCV(G) be acutset oG andx € S. Let

Cs(x) = {C:Cis a component o& — Ssuch that
N(x) NV (C) # 0}.

Define Cg(X) = UyexCs(x) for X € S We write C(X)
instead ofCg(x) if there is no ambiguity about the s8t

A nonempty seBC V(G) is at-tough cut if(w(G —
S-1) > g A t-tough cutSC V(G) is a minimalt-
tough cut if for everyS C S, S is not ar-tough cut. Let
SCV(G) be ar-tough cutx € SandD C Cg(x) be a set
of components. A seh C V(G) is a selection fox from
D if AC N(x) and for everyC € D, |[ANV(C)| = 1. A set
ACV(G) is a selection fox if A is selection forx from
Cs(X).

The following result is a direct corollary of Hall's
marriage theorem. We will use it in the next Section.

Theorem 2Let G be a bipartite graph with partite sets X
andY with X = {xq,--- ,X}. Suppose that for all X’ C X,
IN(X")| > n|X’|. Then there are pairwise digoint subsets
Y1, , Y of Y such that for all 1 <i <k, Y; C N(x) and
Y| =n.

K=Y yes|C(X)| andk= Y cec(s) IN(C) NS
Then|C(x)| < | for all x e SsinceG is Ky |-free. We obtain

k= zs|0(x)| <1l < IT(w(G—S) - 1).

Let C € C(§ and y € V(C) N N(S). Then
INC)NnS > IN(y)nS > I1. Therefore|[N(C)NS > IT
for eachC € C(S), and

IN(C) NS > 1TC(S)] = 1T(@(G~S) — 1),
ceC(s)

a contradiction. O

Let y; be a vertex inN(S) — S as in Claim3.1 and
Xo € SN N(y1). Let C; € C(xg) such thaty; € Cj.
IC(S)| = w(G—9S) > 2 sinceSis a cutset. IS =1, then
IC(x0)| = [C(S)| > 2. SupposdS| > 2. If |C(xo)| < 1,
then S = S — {x} is also a cutset with
w(G—-8) > w(G—-9S) by connected ofG. Thus,
TWG—-S)—-1) > 1(w(G—9 —1) > 1|9 > |S]. This
contradicts the minimality of S, In conclusion,
IC(x0)| > 2.

So, there exist a componedi € C(Xp) with C, # C;.
Lety, € N(xp) NV(Cp). We inferN™1(xp) = 0 by G is
Pn-free. Next, we show that'(xg) is bounded for all K
i<m-2.

N(Xo) has no independent set of sidebecause
{X0} N N(x) has no Ki,. Since

{y1,%} N (N(x) — N(y1)) contains no Zir,
N(xo) — N(y1) does not contain a clique of size— 1.
Thus, IN(xo) — N(y2)| does not contain a clique of size
r — 1 and|(N(xo) — N(y1)) N (N(x0) — N(y2))| < 2R(I,).
Let X = N(Xo) "N(y1) NN(y2). Sincey; andy, are not in
the same components @& — S, X and X C S have
neighbors in more than one componen@Gof S. We yield
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[X] < It by the choose ofy;, and deduce that
IN(x0)| < 2R(l,r) +1T.

Fori > 1, we show thatN'+1( )| < R(I,r) - N (x0)].

Let x € Ni(x). It is sufficient to show that
IN(x) N N*¥x)| <  Rd,r). Since
{x} U (N(x) N N'+1( )) does not contain Ky,

N(x) N N*(x0) has no independent set of sitelet
X1 € N71(x0). %1 = X if i = 1. At last,
N(x) "N'*1(xo) does not contain a clique of sizesince
{Xi—1,% } U(N(x) "N"*1(x)) does not contain &1 ,.
Therefore, we obtain that for dl>> 0 '

IN"(x0)| < R(I,r) "L N(x0)| < R(I,r)'"X(2R(I,r) +1T).
According toN™ % (x) =
G)| = 20 IN'(xo

_2R(lLr) 41T
=R

0, we get

%(ZR(I N +1D)R(,r) 2

R(Il,r)y™t—1
R(l,r)—1 )

)

U
From the proof of Theorer, we lead the following
more precise statement.

Theorem4let T > 1. Then every .ZA(I,mr)-free
connected graph G with [V(G)| > ng = no(l,m,r,t) is
-tough, where ng(l, m.r.t) = (BT (LT 21

Theorem 5Let T > 1. Then H(1) C FA.

Proof. Let .# € H(t). Then, there exist a positive integer
ng satisfies that eacl# -free connected graph of order at
least ng is T1-tough. Let n; be an integer with
ny > maxnp, 3).

Consider the family#’ = #A(ny,m,n). Ky, has
toughness — < 1. Py, has toughness 1Z1nl has

toughness 1 Hence, all the graphs#t have toughness
at most 1 and so none of themigough. All the graphs
in .#' are connected graphs of order at leagt by
ny > ng. Thus, no graph of#’ is .#-free. i.e., for each
graphH’ € .#', there exist a grapld € .# such that
H < H’. By definition of.# < .%#’ and.%' € FA, we infer
F € FA, 0

32Case0<t<1

Theorem 6Let 0 < T < 1. Then FE C H(T), where n =
2.

We split the proof of theorer@ in several lemmas.

Lemma 1Let G be a connected graph, 0 < 7 < 1,and S
be a minimal t-tough cut. Then |Cs(X)| > 1[X| for each

nonempty X C S. In particular, [Cs(x)| > £ for anyx € S.

Proof. According to the definition ofrt-tough cut,

(W(G—9)—1) > 2[S. LetS = S— X. By the minimality
of S (wG-S) -1 < 1S We have
Cs(9) - Cs(X) - Cy(9) and
w(G —9) — |Cs(X)| < w(G— ) since each component

of G— S not in Cg(X) is a component of5 — S. This
implies

218~ 1G] < (@G~ 1)~ ICoX)|
< (@G- -1 < IS
= 2(S - X))

Then, we ge{Cs(X)| > 1(X|. O

Lemma 2Let G be a connected graph,n>2,0< 7 < 1,
Sbeaminimal T-tough cut and xg € S. If G is Y,o-free for
some m > 1, then N™(xo) = 0, where m' = 2maxn,m-+
1)+m.

Proof. SupposeN™ (x) # 0. Let P = xg- Xy be a path
satisfies thak; € N'(xp). Note thatP is an induced path.
We use the notatior™! = i, j andv! =x_; if ve P
with v = x. Let g = maxn,m+ 1). A subsequence
V1,---,Vq Of Xg,---, Xy and setshy,---,Aq constructed
with the following properties:

() vi e Sforall 1 <i <q,

(if) vi;1 is eitherv; L orvi2 forall 1 <i < q-—1,

(iii) A is a selection fow; forall 1 <i <q, and

(iv) |A — A <n-1forall1<i<qg-1.

Choosev; = xg and letA; be any selection foxg. Let
1<i<gandsuppose,---,Vv; andAq,---, A are chosen.
We choosei 1 andA; ;1 in the following way.

By condition (ii),h < 2i — 2 < 2g—4if v = x». Hence,
m = 2q+m>h+mandv’ exists for all 1< j <m
For j > 3, the distance between andv; is j, N(v)n
N(v; ') =0 andA NN(v;"') = 0. Lety; = ANN(v"1) and
Y2 = ANN(V;2).

SupposéY,| = 1 and lety € Y. Theny ~ Vi, y ~ V"2,
andy vfrJ forall 3< j < m—1. Since vertices ofy and
y are in different components @ — S, we haveN(y) N
A = 0. By Lemmal, |A| > 1 >nand|A - {y}| >n.
Note thatA; — {y} is an independent set since the vertices
of Ay are in different components. But thefdy — {y}) U
{vi,y, Vi 2, w3 - vif™ 11 contains &, a contradiction.

Suppose |Yo| = 0 and |Yi] < 1. We get
(A — Y1) N"N(vf1) = 0. Also, |A| > n+1 and then
A= Ya| > . But (A =Y U {vi, v g2 v
contains aYjh, a contradiction. Then, we have that either
[Ya| > 2 or|Y2| =0 and|Y;| > 2.

If |Y2| > 2, thenv;"? has neighbors in at least two
components 06 — Sandv;"? € S. Choosevi, 1 = vi2 and
let A1 be any selection fowi+2 with Yo C Ai1. Let
y € Yo. Similarly, since
(A — A1) U, Y2 v - v ™11 does not contain
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aYnh we havelA — Aip1] <n—1.1f |Y2] =0 and|Y1| > 2,
then v € S. Choosevi;1 = vi! and letA 1 be any
selection for v with Y; C A, Since

\((,?1\4 " A.Jlrplq) L,li\'v.,\'frl erZ1 - V™11 does not contain a
then 41/ <n

Claim.|Aq| <2(n—1).

Proof. For j > 3, we haveAgN N(vaj) = 0. Suppose that
AqNN(vg?) # 0 and lety e Aq N N(vg?). Since

(Aq—N(vg?) U{vg,y.vg?, - vq Y1 does not contain
a Yy, then [Aq — N(vg 2] < n— 1. Since
(AgIN(vg?) U {vg?,-- Vg™ Y} does not contain a
Y, then  |Aq N N(vg?)| < n — 1. Then
A = |Aq Nvga)l + |Ag N N(vg?)| <
(n—-1)4+(n—1)=2(n—-1).

Suppose  Aq N N(v?) = (D. Since
(Aq — N(vgh)) U {vg,vgt.vg?, - Vq Y} does not

contain aY,:“, then |[Aq — N(vq

(AqNIN(Vg 1) U{vgt g2 -+, qm} does not contain a
Yo, then  [Aq N N(vy B < n - 1. Then
A [Aq N(Val)l + 1A 0 N(gh| <
(n—1)4+(n—1)=2(n—-1). O
By Lemmal, we deduce

[ALU---UAg| = [Cs(v1) U--- UCs(vq)|

= |Cs(v1, -+ ,Va)|

> ng.

Y < n—1. Since

Furthermore, we yield
|ALU--- UAY|
= A1 — UL A + A2 — UTLA|
o [Ag1— A+ A
|AL— Ag| + |Ag— Ag| + - -+ |Aq-1— Ag| + |Aq]
(n—-1)(g—1)+2(n—1)=(n—1)(q+1).

Hence,(n—1)(q+ 1) > ng and thenq < n— 1, which
contradictsy = max(n,m+1). O

<
<

Lemma 3Let G bea connected graph,n> 2,0 < T%, and
Sheaminimal 7-tough cut. Let X C Sheaclique. IfGis
{Kq,,27, }-free for somer > 3and | > n+2, then [X| <
I(r—1).

Proof. LetY = C(X) andYy =

Claim.For eachx € X, there exist a séf, CV(G) thatis a
selection fox from some seY, C Y, with |Yy| = n, and so
that for allxy, Xz € X (xq # X2), Yy, MYy, = 0.

C(x) for anyx € X.

Proof. Let G’ be the bipartite graph with vertex set
V(G) X U Y and edge set
E(G) ={(xC):xe X,C e Yy}. By X C Sand Lemmél,
for all X" C X, we have|Ng (X")| = |[C(X')| > n|X|.
Applying Theorem 2 taZ', for eachx € X there exist a set

Y, C Yy with [Y;| = n and for all x;,% € X(x1 # X2),
Yy, MYy, = 0. For eachx € X, letY, C V(G) be a selection
for x from Y. Then, the claim holds. O
Let x € X. If X =N > r —1 then
Ye U {x} U (X —N(Y)) contains aZ,, a contradiction.
Then for allx € X, |[X —N(Yx)| < r — 1. Suppose that
IX| > 1. Let X1,---,X € X. If there exist a vertex
x € X —UL_;(X—=N(Yy)), then for all 1< i <1, we have
N(x )mYX| ;é 0. Note that theYy's are selections from
pairwise disjointY);. 's, henceN(x) U LJ!:lYXi contains a
Ky, a contradiction. ThusK = Ul_; (X — N(Yy)). But

X[ = Uiy (X=N(%))| <I(r —1). 0
Lemma 4Let G be a connected graph,n>2,0< 1 < 1,
Sbe aminimal T-tough cut and Xp € S. Let X C N(xg) b
acligueand q=r(l +1). If Gis Z] -free for somer >3,

then |X| < q.

Proof. LetX; = X — SandX; = XNS. We havegXp| < I (r—

1) by Lemma3. Let Yp be a selection fokg. By Lemma

1, [Yo| > n+ 1. LetY be any subset ofy with |Y| = n+ 1.
SinceX; NS= 0, then there exist a compond&hbtf G— S
with X; CV(C). LetY =Y NV(C). Then|Y’| <1 and
[Y —Y'] > n. By X; CV(C), there are no edges between
Y —Y" andX;. We inferX; < r since(Y =Y )U{Xo} UX;
does not contain &7 . Thus,[X| = |X¢|+ [Xz| <1 +I(r —
DH<r(l+1)=aq. O

Lemma 5Let G be a connected graph,n>2,0< 1 < 2,
Sheaminimal T-tough cut, andxp € S. Let x; € N(Xp) and
X € N(x1) NN?(xo) beaclique. If G is{Z] .23, }-freefor
somer > 3, then |X| < g, whereq=r(l +1).

Proof. If x; € S, then|X| < r(l +1) by Lemma4. We
suppose that; ¢ S. Let X; = X —SandX, = NNS We
get|Xy| < I(r — 1) from Lemmag3. Let Yy be a selection
for xo. Then|Yp| > n+1 By Lemmal. LetY be any
subset ofYp with |Y| =n+ 1.

SinceX;NS= 0, then there exist a compon&hof G —
S satisfies thaX; C V(C). Supposeq € V(C). LetY’' =
YNV(C). Then|Y’| <1 and|Y —Y’| > n. Moreover, since
x1 € V(C) andX; C V(C), there are no edges between
andY —Y’, and no edges betwee@ andY —Y’. But by
(Y =Y")U{xo,x1} UX; does not contain &3 ., we obtain
IX1] <r. Hence,|X| = |X|+ X <r+I1(r—1) <r(l +

1) =aq. O
Lemma 6Let G be a connected graph, n>2,0< 1 < 1,
Sbeaminimal T-toughcut,Xo € Si>0andgq=r(l +1).
If Gis {Ky1,2],, .2 }-freefor somer >3 and| >

n+ 2, then |N"1(x0)| < [N (x0)| - R(I, Q).

Proof. Letx; € Ni(xo). Note that; = xo if i = 0. We infer
N(x) N N*1(xo) does not contain an independent set of
size at least since {x} U (N(x) N N"*1(xo)) does not
contain aky . Let X C N(x) NN*1(xp) be a clique. Let

P = xo---x be a path fromxg to x; such that for all
0<j <i,xj € NJ(x0). Note thatP is an induced path. Let
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k=max{j:0< j <iandx; € S}. Such an indek exists
by xp € S If k=i ork=1i—1 then the result draws from
Lemma4 and Lemmab respectively by takingy as the
Xo in the corresponding lemma.

Suppose that < i— 2. LetY be a selection foxk. By
Lemmal, we get|Y| > n+ 1. Let P’ be the subpath of
P going fromx, to X,. ThenP’ is a shortest path fromy
to X, IN(Y)NP| C {XXk:1,X2}, and|[N(Y)NnX| = 0.
Let Y1 =Y NN 1) andYz = Y N N(Xcr2). We deduce
that none ofx. 1 andxy. is in Sand hencdY;| < 1 and
[Yo| < 1.

Suppose thaflyz| = 1 and lety € Y. We obtain|X| <
r< r(l +1) = q Since(Y_{y})u{xkayaxk+25"' axl}ux
does not contain & . , .. Hence, we supposg¥,| = 0.
Since|Yy| < 1, then|Y — Y3| > n. But then, according to
(Y = Y1) U {X, X1, X2, -, X } UX does not contain a
Z" . 1., we yield that|X| < r < g. So, we conclude that
INOG) AN (x0) < R(l, ). 0

Proof of Theorem 6. Let . # € FE, m> 1,1 > n+2,
andr > 3 such thatZ < .ZB(m/I,r). LetG be anZ-free
connected graph. Suppose tiats not t-tough. ThenG
has ar-tough cut. We supposgis a minimalt-tough cut.
Letxg € S

Notice thatG is Z],-free for alli > m+ 1 sinceG is
Yo o-free. We caninfer thad is Z{', -free for alli > 1. Note
thatt < 1 byn= [1]. HenceG satisfies all the conditions
of Lemmas2 and6.

Let m’ = 2- max(n,m+ 1) + m. Using Lemma2, we
haveN™ (xo) = 0. Thus, it is sufficient to show that (xo)
is bounded for each £ i <m —1. Letq=r(l +1). By
Lemmas, [N'*1(x0)| < R(I,q) - [N'(x0)| for all i > 0. We
obtain|Ni (xo)| < R(I,q)'~1 for all i > 1. SinceN™ (xg) =
0, we infer|N' (xo)| < R(I,q)™ 2 forall 1<i<m —1.0

Theorem 7Let 0 < 1 < 1. Then H(1) C FB, where n =

4

Proof. Let.# € H(T). Then there exist a positive integgy

such that every” -free connected graph of order at leagt

is T-tough. Letn; be an integer witn; > max(ng, n+ 2).
Consider the family.#’ = .%,(ny,ny,n;). Note that

F' € FB. Kin, has toughnes;;li—l. Yr?1+2 has toughness

%.278,, has toughnesk for all 1 < m< ny. Thus, all the

graphs inZ’ have toughness at mogt Sincen = [ 1],

thent > % and so no graph of#’ is 1-tough. Just as in
Theorem 5, we obtai# € FE. O
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