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Abstract: The aim of this paper is to introduce the concept of boundary gradiesgradbility for distributed hyperbolic systems
evolving in spatial domaif2, and which the gradient state is to be observed on a boundary subfeg@bd Q. We give definitions
and characterizations and some properties of this kind of regionablaoyebservability. To explore this notion we describe an new
approach to solve this problem, which is performed through numerieahples and simulations.
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1 Introduction map is now a trace map and can not be expected to be
continuous. More precisely we have to develop tools to
reconstruct directly the initial state and speed gradient o

Many real problems in the control and observation of . . )
distributed systems can be reformulated as a problem oﬁhe boundary of the system evolution domain. This leads

analysis for infinite dimensional systems. New andtothe so-called regional boundary gradient observability

interesting notions has been introduced and developedf.u nggggzg?rr;&rt%agﬁg dafofcr)goygiéllzl;rcitjr\:\:jeaglverzggzﬁt
Among the most important is observability which has 9 Y9

been widely developed by Curtain and Zwal} and the obsewability for hypefbolic systems. In the_next sectio_n
references therein. But in practical situations one igve give characterlza_tlon of boundary gradient strategic
interested in the reconstruction of the systems state in vsg-s(jc;:ﬁén-;?;aelsgailf?ﬂzgid Sre;glr;tqs greect%lﬁo 4a\,?,2“eic\i,etoa a
restricted given subregion, from the knowledge of the . Y " give
system dynamics and the output functiodd] This reconstruction method for the gradient on a subregion
c>c/>nce t V\?,as introduced by El Jgi and Zen 15 and I c 0Q. At last the simulations show that there exists a
extendped to the case whe?/e the subregion is a part of thrgelation between the choice of sensors location and the
boundary of the system evolution doma@10,15]. oundary subregion target.

In many real world problem, one is interested by the
knowledge directly of the state gradient without the : T
knowledge of its state. This concept was introduced and2 Gradient observability
developed by Zerrik et all§,?] and Boutoulout et ald,
9,10,11] and interesting results were obtained only for

parabolic systems but little has been done for hyperboliq et @ be an open and bounded domainR(n = 1,2, 3)
ones. It is also plausible in real problems that thewith regular boundarydQ. For T > 0, we denote
subregion of interest may be a portiohC dQ, rather Q = Qx]|0,T[, £ = dQx]0,T[ and we consider the
than an actual subregia. Our interest is to extend the following hyperbolic system defined by

notion of regional gradient observability for hyperbolic

2.1 Problem statement

systems developed initially in internal domain 2] to @(x.t) = ay(x,) in Q
the case where the subregion of interest is a part of the otz 7(9 B
boundary of system evolution domain. Technically, the y(%,0) = y2(x), d—i’(x,O) =y'(x)in Q
distinguishing difficulty is that the relevant restriction y(E,1)=0 on>
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with y° andy? are the initial conditions, the measurement (y1,y») € .#

given by the output function

Zt) =Cy(t), te]0,T| @)
] 2
wheres/ = — % —(ajjd—xj) with & € D(Q).

i,]=1 axi

Suppose that? is elliptic and a second order differential

operator, i.e., there exists > 0 such that

> aijdigy, 2 U_Z\ & V€ = (&1,.....6n) e R

i,|]=1

and C : H2(Q) N H}(Q) — IR9 is a linear operator

0 I'm

S Y (1, @) cos —Am) it

m=1j=1

+(=Am) "2 (Y2, Py ) SIN(—Am) 2t] Py,

_ Y1
sol )= .
v 53 [-(-Am)E3n, 0 sin-Am)t
m= J:

+(y2, Pm;) O —Am) 2t] &y
then the output function can be expressed as follows
Zt) = CSY’ = KOy, te]o,T|

WhereK is the observation operator defined by

whereq depends on the number of the considered sensors.

We are interested in the reconstruction of the gradient on

a portion I’ of the boundary domaindQ where a

K:X—)ﬁ_
z— CY(.)z

distributed parameter system governed by hyperbolic

equations evolving in a spatial domdih
Let's consider the observation spa¢e= L?(0,T;IR%)
and assume that

(V.¥h) € X = (HY(Q)NHp(Q)) x (H*(Q) NHg (Q)).

Without loss of generality we denoyét) := y(xt).
Let's consi(d)er
Yt ¥ ~ Jol
yit) = [agiw], P = M, o = [4270]
For (y1,¥2) € .Z = L?(Q) x L?(Q), the system 1) is
equivalent to

%(t)zﬂ_ﬂt) 0<t<T 3)
y(0) =
with measurements given by the output function
Zt) = Cyit) (4)

with C = (C,0), the system3) has a unique solution that

can be expressed a$t) = S(t)y°, where (S(t))=0 is a

strongly continuous semigroup generated by the operat
o

The initial conditions (y°,y') and their gradients
(Oy°, Oy!) are assumed to be unknown.

For w C Q, open, regular and of positive Lebesgue 1
measure, the problem of regional gradient observability isandy, : H*(Q)

the possibility to reconstruct directly the initial gradie

which is linear bounded, with the adjoikt given by
K*: 0 — X
T_ _
7 s / S (tC'Z (t)dt
0

Let's consider the operatar given as follows

O: (H2(Q)NHG(Q)) x (HA(Q)NHF(Q)) — (LA(Q))" x (L2(Q))"
(Y1.y2) — O(y1,y2) = (Oy1,Oy2)

where
O0:H2(Q)NH(Q) — (L2(Q))"
_(9y 9y
y— Oy= (axl,...,aXn)

We denote byT" (resp.C*) the adjoint ofd] (resp.D).
Let Oy? be the restriction of the trace afy° to I”

with Oy° = (OyP, Oy!) andOy? = (Oy%, Oyi).
Let’s consider the trace operator

Vi (HY(Q))" x (HL(Q))" — (H(

(HZ(9Q))"x (H2(0Q))"
(Y Y?) — VYY) =

(whw?)

0\tvith

y: (HY(Q)" — (H2(0Q))"
z— yz= (YyZ1,...,YyZn)

—+ H? (0Q) is the trace operator of order
zero which is linear, continuous, and surjective.

(0y%,0y!) on w, without the knowledge of the state Y (resp.y;) denote the adjoint of operatgr(resp.y,)

(O, y1).

For the case wher€ is unbounded, some precautions

must be taken asD(C)c (H?(Q)nH(Q)) and
S()(D(C)) € D(C) ¥t > 0 [4].

Let's denote®n, a basis of eigenfunctions of the operator
o/, with Dirichlet conditions and associated to the X (H%(ag))n - (H%(r))n

eigenvaluesi,, with the multiplicity rp, then for any

ForIr Cc 9Q, consider

Xr: (HZ(0Q)"x (H2(92))"
(&,8)

H(E,8)=(&,8)r

TH2(0Q) »HZ(I)
E HX/’E:E‘I—

— (HZ(F)"x (H3(M))"
N

amd)?r
E HX/'E = E|I'
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with  x*(respxandk’) is the adjoint of 1)-Asensor(D,f)is said to be gradient strategic 6nor

X, (respx, and),) which is the restriction operator, G-strategic onl” if the observed system is weakly
consider also the operator : G-observable o,
X, (HH(Q)"x (HL(Q))" — (HY(w))" x (H}(w))" 2)-A sequence of sensorfD;, fi)i<i<q is said to be
(Y1,¥2) = X0 (Y1,Y2) = (XwY1, XwY2) gradient strategic ofi or G-strategic on” if there is
at least one sensd@D;, fi,) which is G-strategic on
where r

X, (HY(Q)" — (HY(w)" and ¥, :HYQ) — H(w)
&= X, =¢&lw E =X, =¢lo Remark.

_ . . i 1)-If the system 1) together with the outpu®j is exactly
andX’ denotes its adjoint operator, finally we reconstruct ~ c_gpservable o then it is weaklyG-observable on

the operator as follows r
- ) 1 N 1 . 2)-For I, c I € 0Q the system 1) together with the
H=X YUK from & into (H2(I))"x (H2(I)) output @) is exactly (resp. weaklyJs-observable on

o 1 then it is exactly (resp. weaklyg-observable on
Let's recall some definitions and results related to the

internal regional gradient observability. Then the 3)-

: - One can find states that aBeobservable o but not
following will apply.

G-observable in the whole domaif2. This is
—The system 1) together with the output?] is said to illustrated through the following example.
be exactly gradient observableadnif
Im(x,, 0K*) = (H())" x (H*(a))".
—The system?) together with the outputj, is said to 2.2 Example
be weakly gradient observable dnif , _ ) ) ) )
Im(ywﬁK_*) — (HY(w))" x (HY(cw))". Let's consider the two-dimensional system described in

—A sequence of sensors is said to be gradient strategicf:2 =10,1[x]0, 1{ by the following equation

in w (or G-strategic inw) if the observed system is ( 52y 9%y 9%y
i i Y2 ) 7t) = 7(X17X27t) + 7(X17X27t) in Q7
weakly gradient observable @a For more details, see | gz (x1:%2 X2 %2

[12] and [16].

The regional boundary gradient observability explores the y(x;,x,,0) = y°(xq,%0)
reconstruction of the gradient in the particular case whe
the subregionw is a subset of the boundary. More =0

. N y(¢;n.t)
precisely we have to rebuild they? component of the _ _
initial gradient of an unknown portion of the boundary. ~ The measurements are given by the output function

) . (5)
, (%(XLX&O) =yl (x,%) in Q,

on 2,

2t) = /DY(XLXzJ)f(Xl,Xz)dX1dX27 (6)
o Where D =|0,1[x{1/2} isthe sensor support and
xl
1 -
Q
1 L
2 D
Fig. 1: The domain®, the subregior, and the sensors locations.

(0] 1 X,

Definition 2.1. The system X) together with the output
(2) is said to be exactly (resp. weakly) boundary gradient Fig. 2: The domain@, the subregiorf, and sensors suppddt
observable oifi or exactly (resp. weakl@-observable on

. _7 1 n 1 n
rif Irﬂ: (Hz(ll')) :(Hz(ll')) N f(x1,%2) = sin(2mx;) is the function repartition of the
(respdmH = (HZ(I))" x (Hz(I"))") measures.

Definition 2.2. Let’s consider™ = {0} x [0,1] and
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0
g(x1,X2) = [gl&l7§2ﬂ the gradient to be observed, with output @) is exactly G-observable on”, we have
1,X2

°(x1,%2) = (11COq T1X1 ) SIN(T1X2) , 27TSIN( 71X ) COY TTX2) )

g' (X1, X2) = (—7TSin(1X1) COY TIX2), —27TCOS X4 ) SIN(TDX2) )
the gradient to be observed dn, then we have the
following result:

Proposition 2.1. The gradient g~ is not weakly
G-observable in the whole domai2, but it is weakly
G-observable oifi .

Proof We have

KO'(g) =Ccstd’
= 5 [d.om)

mJ=1

cog(— )\m, )

Sin(—n) 3t (@n. 1)

(H2(Q)nHG ()

+H- Am,r%m*g )

-5

m|1

(H2(Q)nHE (@
m+j]nzcos( Am;) 2t5|n( )6m16m26ﬂ

1 8n¥?j +16j%m
)% (M —-1)(j2-1)

+ | sin( /\ml)’ztsm(l )Ome

m,J€2IN )‘mj (—Amj
for m=2 andj € 2N, we haveK (g) = 0, Then the
system §) together with §) is not weaklyG-observable in

We show that the restriction @fto the subregior is G-

observable oifr .
We have

o

KOVX XY@ = 3 (- v X yO®ry) ;  cosy/~Amt)
mj=1 H2(r)n
+ *)\mJ<XrVglerVD‘DmJ> 1 sin( Am t)](“"m )2
0O LA(E)
w o
= (R Yo 99 K Yo =)
m.Jzzl[( FIOEL AT oy H%(I’)
+(%- v 92, X chmJ> )cos{ Amit)
X Yo% Xr %o 55 A m
3P,
/= Am (K Vo Oh K Yo
VA (e vt % \de
v gy o i/~ Am )| (@ 1
+(Xr o0 xrv0W>Hlm)sm( A1) (@ 1)
Z 2mr cog —/\mjt)sm( )5,,]2@1
—4712C01\/ 7)\21t) 7&0
Thengis G-observable oifr . [ |

2.3 Characterizations

The gradient observability of is characterized by the
following results.Proposition 2.2.

1)-The system) together with the output?] is exactly
G-observable ol if and only if,
07 , , <alKO'axZl,

(HZ(M)Mx(H2Z ()N
VZ € (H2(M)"x (HZ(I))".

2)-The systemX) together with the output?j is weakly
G-observable o if and only if the operatoHH* is
positive definite.

Proof.

1)-Let's consideh=1d 1 and

o (HZ(r)"><(H2 ()"

g = X, aK*, since the systemil] together with the

Imh C Img, which is equivalent to the fact that there
existsa > 0, such that
Iz 1 <allg'z|,.,,

(HZ)IHZ N
VZ € (HE(I))" x (HE (M)
(

2)-Let’s conS|derz*_e H%(I'))
(HH*Z 7)) =
then ||H Z*H = 0 and therefore 7 e KerH*,
consequently,z = 0, and thenHH* is positive
definite. . .
Conversely, let's consider* € (Hz (IM))" x (H2(I"))"
such that|H*Z*|| = 0, then(HH*Z*,Z") = 0 and since
HH* is positive definite, theg* = 0.
So, the system1) together with the output2j is
weakly G-observable oifr .

Here we show that it is possible to link the internal
gradient observability and the boundary one. The
boundary regionalG-observability can be reduced as
internal regionalG-observability, we have the following
result.

Proposition 2.3.Assume thatv C Q such that” C dwnN
0Q, then if the system1)) together with the output?j is
exactly (resp.weakly-observable irw, then it is exactly
(resp.weakly)G-observable o .

Proof. Let's consider L .

y = (ﬁ?""y%’yﬁ"“’y_?n) € (H?(F))n X (H?(I‘))n,
¥=(¥,...,95,¥2,...,52) is a continuous extension gfto-
0Q such thaty™e (H2(4Q))" x (HZ(dQ))" with the
following transformation

(HZ(r))" such that

x (H2(00Q))" — (HY(Q))" x (HL(Q))"
T B — (AL, \RTERE, ...\ RT3)

where% : H2(0Q) — H(Q), such that, 7g = g

Vg € HZ(0Q), then % verify v#y = §

W e (H2(00))"(seep))

then usmg the trace theorem (sle]ég[there eX|sts

Ry = (R, RG R..... RFR) € (HH(Q))" x (HL(Q))"

with a bounded support such tha#yj = y

Let x, be the map restriction from

(HZ(0w))" x (HZ(0w))" — (HE(M)" x (HE(M))",

andy be the trace mapping from

(HY(@)" x (HY(0))" — (H2(90))" x (HZ (9w))"

—Since the systemlj together with the output?j is

exactly G-observable inw (seell2), there exists
zec 0 such asy,#¥ = X,0K*z, or ' C dwNaQ
theny = x, yx,0K*zand the systenilj together with
the output ) is exactlyG-observable i .

—If the system {) together with the output2j is
weakly G-observable inw, thenVe > 0, there exist

Z € ﬁ SUCh as”Xw'@y XwDK*ZT|(Hl(w )nX(Hl(w))n S €
or y is contlnuous then
1YX 25— vwaK*ZH

% (H? (aQ))
(7, -

1 1 <€
HZ (20)Mx(H2 (9"
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finaly [ly— X, yX,0K*Z| , <e
(H2(M)Nx(HL(r))n

Therefore the systeni) together with the output?]
is weaklyG-observable oifi .

In conclusion we have shown that the regional boundary 'm
gradient observability can be reduced as internal regional

gradient observability.

3 I -strategic sensors

We propose to give a characterization of sensors making

I -weakly observability. Let’s consider the systet) &nd

assume that the measurements are given by wag of

sensors(Dj, f)1<i<q. The output equation is then given

by:

Z(t) = Cy(t) = (a(t). z(t),...,z(1))
with  Dj={bj} andf = (. —by) in the case of pointwise
sensor. _
and Dj c Q with f € L?(D;) for the zonal sensor.
We assume thdl, y, Pm; ) 1<j<m m-: fOrm a complete set
. 1
inH2(IM).
More we assume that= suprm < «.

m

We have the following proposition

Proposition 3.1.The sequence of sensdiS;, fi)1<i<q is
G-strategic o™ if

oq>r
orankGp =rm, Ym>1
where
n 0@
z (—mH f;) in zone case
(G = { 5t 50
m)ij = n b
" (i) in pointwise case
& 9%
with 1<i<q and 1<j<rm.

Proof. We show that if rankGy, = rm, Ym > 1, then the
system {) together with the output2] is weakly
G-observable ofr.  __
We suppose that KerKO' y*x* # {0}
i.e. there existe’ = (Z,7%) € (H2(M))" x (H2(I"))"
as(2*,2)#0 and KO y'x:z"=0.
with
VXZ =(yx2yxE)
= (X KA KA

for T large enough the functions
{sin(—An)Z(.),coq—An)2(.)}n>1 CONstitute a complete
orthonormal set in.?(0,T), then

(9¢’mj f
o i

n

Xz ' = >1Vvi=1,...
JZ]_<%*XF4 >q‘)m]>kgl< an >L2(D|) 07 vm_ 7VI } ,d
'm n d‘pm

¥ 7, O, 2 R 2py =0, Vm> 1 Vi=1,...,
3 REOm) 3 (Gt o) q
and then
arm . - n a(bm,- ]
S (@K % Pm) S (G5 fil2@) =0 Ym>1,vi=1,...q
=1 K=1 K
'm . n b )

butz" € (H2 ()" if 2 # 0 and (v X * Py ) 1<y« m mo
form a complete set ikl 3 (r), then

7 -

'm
S S @K Pry)
m>1j=1 H2(

X-Y%o®Pm, Vk=1,....n
r

if z1* - 0 then there exists

1 <k <nm >1 and 1< j < ry  with
1 ~
<Zk*7XrVoq)mj> 1 7é0
. H2(N)
Let's consider, then
A I Pyt 1 @K pPmY) 1 @K Pmy) g
H2(r) H2 () H2(l’)

2 =

@ K Yo Pmyrmy ) 3 K Yo Pmyrmy ) 1 (@ K Yo Pmyrmy) g
H2 () H

2(r) H2(r)
then we obtain Gmzy, = 0, but z, # 0, then
rankGm, # rm, this is contradiction withrankGm = rm,
vym>1,

the same think for?* € (H2(I"))" andz>* # 0.

Finally KerKO'y* x* = {0}, then the systemj together
with the output ) is weaklyG-observable oifi .

4 Regional boundary gradient reconstruction

We takeA = A, the system]) is then written as
in Q
(7

y(§.t)=0
Let’s consider the set

G = {(h'.1?) € (L2(Q))" x (L?(Q))"ht = h? = 0surQ \ w}
N{O(fL, £2) = (Of1,0f?)| (1, 2) e (HZ(Q)mHg(Q))Z}

© 2014 NSP
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wherew be a subset of2 such that™ C dwNdQ.

It is known that if the system1] together with 2) is
weakly G-observable i, then it is weakly G-observable
on " (see P7]). This result links the internal regional
gradient observability i with the boundary case.

We decompose the initial gradief§? in the form

Oy? in
Dyoz{
Oy? in

We present an approach which allows the reconstruction

of the initial gradlentD)_/0 on I' based on the internal
regional gradient observability techniques (46§ and
Hilbert Uniqueness Method (s&&).

In the following, we proceed to reconstruct the initial

gradienty? = Dyo Oy?}) in the subregionw and then
we deduce its tracl)"/jJ onlr CdQnNiw.

For (¢°,.¢%) € (H?(Q) NH5(Q)) x (H3(Q) NH3(Q)),
we consider the following system

w

Q\w

2
%(x,t) =AP(xt) in Q
60 =9, L x0)=9'win 0 ©
¢(&,1)=0 onz

which admits a unique solution

¢ €C(0,T;H2(Q))NC(0,T;H3(Q))NC?(0, T;L%(Q))(see P))

We develop our reconstruction approach in the case wher

the systemX) is observed by means of pointwise sensor.
In the following, we shall consider two kind of
measurements.

4.1 Sate measurement case

Here we consider the systerd) vith the output function

Z(t)=y(bt), beQ, te€]0,T| 9)
For (¢°,$1) € ¢4, there exists a unique

(¢%,¢1) € (HA(Q)NHJ(Q))?

such thafl(¢°, ¢1) = (0¢°,0¢1) = (§°, %)

Then we consider the semi-norm @hdefined by

(80,84 — (8% 6, = [/ (zd—"’ v)’d ]
(10)

whereg is the solution of 8).
We introduce the auxiliary system

2 n
o;t?( =AQ(xt) + Z(yl 3(x—b)in Q
w(x’T>=0%<x,T>:o no @D
‘M’(E t)= ons

The solutiond of (11) is in
C(0,T;H3(Q)) NCL(0,T;L2(Q)) (see B]), where op

av
denotes the conormal with respectto
When the semi norm is a norm (se§)[ we also denote
by% the completion of¢ and consider the operator

NG —g
(6°%¢1) — 2(—W1,¥°)
1 1
where&? = and =0
XoXe { = (§°,....0°)
with ¥ (x,0) = ¥O(x) and%f(x, 0) = ¥(x)
We introduce the system
(92
0th( =AQ(x,t)+ Zd—y d(x—b)in Q
G(x,T)=0, ‘;‘f (x,T)=0 ino (12
‘ﬂ’(&t) = onz
i (@0, #1) is chosen such thagi* = gt and@° = ¢P in w,

then the system1@) looks like the adjomt of the system
(1), and the regional gradient observabilityanamounts
to the conditions for solving the equation

A(Go,§1) = 2(—¥1 ¢0) (13)
— Ay oP
here W= (50(0).....55(0)
WO = ((0),...,P(0))

with ¢ being the solution of(12) Remark. Among
choice of¢® and$* who realizes

L,UO = 0 and ¢! = ¢! in w, where $° = Oy? and
L,Ul = Dyl, this choice is not unique but if we show that
the operatorA is an isomorphism thenlB) admit a
unique solution (¢ @) which will coincide with
(0¥, 0y}) in w.

Proposition 4.1.If the sensor(b, &) is G-strategic inw,
then the semi normlQ) becomes a norm and the equation
(13) has a unique solutiof®, $1) which corresponds to
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(0y9, Oy}) and theny, y($°, §*) is the initial gradientto  Using Green formula, we obtain
be observed on'. 26 o0 3 96
Proof. (g (%0 5 0z, 505 (X0, w<x 0>>Lz(m
If the system {) together with the outpu®] is weaklyG- K A (94,
observable irw, then (L0) defines a norm ify. —/ dx ( ,)dt
Let’s considen @n) the eigenfunctions of the operatdr !
without loss of generality, we assume that the eigenvalueg nq then
Am are simple. .
Let's consider(¢°, §1) € ¢4 such ag|($°, )|l =0, we P L) d ¢
show that($°, §*) = (0,0) which gives <(_Tk(x ,0),§(x,0)), (TXK(X’ 0), ETXK(X’ 0)) 20,
1 = Tﬂ(b t) S %(b t)dt
<¢07Q>I>C?5<—)\i)7t . - @(b) -0 ~Jo Ox G ox
i; +(=A)"2(¢ P sin(—Ai) 2t | (& 9% Thus
for T large enough the functions n 3 9 99
{(Sin(—A) 2t)i=1; (COS—A) 2t)i=1} form a complete Y <(—£(X70)7¢(X70)),(£k( 0, 5 %( : ))>L2(Q)
orthonormal set i.?(0,T). we obtain : k=1 no.T 0¢
0 o L _ - k:l/ Z
(¢, Lzm)X oy () =0 Vi1
k Finally
and T n dd) 2
o . A (G0, 51 01:/ b)) dt
#9392 0)=0 iz (A@°.64).(8°.6Y) = | (|;d><|(’))
=1(8°% Y% V(% ¢h) e
But the sensofb, &) is G-strategic, the”Z b) 70, \which proves that\ is an isomorphism andi() has a
Vi > 1, then(0, &) — (¢L, &) — 0, vi > 1 wh|ch implies unique solution which corresponds to the gradient of the

(9°¢%) = (0,0), then(fﬁo,tﬁl) =(0,0).
We show that\ is an isomorphism.

Multiplying (11) by % and integrating ove®, we obtain

T 2
/ <‘9"S <xt> 2 ()5
—/ 0D AT g
T a¢ e
/< (xt)gE(b,t)a(xfb)hz(mdt

0Xk
which gives
T T
(500 Gt | f{<%<Q<Zx,t>),w<x,t>>L2(m]0
T
+/DT<%%(X ) LIJ(X,t))LZ( )dt
:/0 (G (xt )Atp(xt»Lz

+/D gz bt 21‘9 btdt
with the final condition, we obtain

(52 x0. 2L w0y, +<%k‘;f<x 0.0,
HO ST XD B}
— (%% (x0).AG(x )
Xy L2Q
To0 D0
+/ B B0 5 by

initial state to be estimated in the subregion

4.2 Speed measurement case

Here we consider the systemi)(augmented with the
output function

ay

2t) = S(bY), beQ, teloT[ (14)

For($°,¢1) € ¢, the system§) produces the solutiog.
We consider the semi-norm éh defined by

(8°.8%) — (8, 5* [/ (ijxi‘gt 0)° tr

(15)
We introduce the auxiliary system
(92(1, n 52¢'
0t2( t) = AtllxtJrzdxkdt t)o(x—b)in Q
P(x,T)=0, (;?(x T)=0 in Q
w(E t) = onx
(16)
The solutiond of (16) is in
C(0,T;H3(Q))NCY0,T;L%(Q))(see R).
The resolution of the systerti§) providesi(x, 0) = {I°(x)
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op

and—=-(x,0) = @*(x). 5.1 Sate measurement case
When the s_emi normie) is a horm, we also denote kg We consider the systeml) toghether with the output
the completion of¢ and we consider the operator function ©).
. The resolution of the equatiori®) is equivalent to the
NG — G - minimization of the functional
(6°,¢%) — 2(A¥°,-¢1)
#(§°,¢1) = < (#%,6Y.(6°%%)
10),...,0%0 j w(o 0
where® =X, and{ Egog ; 505033 s v ;¢ (0),(3%,6Y) )
" . =3 ) (3, g DO (F5°) — (#0. 5
With ¥(x,0) = $9(x) and—-(x.0) = PL(x) (19)
We introduce the system the minimization of £6) is equivalent to finding
T 29
2,7 n 2 - <¢0‘¢m>2 ¢l (Dm m

a—;p(x,t) =AQ(x,t)+ z ﬂ(b,t)é(x—b) in Q inf 4% { o0 ] (Zi o )aw

ot . K= ka(?t (90.91) z (<¢O ‘:Dm> Z<ﬂ m <¢1 (Dm zi<ﬂ) m )

Lﬁ(X7T) =0, ailf(x’—r) =0 in Q with separation or:he variables we obtain

oy P

W(E,t) =0 onx . wm

(17) inf < ¢ P (21 X )
If (¢9,¢%) is chosen such thap! = ¢! and §° = ¢° in O] (90, o) Zw? "(%>
L |

w, then the systemnl{y) looks like the adjoint of the system

(1), and the regional gradient observability amounts to the ¢1 ® >2( n amm )
conditions for solving the equation inf S ! 21 ox
LR (! : 00 %
_ (¢ ,¢m>21<w- o)
0 10 1 L (= X
Ai(§%,61) = 2(aw°, -t (18)
which is equivalent to
where _ _ 2 (¥L00n)
o1 0 oy WO =5 a5, 2 M1
1_ (77 - r Z¥m
v =(5(0), 5 (0) (2% ®)
- _ — d _
WO = ((0),...,(0)) - ooy Do P00

with ( being the solution of17)

Remark. Among choice o and@! who realizes
Yo = - 0 andy?! = Plin w.

(3 5em)

Then the initial gradient]yg and Ely1 can be approximated by the following

formula :
For g = Oy? and Yl= Dy, this choice is not unique but
if we show that the operatay is an isomorphism therig) 2 % [W 0%m) 2 ]DGJ (%) X€E @
admit a unique solutiof@®, §*) which will coincide with AP =4 T A 0¢m "
(0¥, 0yd) in w, ! z dx|
Proposition 4.2.If the sensor(b, &) is G-strategic inw, 0 xeQ\w
then the semi norml§) becomes a norm and the equation (20)
(18) has a unique solutio($®, *) and theny, y($°, §*) 5 ® (W0, by
correspondent tgCy?, Cy1) is the initial gradient to be - [AmT(LZ“”"] O®m(x) X € w
observed orf . Oyt (x) = =1 z a m

X

il R - 0 xeQ\w
With minor technical modifications, the proof is simular to (21)
the state measurement one. Remark.

1)- In the case of a zonal sensD, f), with similar

developments as in the case of pointwise sensor, we
5 Numerical approach obtain -

o Yl oo .
72 z [ <n m>(L2<m)) ]D(Dm(x) XE @

In this section, we shall give a numerical approach WhIEDO T & ( <B¢m ) )2
will reconstruct the initial grad|er{ﬂy0 andOyt in w. k; ax D)
We consider the systert)(observed by a pointwise sensor 0 xe Q\w
located ab € Q. (22)
@© 2014 NSP
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and
2 & (WO,00m) 5.,
- *Z[ n Sl 2]I](:Dm()xeoo
Oyt ={ T 9Pm
e (k21< X ’f>L2(D>>
0 xe Q\w
(23)

2) In the case where many pointwise sensds o(.—

the |n|t|al gradienly? andOy’ can be approximated by:

22 <_1 DCDm> 2(w
) —z[qn—(}DcDm()xew
=g TS (5 )y
=N
0 g xe Q\w
(24)
and
22 < >L2w n
) -Z5 {,\m = () ]Ddbm(x)xew
Py =q 22 aaq;,m
0 xe Q\w
(25)

5.2 Speed measurement case

We consider the systeml)( together with the output
function (4). The resolution of equation 18) is
equivalent to the minimization of the functional

F(§.8) = §<Al<¢ 8Y.(8%.6Y)

w(0),-%'(0 >>,2<¢°7 )
2/ d—d’ ) dt — (A%, §°)

with @(A@(O),Lﬁl(o» =
following proposition
Proposition 5.1. If the pointwise sensorgb,d,) is
G-strategic, then fofl large enough, the initial gradient
Dyg and Dyi can be approximated by:

o (26)
(A0, W) then we give the

= (AW0,Ody)
2 [ﬁ}mcbm(x) XEw

. )
W= T 3 S
0 xe Q\w
@7)
and
2 @ (WLO®m) o
i =5 |5 |0Pn(X) xE w
00 = T"ﬁl[< ‘Z“;”%bnz}
0 Xe Q\w

(28)

Proof. With minor technical modifications, the proof is
similar to the state measurement one.
We define the final error

&2 =) Oy — 098 IIZ2 oy Oyt 1172

The good choice of the truncatidv will be such that
& < g(e > 0), and we have the following algorithm.

+ || Oyi—

Algorithm:

Step 1 : Choice of the sensor locatibande the test error,

the truncatiorM.

Step 2 : Repeat . .

© Computation of1y? andCly! by the formulae

((20) and 1)) or ((27) and @8)).

OM+M+1

Until & <e.

Step 3 : The estimated initial gradient Condltldl_ﬂ‘béJ and
Dy corresponds to the initial gradient condmons
to be observed in the subregmn

Step 4 : The restriction dﬂyO andDy to " corresponds to

Dyo and Dy to be reconstructed an.

6 Simulation results

In this section we develop numerical example which
illustrate the efficiency of the previous approach. The
results are related to the choice of the subregion and the
gradient to be observed. Consider the two-dimensional

diffusion process described @ =|0,1[x]0, 1] by
2 2 2
%(x,t) [g ‘2’(x1 xz,t)+g—xg(x1,xz,t)] in 10,1/x]0,T|
Y1 %2,0) = (10, 50), % (40,70,0) =y, %) in 10,1
y(&:n,t)=0 onjo.T|

(29)
The systemZ9) is augmented with the output function
described by a pointwise sensor locatedbip, b,) where
b1 =0.21,b, =0.78 andT =3

Z(t) = y(b1,bo,t) witht € [0, T] (30)

Let’s consider” = {0} x [0, 1] andw =]0,0.3[x]0,1[ the
subregion target and

{ Oy° (x1, %) =

A((lefl)xz(xz 1); (2% — L)xa (% — 1))
Oy (X, %) = B((2x1 1)S|n(5

22 a0~ 1) 2 cog %))

being the gradient of the initial state to be observed on
with A and B are selected for numerical considerations.
Using the previous algorithm, we obtain the following
results:

with A= 0.055 andB = 0.05

The reconstruction is observed with error equals to:
7.016x 107 for Oy and 312 x 104 for Dy?.
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Fig. 5: The exact state gradlerg(;ﬁ in .
2

We note that from figur® and figure6 (resp. figured and

figure 10) the trace of the initial state gradierzeﬁax and
2
1 1
IZ:E (resp. initial speed gradier%i—2 and Z—i‘;) vanish on

6.1 Reconstruction error- subregion area

Here we study numerically the dependence of the gradient
reconstruction error with respect to the subregion area of

w, we have the following table.

From Tablel, we note that the reconstruction error and

the subregion area increase or decrease. This means that

the larger the subregion error is the greater the error is.
The weakly G-observability is realized by means of one

pointwise sensor located ht= (0.21,0.78). The results
are similar for other types of sensors.
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Fig. 10: The estimated speed gradie%iﬁ in w.
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Fig. 11: The exact state gradlenéxﬁ (continuous line) and
1
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Fig. 12: The exact speed gradleryi— (continuous line) and
1

1
estimated speed gradie%xﬁ (dashed line) oifr .
1

Table 1: The reconstruction error with respect to the subregion

0.4

o6 o.8

area.
| The subregion] Reconstruction errof
]0,0.1[x]0, 1] 6.5679x 10>
]0,0.2[x]0,1] 1.2725x 10°*
10,0.3[x]0,1] 3.1270x 1074
]0,0.4[x]0, 1] 7.5275%x 104
]0,0.5[x]0,1] 1.4252x 1073
]0,0.6[x]0,1] 2.4406% 10~
]0,0.7[x]0, 1] 3.4433x 103
]0,0.8[x]0,1] 3.6327x 1073

7 Conclusion
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