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Abstract: The aim of this paper is to introduce the concept of boundary gradient observability for distributed hyperbolic systems
evolving in spatial domainΩ , and which the gradient state is to be observed on a boundary subregionΓ of ∂Ω . We give definitions
and characterizations and some properties of this kind of regional boundary observability. To explore this notion we describe an new
approach to solve this problem, which is performed through numerical examples and simulations.
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1 Introduction

Many real problems in the control and observation of
distributed systems can be reformulated as a problem of
analysis for infinite dimensional systems. New and
interesting notions has been introduced and developed.
Among the most important is observability which has
been widely developed by Curtain and Zwart [1] and the
references therein. But in practical situations one is
interested in the reconstruction of the systems state in a
restricted given subregion, from the knowledge of the
system dynamics and the output function [13]. This
concept was introduced by El Jai and Zerrik [5,15] and
extended to the case where the subregion is a part of the
boundary of the system evolution domain [8,10,15].

In many real world problem, one is interested by the
knowledge directly of the state gradient without the
knowledge of its state. This concept was introduced and
developed by Zerrik et al.[14,?] and Boutoulout et al.[8,
9,10,11] and interesting results were obtained only for
parabolic systems but little has been done for hyperbolic
ones. It is also plausible in real problems that the
subregion of interest may be a portionΓ ⊂ ∂Ω , rather
than an actual subregionω. Our interest is to extend the
notion of regional gradient observability for hyperbolic
systems developed initially in internal domain by [12] to
the case where the subregion of interest is a part of the
boundary of system evolution domain. Technically, the
distinguishing difficulty is that the relevant restriction

map is now a trace map and can not be expected to be
continuous. More precisely we have to develop tools to
reconstruct directly the initial state and speed gradient on
the boundary of the system evolution domain. This leads
to the so-called regional boundary gradient observability.

The paper is organized as follows : First we give some
fundamental results related to regional boundary gradient
observability for hyperbolic systems. In the next section
we give characterization of boundary gradient strategic
sensors. The established results are also applied to a
two-dimensional diffusion system. Section 4 we give a
reconstruction method for the gradient on a subregion
Γ ⊂ ∂Ω . At last the simulations show that there exists a
relation between the choice of sensors location and the
boundary subregion target.

2 Gradient observability

2.1 Problem statement

Let Ω be an open and bounded domain ofIRn(n = 1,2,3)
with regular boundary∂Ω . For T > 0, we denote
Q = Ω×]0,T [, Σ = ∂Ω×]0,T [ and we consider the
following hyperbolic system defined by



















∂ 2y

∂ t2 (x, t) = A y(x, t) in Q

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω
y(ξ , t) = 0 on Σ

(1)
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with y0 andy1 are the initial conditions, the measurement
given by the output function

z(t) =Cy(t), t ∈]0,T [ (2)

whereA =−
n

∑
i, j=1

∂
∂xi

(ai j
∂

∂x j
) with ai j ∈ D(Q).

Suppose thatA is elliptic and a second order differential
operator, i.e., there existsα > 0 such that

n

∑
i, j=1

ai jξiξ j, ≥ α
n

∑
i=1
| ξi |2 ∀ξ = (ξ1, ....,ξn) ∈ IRn

and C : H2(Ω) ∩ H1
0(Ω) −→ IRq is a linear operator

whereq depends on the number of the considered sensors.
We are interested in the reconstruction of the gradient on
a portion Γ of the boundary domain∂Ω where a
distributed parameter system governed by hyperbolic
equations evolving in a spatial domainΩ .
Let’s consider the observation spaceO = L2(0,T ; IRq)
and assume that

(y0,y1) ∈ X = (H2(Ω)∩H1
0(Ω))× (H2(Ω)∩H1

0(Ω)).

Without loss of generality we denotey(t) := y(x, t).
Let’s consider

ȳ(t) =

[

y(t)
∂y(t)

∂ t

]

, ȳ0 =

[

y0

y1

]

, ¯A =

[

0 I
A 0

]

For (y1,y2) ∈ F = L2(Ω)× L2(Ω), the system (1) is
equivalent to







∂ ȳ
∂ t

(t) = ¯A ȳ(t) 0< t < T

ȳ(0) = ȳ0
(3)

with measurements given by the output function

z̄(t) = C̄ȳ(t) (4)

with C̄ = (C,0), the system (3) has a unique solution that
can be expressed as ¯y(t) = S̄(t)ȳ0, where (S̄(t))t≥0 is a
strongly continuous semigroup generated by the operator

¯A .
The initial conditions (y0,y1) and their gradients
(∇y0,∇y1) are assumed to be unknown.
For ω ⊂ Ω , open, regular and of positive Lebesgue
measure, the problem of regional gradient observability is
the possibility to reconstruct directly the initial gradient
(∇y0,∇y1) on ω, without the knowledge of the state
(y0,y1).
For the case whereC is unbounded, some precautions
must be taken asD(C)⊂ (H2(Ω)∩H1

0(Ω)) and
S(t)(D(C))⊂ D(C) ∀t ≥ 0 [4].
Let’s denoteΦm j a basis of eigenfunctions of the operator
A , with Dirichlet conditions and associated to the
eigenvaluesλm with the multiplicity rm, then for any

(y1,y2) ∈F

S̄(t)





y1

y2



=

























∞

∑
m=1

rm

∑
j=1

[〈y1,Φm j 〉cos(−λm)
1
2 t

+(−λm)
− 1

2 〈y2,Φm j 〉sin(−λm)
1
2 t]Φm j

∞

∑
m=1

rm

∑
j=1

[−(−λm)
1
2 〈y1,Φm j 〉sin(−λm)

1
2 t

+〈y2,Φm j 〉cos(−λm)
1
2 t]Φm j

























then the output function can be expressed as follows

z̄(t) = C̄S̄(t)ȳ0 = K̄(t)ȳ0, t ∈]0,T [

WhereK̄ is the observation operator defined by

K̄ : X −→ O

z̄ 7−→ C̄S̄(.)z̄

which is linear bounded, with the adjoint̄K∗ given by

K̄∗ : O −→ X

z̄∗ 7−→
∫ T

0
S̄∗(t)C̄∗z̄∗(t)dt

Let’s consider the operator∇ given as follows

∇ : (H2(Ω)∩H1
0 (Ω))× (H2(Ω)∩H1

0 (Ω)) −→ (L2(Ω))n× (L2(Ω))n

(y1,y2) 7−→ ∇(y1,y2) = (∇y1,∇y2)

where

∇ : H2(Ω)∩H1
0(Ω) −→ (L2(Ω))n

y 7−→ ∇y = (
∂y
∂x1

, . . . ,
∂y
∂xn

)

We denote by∇∗ (resp.∇∗) the adjoint of∇ (resp.∇).
Let ∇ȳ0

1 be the restriction of the trace of∇ȳ0 to Γ
with ∇ȳ0 = (∇y0,∇y1) and∇ȳ0

1 = (∇y0
1,∇y1

1).
Let’s consider the trace operator

γ̄ : (H1(Ω))n× (H1(Ω))n −→ (H
1
2 (∂Ω))n× (H

1
2 (∂Ω))n

(y1,y2) 7−→ γ̄(y1,y2) = (γy1,γy2)

with

γ : (H1(Ω))n −→ (H
1
2 (∂Ω))n

z 7−→ γz = (γ0z1, . . . ,γ0zn)

andγ0 : H1(Ω)−→H
1
2 (∂Ω) is the trace operator of order

zero which is linear, continuous, and surjective.
γ∗ (resp.γ∗

0
) denote the adjoint of operatorγ (resp.γ0)

ForΓ ⊂ ∂Ω , consider

χ̄Γ : (H
1
2 (∂Ω))n× (H

1
2 (∂Ω))n → (H

1
2 (Γ ))n× (H

1
2 (Γ ))n

(ξ ,ξ ′) 7→ χ̄Γ (ξ ,ξ
′
) = (ξ ,ξ ′)|Γ

χΓ : (H
1
2 (∂Ω))n → (H

1
2 (Γ ))n

ξ 7→ χΓ ξ = ξ |Γ
andχ̃Γ : H

1
2 (∂Ω) → H

1
2 (Γ )

ξ 7→ χ̃Γ ξ = ξ |Γ
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with χ̄∗
Γ
(resp.χ∗

Γ
andχ̃∗

Γ
) is the adjoint of

χ̄Γ (resp.χΓ andχ̃Γ ) which is the restriction operator,
consider also the operator :

χ
ω

: (H1(Ω))n× (H1(Ω))n −→ (H1(ω))n× (H1(ω))n

(y1,y2) 7−→ χω (y1,y2) = (χω y1,χω y2)

where

χω : (H1(Ω))n → (H1(ω))n and
ξ 7→ χω ξ = ξ |ω

χ̃ω : H1(Ω) → H1(ω)
ξ 7→ χ̃ω ξ = ξ |ω

andχ∗ω denotes its adjoint operator, finally we reconstruct
the operator as follows

H̄ = χ
Γ

γ∇K̄∗ from O into (H
1
2 (Γ ))n× (H

1
2 (Γ ))n

Let’s recall some definitions and results related to the
internal regional gradient observability. Then the
following will apply.

–The system (1) together with the output (2) is said to
be exactly gradient observable inω if
Im(χω ∇K̄∗) = (H1(ω))n× (H1(ω))n.

–The system (1) together with the output (2), is said to
be weakly gradient observable inω if

Im(χω ∇K̄∗) = (H1(ω))n× (H1(ω))n.
–A sequence of sensors is said to be gradient strategic
in ω (or G-strategic inω) if the observed system is
weakly gradient observable onω. For more details, see
[12] and [16].

The regional boundary gradient observability explores the
reconstruction of the gradient in the particular case where
the subregionω is a subset of the boundary. More
precisely we have to rebuild the∇ȳ0

1 component of the
initial gradient of an unknown portion of the boundary.

Fig. 1: The domainΩ , the subregionΓ , and the sensors locations.

Definition 2.1. The system (1) together with the output
(2) is said to be exactly (resp. weakly) boundary gradient
observable onΓ or exactly (resp. weakly)G-observable on
Γ if ImH̄ = (H

1
2 (Γ ))n× (H

1
2 (Γ ))n

(resp.ImH̄ = (H
1
2 (Γ ))n× (H

1
2 (Γ ))n.)

Definition 2.2.

1)-A sensor(D, f ) is said to be gradient strategic onΓ or
G-strategic onΓ if the observed system is weakly
G-observable onΓ ,

2)-A sequence of sensors(Di, fi)1≤i≤q is said to be
gradient strategic onΓ or G-strategic onΓ if there is
at least one sensor(Di0, fi0) which is G-strategic on
Γ .

Remark.

1)-If the system (1) together with the output (2) is exactly
G-observable onΓ then it is weaklyG-observable on
Γ .

2)-For Γ2 ⊂ Γ1 ⊂ ∂Ω the system (1) together with the
output (2) is exactly (resp. weakly)G-observable on
Γ1 then it is exactly (resp. weakly)G-observable on
Γ2.

3)-One can find states that areG-observable onΓ but not
G-observable in the whole domainΩ . This is
illustrated through the following example.

2.2 Example

Let’s consider the two-dimensional system described in
Ω =]0,1[×]0,1[ by the following equation



































∂ 2y

∂ t2 (x1,x2, t) =
∂ 2y

∂x2
1

(x1,x2, t)+
∂ 2y

∂x2
2

(x1,x2, t) in Q,

y(x1,x2,0) = y0(x1,x2),
∂y
∂ t

(x1,x2,0) = y1(x1,x2) in Ω ,

y(ζ ,η , t) = 0 on Σ ,

(5)

The measurements are given by the output function

z(t) =
∫

D
y(x1,x2, t) f (x1,x2)dx1dx2, (6)

Where D =]0,1[×{1/2} is the sensor support and

Fig. 2: The domainΩ , the subregionΓ , and sensors supportD.

f (x1,x2) = sin(2πx1) is the function repartition of the
measures.
Let’s considerΓ = {0}× [0,1] and

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


16 A. Boutoulout et. al. : Flux Observability for Hyperbolic Systems

ḡ(x1,x2) =

[

g0(x1,x2)
g1(x1,x2)

]

the gradient to be observed, with

g0(x1,x2) = (π cos(πx1)sin(πx2),2π sin(πx1)cos(πx2))
g1(x1,x2) = (−π sin(πx1)cos(πx2),−2π cos(πx1)sin(πx2))
the gradient to be observed onΓ , then we have the
following result:
Proposition 2.1. The gradient ¯g is not weakly
G-observable in the whole domainΩ , but it is weakly
G-observable onΓ .
Proof. We have
K̄∇∗(ḡ) = C̄S̄(t)∇∗ḡ
=

∞

∑
m, j=1

[

〈∇∗g0,Φm j 〉(H2(Ω)∩H1
0 (Ω))

cos(−λm j )
1
2 t

+(−λm j )
− 1

2 〈∇∗g1,Φm j 〉(H2(Ω)∩H1
0 (Ω))

sin(−λm j )
1
2 t
]

〈Φm j , f 〉

=
∞

∑
m, j=1

−1
λm j

[
1
2

m+ j]π2 cos(−λm j )
1
2 t sin(

jπ
2
)δm1δm2δ j1

+ ∑
m, j∈2IN

1

λm j (−λm j )
1
2
[

8m2 j+16j2m
(m2−1)( j2−1)

]sin(−λm j )
1
2 t sin(

jπ
2
)δm2

for m = 2 and j ∈ 2IN, we haveK̄∇∗(ḡ) = 0, Then the
system (5) together with (6) is not weaklyG-observable in
Ω .
We show that the restriction of ¯g to the subregionΓ is G-
observable onΓ .
We have

K̄∇∗ γ̄∗ χ̄∗
Γ

χ̄Γ γ̄(ḡ) =
∞

∑
m, j=1

[〈χΓ γg0,χΓ γ∇Φm j 〉
(H

1
2 (Γ ))n

cos(
√

−λm j t)

+
√

−λm j 〈χΓ γg1,χΓ γ∇Φm j 〉
(H

1
2 (Γ ))n

sin(
√

−λm j t)]〈Φm j , f 〉
L2(D)

=
∞

∑
m, j=1

[(

〈χ̃Γ γ0g0
1
, χ̃Γ γ0

∂Φm j

∂x1
〉

H
1
2 (Γ )

+〈χ̃Γ γ0g0
2
, χ̃Γ γ0

∂Φm j

∂x2
〉

H
1
2 (Γ )

)

cos(
√

−λm j t)

+
√

−λm j

(

〈χ̃Γ γ0g1
1, χ̃Γ γ0

∂Φm j

∂x1
〉

H
1
2 (Γ )

+〈χ̃Γ γ0g1
2
, χ̃Γ γ0

∂Φm j

∂x2
〉

H
1
2 (Γ )

)

sin(
√

−λm j t)
]

〈Φm j , f 〉
L2(D)

=
∞

∑
m, j=1

2mπ2 cos(
√

−λm j t)sin(
jπ
2
)δm2δ j1

= 4π2 cos(
√
−λ21t) 6= 0

Thenḡ is G-observable onΓ . �

2.3 Characterizations

The gradient observability onΓ is characterized by the
following results.Proposition 2.2.

1)-The system (1) together with the output (2) is exactly
G-observable onΓ if and only if,
∃α > 0,‖z̄∗‖

(H
1
2 (Γ ))n×(H

1
2 (Γ ))n

≤ α‖K̄∇∗ᾱ∗χ̄∗Γ z̄∗‖
O
,

∀z̄∗ ∈ (H
1
2 (Γ ))n× (H

1
2 (Γ ))n.

2)-The system (1) together with the output (2) is weakly
G-observable onΓ if and only if the operatorH̄H̄∗ is
positive definite.

Proof.

1)-Let’s considerh = Id
(H

1
2 (Γ ))n×(H

1
2 (Γ ))n

and

g = χ̄Γ ᾱ∇K̄∗, since the system (1) together with the

output (2) is exactly G-observable onΓ , we have
Imh⊂ Img, which is equivalent to the fact that there
existsα > 0, such that
‖h̄∗z̄∗‖

(H
1
2 (Γ ))n×(H

1
2 (Γ ))n

≤ α‖ḡ∗z̄∗‖
O×O

,

∀z̄∗ ∈ (H
1
2 (Γ ))n× (H

1
2 (Γ ))n.

2)-Let’s consider ¯z∗ ∈ (H
1
2 (Γ ))n × (H

1
2 (Γ ))n such that

〈H̄H̄∗z̄∗, z̄∗〉= 0
then ‖H̄∗z̄∗‖ = 0 and therefore ¯z∗ ∈ KerH̄∗,
consequently, ¯z∗ = 0, and then H̄H̄∗ is positive
definite.
Conversely, let’s consider ¯z∗ ∈ (H

1
2 (Γ ))n× (H

1
2 (Γ ))n

such that‖H̄∗z̄∗‖ = 0, then〈H̄H̄∗z̄∗, z̄∗〉 = 0 and since
H̄H̄∗ is positive definite, then ¯z∗ = 0.
So, the system (1) together with the output (2) is
weaklyG-observable onΓ .

Here we show that it is possible to link the internal
gradient observability and the boundary one. The
boundary regionalG-observability can be reduced as
internal regionalG-observability, we have the following
result.
Proposition 2.3.Assume thatω ⊂Ω such thatΓ ⊂ ∂ω ∩
∂Ω , then if the system (1) together with the output (2) is
exactly (resp.weakly)G-observable inω, then it is exactly
(resp.weakly)G-observable onΓ .
Proof. Let’s consider
ȳ = (ȳ1

1, . . . , ȳ
1
n, ȳ

2
n, . . . , ȳ

2
n) ∈ (H

1
2 (Γ ))n × (H

1
2 (Γ ))n,

ỹ = (ỹ1
1, . . . , ỹ

1
n, ỹ

2
n, . . . , ỹ

2
n) is a continuous extension of ¯y to

∂Ω such that ˜y ∈ (H
1
2 (∂Ω))n × (H

1
2 (∂Ω))n with the

following transformation

R̄ : (H
1
2 (∂Ω))n× (H

1
2 (∂Ω))n −→ (H1(Ω))n× (H1(Ω))n

(z1
1, . . . ,z

1
n,z

2
1, . . . ,z

2
n) −→ (R̃z1

1, . . . ,R̃z1
n,R̃z2

1, . . . ,R̃z2
n)

whereR̃ : H
1
2 (∂Ω)−→ H1(Ω), such thatγ0R̃g = g

∀g ∈ H
1
2 (∂Ω), then R̄ verify γ̄R̄ỹ = ỹ

∀ỹ ∈ (H
1
2 (∂Ω))n(see[2])

then using the trace theorem (see[1]), there exists
R̄ỹ = (R̃ỹ1

1, . . . ,R̃ỹ1
n,R̃ỹ2

1, . . . ,R̃ỹ2
n) ∈ (H1(Ω))n × (H1(Ω))n

with a bounded support such thatγ̄R̄ỹ = ỹ.
Let ¯̄χΓ be the map restriction from

(H
1
2 (∂ω))n × (H

1
2 (∂ω))n −→ (H

1
2 (Γ ))n × (H

1
2 (Γ ))n,

and ¯̄γ be the trace mapping from
(H1(ω))n× (H1(ω))n −→ (H

1
2 (∂ω))n× (H

1
2 (∂ω))n

–Since the system (1) together with the output (2) is
exactly G-observable inω (see[12]), there exists
z̄ ∈ O such asχ̄ω R̄ỹ = χ̄ω ∇K̄∗z̄, or Γ ⊂ ∂ω ∩ ∂Ω
thenȳ = ¯̄χΓ

¯̄γ χ̄ω ∇K̄∗z̄ and the system (1) together with
the output (2) is exactlyG-observable inΓ .

–If the system (1) together with the output (2) is
weakly G-observable inω, then∀ε > 0, there exist
z̄ ∈ O such as‖χ̄ω R̄ỹ− χ̄ω ∇K̄∗z̄‖

(H1(ω))n×(H1(ω))n
≤ ε

or ¯̄γ is continuous, then
‖ ¯̄γ χ̄ω R̄ỹ− ¯̄γ χ̄ω ∇K̄∗z̄‖

(H
1
2 (∂ω))n×(H

1
2 (∂ω))n

≤ ε

c© 2014 NSP
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finaly ‖ȳ− ¯̄χΓ
¯̄γ χ̄ω ∇K̄∗z̄‖

(H
1
2 (Γ ))n×(H1(Γ ))n

≤ ε

Therefore the system (1) together with the output (2)
is weaklyG-observable onΓ .

In conclusion we have shown that the regional boundary
gradient observability can be reduced as internal regional
gradient observability.

3 Γ -strategic sensors

We propose to give a characterization of sensors making a
Γ -weakly observability. Let’s consider the system (1) and
assume that the measurements are given by way ofq
sensors(Di, fi)1≤i≤q. The output equation is then given
by:

z(t) =Cy(t) =
(

z1(t),z2(t), . . . ,zq(t)
)

with Di = {bi} and f = δ (.−bi) in the case of pointwise
sensor.
and Di ⊂ Ω̄ with f ∈ L2(Di) for the zonal sensor.
We assume that(χ̃Γ γ0Φm j) 1≤ j ≤ rm ,m≥ 1 form a complete set

in H
1
2 (Γ ).

More we assume thatr = sup
m

rm < ∞.

We have the following proposition
Proposition 3.1.The sequence of sensors(Di, fi)1≤i≤q is
G-strategic onΓ if

•q≥ r
•rankGm = rm, ∀m≥ 1

where

(Gm)i j =



















n

∑
k=1

〈
∂Φm j

∂xk
, fi〉 in zone case

n

∑
k=1

∂Φm j

∂xk
(bi) in pointwise case

with 1≤ i≤ q and 1≤ j ≤ rm.
Proof. We show that if rankGm = rm, ∀m ≥ 1, then the
system (1) together with the output (2) is weakly
G-observable onΓ .
We suppose that KerK̄∇∗γ̄∗χ̄∗

Γ
6= {0}

i.e. there existsz∗ = (z1∗,z2∗) ∈ (H
1
2 (Γ ))n × (H

1
2 (Γ ))n

as(z1∗,z2∗) 6= 0 and K̄∇∗γ̄∗χ̄∗Γ z∗ = 0.
with

γ̄∗χ̄∗Γ z∗ = (γ∗χ∗Γ z1∗,γ∗χ∗Γ z2∗)
= (γ∗

0
χ̃∗Γ z1∗

1 , . . . ,γ∗
0

χ̃∗Γ z1∗
n ,γ∗

0
χ̃∗Γ z2∗

1 , . . . ,γ∗
0

χ̃∗Γ z2∗
n )

then

K̄∇∗γ̄∗χ̄∗
Γ
(z1∗,z2∗)

= K̄∇∗(γ∗
0

χ̃∗
Γ

z1∗
1 , . . . ,γ∗

0
χ̃∗

Γ
z1∗

n ,γ∗
0

χ̃∗
Γ

z2∗
1 , . . . ,γ∗

0
χ̃∗

Γ
z2∗

n )

= ∑
m≥1

rm

∑
j=1

n

∑
k=1

[

〈γ∗
0

χ̃∗Γ z1∗
k ,Φm j〉cos(−λm)

1
2 t

+(−λm)
− 1

2 〈γ∗
0

χ̃∗
Γ

z2∗
k ,Φm j〉sin(−λm)

1
2 t
]

〈
∂Φm j

∂xk
, fi〉

= 0 ∀i = 1. . .q

for T large enough the functions
{sin(−λn)

1
2 (.),cos(−λn)

1
2 (.)}n≥1 constitute a complete

orthonormal set inL2(0,T ), then


























rm

∑
j=1
〈γ∗

0
χ̃∗Γ z1∗

k ,Φm j 〉
n

∑
k=1
〈

∂Φm j

∂xk
, fi〉L2(Di) = 0, ∀m≥ 1, ∀i = 1, . . . ,q

rm

∑
j=1
〈γ∗

0
χ̃∗Γ z2∗

k ,Φm j 〉
n

∑
k=1
〈

∂Φm j

∂xk
, fi〉L2(Di) = 0, ∀m≥ 1, ∀i = 1, . . . ,q

and then


























rm

∑
j=1
〈z1∗

k , χ̃Γ γ0Φm j 〉
n

∑
k=1
〈

∂Φm j

∂xk
, fi〉L2(Di) = 0, ∀m≥ 1, ∀i = 1, . . . ,q

rm

∑
j=1
〈z2∗

k , χ̃Γ γ0Φm j 〉
n

∑
k=1
〈

∂Φm j

∂xk
, fi〉L2(Di) = 0, ∀m≥ 1, ∀i = 1, . . . ,q

but z1∗ ∈ (H
1
2 (Γ ))n if z1∗ 6= 0 and(γ∗

0
χ̃Γ
∗Φm j) 1≤ j ≤ rm m≥ 1

form a complete set inH
1
2 (Γ ), then

z1∗
k = ∑

m≥1

rm

∑
j=1
〈z1∗

k , χ̃Γ γ0Φm j〉
H

1
2 (Γ )

χ̃Γ γ0Φm j ∀k = 1, . . . ,n

if z1∗ 6= 0 then there exists
1 ≤ k0 ≤ n,m1 ≥ 1 and 1 ≤ j ≤ rm1 with
〈z1∗

k , χ̃Γ γ0Φm j〉
H

1
2 (Γ )

6= 0

Let’s consider, then

z1m1
=





















〈z1∗1 , χ̃Γ γ0 Φm11〉
H

1
2 (Γ )

. . .〈z1∗k0
, χ̃Γ γ0 Φm11〉

H
1
2 (Γ )

. . .〈z1∗n , χ̃Γ γ0 Φm11〉
H

1
2 (Γ )

.

.

.
〈z1∗1 , χ̃Γ γ0 Φm1rm1

〉
H

1
2 (Γ )

. . .〈z1∗k0
, χ̃Γ γ0 Φm1rm1

〉
H

1
2 (Γ )

. . .〈z1∗n , χ̃Γ γ0 Φm1rm1
〉
H

1
2 (Γ )





















then we obtain Gm1z1
m1

= 0, but z1
m1
6= 0, then

rankGm1 6= rm1 this is contradiction withrankGm = rm,
∀m≥ 1,
the same think forz2∗ ∈ (H

1
2 (Γ ))n andz2∗ 6= 0.

Finally KerK̄∇∗γ̄∗χ̄∗
Γ
= {0}, then the system (1) together

with the output (2) is weaklyG-observable onΓ .

4 Regional boundary gradient reconstruction

We takeA = ∆ , the system (1) is then written as


































∂ 2y
∂ t2 (x, t) = ∆y(x, t) in Q

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω

y(ξ , t) = 0 onΣ

(7)

Let’s consider the set

G̃ = {(h1,h2) ∈ (L2(Ω))n× (L2(Ω))n|h1 = h2 = 0surΩ \ω}
∩{∇( f 1, f 2) = (∇ f 1,∇ f 2)|( f 1, f 2) ∈

(

H2(Ω)∩H1
0(Ω)

)2}
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whereω be a subset ofΩ such thatΓ ⊂ ∂ω ∩∂Ω .
It is known that if the system (1) together with (2) is
weakly G-observable inω, then it is weakly G-observable
on Γ (see [??]). This result links the internal regional
gradient observability inω with the boundary case.
We decompose the initial gradient∇ȳ0 in the form

∇ȳ0=







∇ȳ0
1

in ω

∇ȳ0
2

in Ω\ω

We present an approach which allows the reconstruction

of the initial gradient∇̃ȳ0
1 on Γ based on the internal

regional gradient observability techniques (see[17]) and
Hilbert Uniqueness Method (see[3]).
In the following, we proceed to reconstruct the initial
gradient∇ȳ0

1
= (∇y0

1
,∇y1

1
) in the subregionω and then

we deduce its tracẽ∇ȳ0
1

onΓ ⊂ ∂Ω ∩∂ω.
For (ϕ0,ϕ1) ∈ (H2(Ω) ∩H1

0(Ω))× (H2(Ω) ∩H1
0(Ω)),

we consider the following system



































∂ 2ϕ
∂ t2 (x, t) = ∆ϕ(x, t) in Q

ϕ(x,0) = ϕ0(x),
∂ϕ
∂ t

(x,0) = ϕ1(x) in Ω

ϕ(ξ , t) = 0 onΣ

(8)

which admits a unique solution

ϕ ∈C(0,T ;H2(Ω))∩C1(0,T ;H1
0(Ω))∩C2(0,T ;L2(Ω))(see [2])

We develop our reconstruction approach in the case where
the system (1) is observed by means of pointwise sensor.
In the following, we shall consider two kind of
measurements.

4.1 State measurement case

Here we consider the system (1) with the output function

z(t) = y(b, t), b ∈Ω , t ∈]0,T [ (9)

For (ϕ̃0, ϕ̃1) ∈ G̃ , there exists a unique
(ϕ0,ϕ1) ∈ (H2(Ω)∩H1

0(Ω))2

such that∇(ϕ0,ϕ1) = (∇ϕ0,∇ϕ1) = (ϕ̃0, ϕ̃1).
Then we consider the semi-norm oñG defined by

(ϕ̃0, ϕ̃1) 7−→ ‖(ϕ̃0, ϕ̃1)‖
G̃
=

[

∫ T

0

( n

∑
k=1

∂ϕ
∂xk

(b, t)
)2

dt

] 1
2

,

(10)

whereϕ is the solution of (8).
We introduce the auxiliary system










































∂ 2ψ̃
∂ t2 (x, t) = ∆ψ̃(x, t)+

n

∑
k=1

∂ϕ
∂xk

(b, t)δ (x−b) in Q

ψ̃(x,T ) = 0,
∂ψ̃
∂ t

(x,T ) = 0 in Ω

∂ψ̃
∂ν

(ξ , t) = 0 on Σ

(11)

The solutionψ̃ of (11) is in

C(0,T ;H1
0(Ω)) ∩C1(0,T ;L2(Ω)) (see [2]), where

∂ψ̃
∂ν

denotes the conormal with respect to∆ .
When the semi norm is a norm (see [4]), we also denote
by G̃ the completion ofG̃ and consider the operator

Λ : G̃ −→ G̃ ∗

(ϕ̃0, ϕ̃1) 7−→P(−Ψ̃1,Ψ̃0)

whereP = χ∗ω χω and

{

Ψ̃1 = (ψ̃1, . . . , ψ̃1)
Ψ̃0 = (ψ̃0, . . . , ψ̃0)

with Ψ̃(x,0) = Ψ̃0(x) and
∂Ψ̃
∂ t

(x,0) = Ψ̃1(x)

We introduce the system










































∂ 2ψ̄
∂ t2 (x, t) = ∆ψ̄(x, t)+

n

∑
k=1

∂y
∂xk

(b, t)δ (x−b) in Q

ψ̄(x,T ) = 0,
∂ψ̄
∂ t

(x,T ) = 0 in Ω

∂ψ̄
∂ν

(ξ , t) = 0 on Σ

(12)

If (ϕ̃0, ϕ̃1) is chosen such that̃ψ1 = ψ̄1 andψ̃0 = ψ̄0 in ω,
then the system (12) looks like the adjoint of the system
(1), and the regional gradient observability inω amounts
to the conditions for solving the equation

Λ(ϕ̃0, ϕ̃1) = P(−Ψ̄1,Ψ̄0) (13)

where











Ψ̄ 1 = (
∂ψ̄
∂ t

(0), . . . ,
∂ψ̄
∂ t

(0))

Ψ̄ 0 = (ψ̄(0), . . . , ψ̄(0))

with ψ̄ being the solution of(12) Remark. Among

choice ofϕ̃0 andϕ̃1 who realizes
ψ̃0 = ψ̄0 and ψ̃1 = ψ̄1 in ω, where ψ̃0 = ∇y0

1 and
ψ̃1 = ∇y1

1, this choice is not unique but if we show that
the operatorΛ is an isomorphism then (13) admit a
unique solution (ϕ̃0, ϕ̃1) which will coincide with
(∇y0

1,∇y1
1) in ω.

Proposition 4.1. If the sensor(b,δb) is G-strategic inω,
then the semi norm (10) becomes a norm and the equation
(13) has a unique solution(ϕ̃0, ϕ̃1) which corresponds to

c© 2014 NSP
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(∇y0
1,∇y1

1) and thenχ̄Γ γ̄(ϕ̃0, ϕ̃1) is the initial gradient to
be observed onΓ .

Proof.
If the system (1) together with the output (2) is weaklyG-
observable inω, then (10) defines a norm inG̃ .
Let’s consider(Φm) the eigenfunctions of the operator∆ ,
without loss of generality, we assume that the eigenvalues
λm are simple.
Let’s consider(ϕ̃0, ϕ̃1) ∈ G̃ such as‖(ϕ̃0, ϕ̃1)‖

G̃
= 0, we

show that(ϕ̃0, ϕ̃1) = (0,0) which gives

∑
i≥1

[

〈ϕ0,Φi〉cos(−λi)
1
2 t

+(−λi)
− 1

2 〈ϕ1,Φi〉sin(−λi)
1
2 t

]

n

∑
k=1

∂Φi

∂xk
(b) = 0

for T large enough the functions
{(sin(−λi)

1
2 t)i≥1;(cos(−λi)

1
2 t)i≥1} form a complete

orthonormal set inL2(0,T ). we obtain :

〈ϕ0,Φi〉L2(Ω)

n

∑
k=1

∂Φi

∂xk
(b) = 0 ∀i≥ 1

and

〈ϕ1,Φi〉L2(Ω)

n

∑
k=1

∂Φi

∂xk
(b) = 0 ∀i≥ 1

But the sensor(b,δb) is G-strategic, then
n

∑
k=1

∂Φi

∂xk
(b) 6= 0,

∀i≥ 1, then〈ϕ0,Φi〉= 〈ϕ1,Φi〉= 0,∀i≥ 1 which implies
(ϕ0,ϕ1) = (0,0), then(ϕ̃0, ϕ̃1) = (0,0).
We show thatΛ is an isomorphism.

Multiplying (11) by
∂ϕ
∂xk

and integrating overQ, we obtain

∫ T

0
〈 ∂ϕ

∂xk
(x, t),

∂ 2ψ̃
∂ t2 (x, t)〉

L2(Ω)
dt

=
∫ T

0
〈 ∂ϕ

∂xk
(x, t),∆ψ̃(x, t)〉

L2(Ω)
dt

+
∫ T

0
〈 ∂ϕ

∂xk
(x, t),

n

∑
l=1

∂ϕ
∂xl

(b, t)δ (x−b)〉
L2(Ω)

dt

which gives
[

〈 ∂ϕ
∂xk

(x, t),
∂ψ̃
∂ t

(x, t)〉
L2(Ω)

]T

0
−
[

〈 ∂
xk

(
∂ϕ
∂ t

(x, t)), ψ̃(x, t)〉
L2(Ω)

]T

0

+
∫ T

0
〈 ∂

∂xk

∂ 2ϕ
∂ t2 (x, t), ψ̃(x, t)〉

L2(Ω)
dt

=
∫ T

0
〈 ∂ϕ

∂xk
(x, t),∆ψ̃(x, t)〉

L2(Ω)
dt

+
∫ T

0

∂ϕ
∂xk

(b, t)
n

∑
l=1

∂ϕ
∂xl

(b, t)dt

with the final condition, we obtain

−〈 ∂ϕ
∂xk

(x,0),
∂ψ̃
∂ t

(x,0)〉
L2(Ω)

+〈 ∂
∂xk

∂ϕ
∂ t

(x,0), ψ̃(x,0)〉
L2(Ω)

+〈∆ ∂ϕ
∂xk

(x, t), ψ̃(x, t)〉
L2(Q)

= 〈 ∂ϕ
∂xk

(x, t),∆ψ̃(x, t)〉
L2(Q)

+
∫ T

0

∂ϕ
∂xk

(b, t)
n

∑
l=1

∂ϕ
∂xl

(b, t)dt

Using Green formula, we obtain

−〈 ∂ϕ
∂xk

(x,0),
∂ψ̃
∂ t

(x,0)〉
L2(Ω)

+〈 ∂
∂xk

∂ϕ
∂ t

(x,0), ψ̃(x,0)〉
L2(Ω)

=
∫ T

0

∂ϕ
∂xk

(b, t)
n

∑
l=1

∂ϕ
∂xl

(b, t)dt

and then

〈(− ∂ψ̃
∂xk

(x,0), ψ̃(x,0)),(
∂ϕ
∂xk

(x,0),
∂
∂ t

∂ϕ
∂xk

(x,0))〉
L2(Ω)

=
∫ T

0

∂ϕ
∂xk

(b, t)
n

∑
l=1

∂ϕ
∂xl

(b, t)dt

Thus

n

∑
k=1

〈(− ∂ψ̃
∂xk

(x,0), ψ̃(x,0)),(
∂ϕ
∂xk

(x,0),
∂
∂ t

∂ϕ
∂xk

(x,0))〉
L2(Ω)

=
n

∑
k=1

∫ T

0

∂ϕ
∂xk

(b, t)
n

∑
l=1

∂ϕ
∂xl

(b, t)dt

Finally

〈Λ(ϕ̃0, ϕ̃1),(ϕ̃0, ϕ̃1)〉 =
∫ T

0

( n

∑
l=1

∂ϕ
∂xl

(b, t)
)2

dt

= ‖(ϕ̃0, ϕ̃1)‖2
G̃
, ∀(ϕ̃0, ϕ̃1) ∈ G

which proves thatΛ is an isomorphism and (10) has a
unique solution which corresponds to the gradient of the
initial state to be estimated in the subregionω.

4.2 Speed measurement case

Here we consider the system (1) augmented with the
output function

z(t) =
∂y
∂ t

(b, t), b ∈Ω , t ∈]0,T [ (14)

For(ϕ̃0, ϕ̃1) ∈ G̃ , the system (8) produces the solutionϕ.
We consider the semi-norm oñG defined by

(ϕ̃0, ϕ̃1) 7−→ ‖(ϕ̃0, ϕ̃1)‖
G̃
=

[

∫ T

0

( n

∑
k=1

∂ 2ϕ
∂xk∂ t

(b, t)
)2

dt

] 1
2

(15)
We introduce the auxiliary system



























∂ 2ψ̃
∂ t2 (x, t) = ∆ψ̃(x, t)+

n

∑
k=1

∂ 2ϕ
∂xk∂ t

(b, t)δ (x−b) in Q

ψ̃(x,T ) = 0,
∂ψ̃
∂ t

(x,T ) = 0 in Ω
∂ψ̃
∂ν

(ξ , t) = 0 on Σ
(16)

The solutionψ̃ of (16) is in
C(0,T ;H1

0(Ω))∩C1(0,T ;L2(Ω))(see [2]).
The resolution of the system (16) providesψ̃(x,0)= ψ̃0(x)
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and
∂ψ̃
∂ t

(x,0) = ψ̃1(x).

When the semi norm (15) is a norm, we also denote byG
the completion ofG and we consider the operator

Λ1 : G −→ G ∗

(ϕ̃0, ϕ̃1) 7−→P(∆Ψ̃0,−Ψ̃1)

whereP = χ∗ω χω and

{

Ψ̃1 = (ψ̃1(0), . . . , ψ̃1(0))
Ψ̃0 = (ψ̃0(0), . . . , ψ̃0(0))

With Ψ̃(x,0) = Ψ̃ 0(x) and
∂Ψ̃
∂ t

(x,0) = Ψ̃1(x)

We introduce the system



























∂ 2ψ̄
∂ t2 (x, t) = ∆ψ̄(x, t)+

n

∑
k=1

∂ 2y
∂xk∂ t

(b, t)δ (x−b) in Q

ψ̄(x,T ) = 0,
∂ψ̄
∂ t

(x,T ) = 0 in Ω
∂ψ̄
∂ν

(ξ , t) = 0 on Σ
(17)

If (ϕ̃0, ϕ̃1) is chosen such that̃ψ1 = ψ̄1 andψ̃0 = ψ̄0 in
ω, then the system (17) looks like the adjoint of the system
(1), and the regional gradient observability amounts to the
conditions for solving the equation

Λ1(ϕ̃0, ϕ̃1) = P(∆Ψ̄0,−Ψ̄1) (18)

where










Ψ̄1 = (
∂ψ̄
∂ t

(0), . . . ,
∂ψ̄
∂ t

(0))

Ψ̄0 = (ψ̄(0), . . . , ψ̄(0))
with ψ̄ being the solution of(17)

Remark. Among choice ofϕ̃0 andϕ̃1 who realizes
ψ̃0 = ψ̄0 andψ̃1 = ψ̄1 in ω.
For ψ̃0 = ∇y0

1 andψ̃1 = ∇y1
1, this choice is not unique but

if we show that the operatorΛ is an isomorphism then (18)
admit a unique solution(ϕ̃0, ϕ̃1) which will coincide with
(∇y0

1,∇y1
1) in ω,

Proposition 4.2. If the sensor(b,δb) is G-strategic inω,
then the semi norm (15) becomes a norm and the equation
(18) has a unique solution(ϕ̃0, ϕ̃1) and thenχ̄Γ γ̄(ϕ̃0, ϕ̃1)

correspondent to(∇y0
1,∇y1

1) is the initial gradient to be
observed onΓ .

Proof.
With minor technical modifications, the proof is simular to
the state measurement one.

5 Numerical approach

In this section, we shall give a numerical approach, which
will reconstruct the initial gradient∇y0

1 and∇y1
1 in ω.

We consider the system (1) observed by a pointwise sensor
located atb ∈Ω .

5.1 State measurement case

We consider the system (1) toghether with the output
function (9).
The resolution of the equation (18) is equivalent to the
minimization of the functional

R(ϕ̃0, ϕ̃1) =
1
2
〈Λ(ϕ̃0, ϕ̃1),(ϕ̃0, ϕ̃1)〉

−〈P(−Ψ̄ ′
(0),Ψ̄(0)),(ϕ̃0, ϕ̃1)〉

=
1
2

∫ T

0
(

n

∑
l=1

∂ϕ
∂xl

(b, t))2dt + 〈Ψ̄1, ϕ̃0〉−〈Ψ̄0, ϕ̃1〉

(19)
the minimization of (26) is equivalent to finding

inf
(ϕ0,ϕ1)









T
4

∞

∑
m=1

[

〈ϕ0,Φm〉2−
1

λm
〈ϕ1,Φm〉2

]

( n

∑
l=1

∂Φm

∂xl
(b)

)2

+
∞

∑
m=1

(

〈ϕ0,Φm〉
n

∑
l=1

〈ψ̄1,
∂Φm

∂xl
〉−〈ϕ1,Φm〉

n

∑
l=1

〈ψ̄0,
∂Φm

∂xl
〉
)

with separation of the variables we obtain



























































inf
ϕ0

∞

∑
m=1









T
4
〈ϕ0,Φm〉2

( n

∑
l=1

∂Φm

∂xl
(b)

)2

+〈ϕ0,Φm〉
n

∑
l=1

〈ψ̄1,
∂Φm

∂xl
〉









inf
ϕ1

∞

∑
m=1









−T
4

1
λm
〈ϕ1,Φm〉2

( n

∑
l=1

∂Φm

∂xl
(b)

)2

−〈ϕ1,Φm〉
n

∑
l=1

〈ψ̄0,
∂Φm

∂xl
〉









which is equivalent to

〈ϕ0,Φm〉=−
2
T

〈Ψ̄ 1,∇Φm〉
( n

∑
l=1

∂Φm

∂xl
(b)

)2
∀m≥ 1

and

〈ϕ1,Φm〉=−
2λm

T
〈Ψ̄ 0,∇Φm〉

( n

∑
l=1

∂Φm

∂xl
(b)

)2
∀m≥ 1

Then the initial gradient∇y0
1

and ∇y1
1

can be approximated by the following

formula :

∇̃y0
1
(x) =



















− 2
T

∞

∑
m=1

[ 〈Ψ̄1,∇Φm〉(L2(ω))n

(
n

∑
l=1

∂Φm

∂xl
(b))2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(20)

∇̃y1
1
(x) =



















− 2
T

∞

∑
m=1

[

λm

〈Ψ̄0,∇Φm〉(L2(ω))n

(
n

∑
l=1

∂Φm

∂xl
(b))2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(21)

Remark.
1)- In the case of a zonal sensor(D, f ), with similar
developments as in the case of pointwise sensor, we
obtain

∇̃y0
1
(x) =



















− 2
T

∞

∑
m=1

[ 〈Ψ̄1,∇Φm〉(L2(ω))n

( n

∑
k=1
〈∂Φm

∂xk
, f
〉

L2(D)

)2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(22)
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and

∇̃y1
1
(x) =



















− 2
T

∞

∑
m=1

[

λm

〈Ψ̄0,∇Φm〉(L2(ω))n

( n

∑
k=1
〈∂Φm

∂xk
, f
〉

L2(D)

)2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(23)

2)- In the case where many pointwise sensors(b j,δ (.−
b j) j=1,...,q) areG-strategic inω, then forT large enough,
the initial gradient∇y0

1
and∇y1

1
can be approximated by:

∇̃y0
1
(x) =



















− 2
T

∞

∑
m=1

[ 〈Ψ̄1,∇Φm〉(L2(ω))n

q

∑
j=1

(
n

∑
l=1

∂Φm

∂xl
(b j))

2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(24)

and

∇̃y1
1
(x) =



















− 2
T

∞

∑
m=1

[

λm

〈Ψ̄0,∇Φm〉(L2(ω))n

q

∑
j=1

(
n

∑
l=1

∂Φm

∂xl
(b j))

2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(25)

5.2 Speed measurement case

We consider the system (1) together with the output
function (14). The resolution of equation (18) is
equivalent to the minimization of the functional

R(ϕ̃0, ϕ̃1) =
1
2
〈Λ1(ϕ̃0, ϕ̃1),(ϕ̃0, ϕ̃1)〉

−〈P(∆Ψ̄(0),−Ψ̄ ′
(0)),(ϕ̃0, ϕ̃1)〉

=
1
2

∫ T

0

( n

∑
l=1

∂ϕ
∂xl

(b, t)
)2

dt−〈∆Ψ̄0, ϕ̃0〉

+〈Ψ̄1, ϕ̃1〉
(26)

with P(∆Ψ̄(0),Ψ̄1(0)) = 〈∆Ψ̄0,Ψ̄1〉, then we give the
following proposition

Proposition 5.1. If the pointwise sensors(b,δb) is
G-strategic, then forT large enough, the initial gradient
∇y0

1 and∇y1
1 can be approximated by:

∇̃y0
1
(x) =



















− 2
T

∞

∑
m=1

[ 〈∆Ψ̄0,∇Φm〉(L2(ω))n

λm(
n

∑
l=1

∂Φm

∂xl
(b))2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(27)

and

∇̃y1
1
(x) =



















− 2
T

∞

∑
m=1

[ 〈Ψ̄1,∇Φm〉(L2(ω))n

(
n

∑
l=1

∂Φm

∂xl
(b))2

]

∇Φm(x) x ∈ ω

0 x ∈Ω\ω
(28)

Proof. With minor technical modifications, the proof is
similar to the state measurement one.
We define the final error

E
2 =‖ ∇y0

1− ∇̃y0
1 ‖2L2(ω) + ‖ ∇y1

1− ∇̃y1
1 ‖2L2(ω)

The good choice of the truncationM will be such that
E ≤ ε(ε > 0), and we have the following algorithm.

Algorithm:

Step 1 : Choice of the sensor locationb andε the test error,
the truncationM.

Step 2 : Repeat
⊖ Computation of∇̃y0

1
and∇̃y1

1
by the formulae

((20) and (21)) or ((27) and (28)).
⊖ M←M+1.
Until E ≤ ε.

Step 3 : The estimated initial gradient conditions∇̃y0
1

and
∇̃y1

1
corresponds to the initial gradient conditions

to be observed in the subregionω.
Step 4 : The restriction of̃∇y0

1
and∇̃y1

1
to Γ corresponds to

∇y0
1

and∇y1
1

to be reconstructed onΓ .

6 Simulation results

In this section we develop numerical example which
illustrate the efficiency of the previous approach. The
results are related to the choice of the subregion and the
gradient to be observed. Consider the two-dimensional
diffusion process described inΩ =]0,1[×]0,1[ by



































∂ 2y
∂ t2 (x, t) =

[∂ 2y

∂x2
1

(x1,x2, t)+
∂ 2y

∂x2
2

(x1,x2, t)
]

in ]0,1[×]0,T [

y(x1,x2,0) = y0(x1,x2),
∂y
∂ t

(x1,x2,0) = y1(x1,x2) in ]0,1[

y(ξ ,η , t) = 0 on ]0,T [
(29)

The system (29) is augmented with the output function
described by a pointwise sensor located in(b1,b2) where
b1 = 0.21,b2 = 0.78 andT = 3

z(t) = y(b1,b2, t) with t ∈ [0,T ] (30)

Let’s considerΓ = {0}× [0,1] andω =]0,0.3[×]0,1[ the
subregion target and







∇y0(x1,x2) = A
(

(2x1−1)x2(x2−1);(2x2−1)x1(x1−1)
)

∇y1(x1,x2) = B
(

(2x1−1)sin(
5πx2

2
);x1(x1−1)

5π
2

cos(
5πx2

2
)
)

being the gradient of the initial state to be observed onΓ
with A and B are selected for numerical considerations.
Using the previous algorithm, we obtain the following
results:
with A = 0.055 andB = 0.05
The reconstruction is observed with error equals to:
7.016×10−7 for ∇y0

1 and 3.12×10−4 for ∇y1
1.
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Fig. 5: The exact state gradient
∂y0

∂x2
in ω.

We note that from figure5 and figure6 (resp. figure9 and

figure 10) the trace of the initial state gradient
∂y0

∂x2
and

∂y0
e

∂x2
(resp. initial speed gradient

∂y1

∂x2
and

∂y1
e

∂x2
) vanish on

Γ .

6.1 Reconstruction error- subregion area

Here we study numerically the dependence of the gradient
reconstruction error with respect to the subregion area of
ω, we have the following table.

From Table1, we note that the reconstruction error and
the subregion area increase or decrease. This means that
the larger the subregion error is the greater the error is.
The weakly G-observability is realized by means of one
pointwise sensor located atb = (0.21,0.78). The results
are similar for other types of sensors.
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Table 1: The reconstruction error with respect to the subregion
area.

The subregion Reconstruction error

]0,0.1[×]0,1[ 6.5679×10−5

]0,0.2[×]0,1[ 1.2725×10−4

]0,0.3[×]0,1[ 3.1270×10−4

]0,0.4[×]0,1[ 7.5275×10−4

]0,0.5[×]0,1[ 1.4252×10−3

]0,0.6[×]0,1[ 2.4406×10−3

]0,0.7[×]0,1[ 3.4433×10−3

]0,0.8[×]0,1[ 3.6327×10−3

7 Conclusion

This work has extended the usual results on regional
gradient observability for hyperbolic systems to the case
where the gradient is to be observed on a part of the
boundary of the geometrical domain where the system is
defined. We developed a technical approach that leads to a
implementable gradient reconstruction algorithm and the
obtained result are successfully tested through numerical
example and simulations. The problem of characterization
of the sensors that make the system boundary observable
is of great interest and the work is under consideration
and will be the subject of the feature paper.
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