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Abstract: This paper aims to study the notion of regional observabdita distributed parameter system governed by semilinear
hyperbolic equations. This original concept is interestethe reconstruction of the the state only on a subregiarf the boundary

of the system evolution domaihQ. We give denition and some properties of this notion and vesvghat under some hypothesis,the
regional boundary observability is guaranted.We show bwmeeof Hilbert Uniqueness Method (HUM) combined with fixednpo
techniques that it is possible to reconstruct such a stated®sired subregioh .This approach leads to interesting results which are
performed through numerical example and simulations.
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1 Introduction considered. It was extended by Zerrik et 8].tp the case
where the subregiom is a part of the boundagQ of Q.
Roughly speaking, the regional observability problem
may be formulated as follows : considering an evolution
system, we have to reconstruct the initial state in a given
§ubregionw (resp.l) in the whole domaim2 (resp. the

The control theory is highly interdisciplinary, it is a part
of applied mathematics serving the most important link
between mathematics and technology : complex system

in physics and mechanical engineering should b oundary of the whole domai@dQ). This became a
analyzed to achieve designated mission or operation lassical problem in systems theory and there is a large

requirements. Most of these. de.v.'se.s' are II"h(:"remhﬁiterature on the topic, research in this area has been very
nonlinear, indeed modern scientific inquiry and the intensive in the last two decades

demands of advancing technology are driving theoretica n this paper we introduce a new concept which is the

and experimental .research toyvards control of nonllne"’“’regional boundary observability for hyperbolic semilinea
systems. Compelling applications have been noted angystems, this important class of systems is an

have monyated seminal studies in .SUCh W|de-rang|ng eIdsl‘ntermediate between the linear systems which are widely
as chemistry, meteorology, optical networking and

) . tudied and nonlinear ones which are very close to the
computer sciences. Experience has so far shown th

i ¢ q : be | ted withi ature, we are interested in the knowledge of the state
noniinear systems dynamics can be incorporated wi Irbnly in a critical subregion of the boundary of the system
the framework of estimation and control theory but 9V€ domain. The introduction of this concept is motivated by
rise to unusual models that have not yet been studied i

. rﬁwany real situations. The paper is organized as follows :
depth. Most of theses problems request a regional study, section 2 we give some recalls about definitions and

trzus _(;,(onscept doleIr\tlaglo?all analysr:_s hwaf? |n§roducted tbyproperties in linear case, Section 3 is devoted to the
(zerrik, [8] an ai et al., §]), which offers importan presentation of the considered system, as well as to

tools for solving many real problems, particularly the definitions and characterizations of this new concept.

concept of regional observability, which referg 0 gection 4 is focused on the regional reconstruction of the

linitial state in a portion of the boundary of the evolution

fully specified as a state, but concerns only a regipm domain using HUM approach. In the last section we

portion of the spatial domain on which the system is
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develop a numerical approach, which is illustrated by
simulations that lead to some conjectures.

2 The considered system

Let’s considerQ an open bounded set 6" with smooth
boundanpQ, andQ = Qx]0,T[, £ = dQx]0,T[ and the
following semilinear hyperbolic system :

"Zgii’” = AY(x,t) + Ay(xt) inQ
y(x,0) = y°(x), dy(;[, 0_ v (x) in Q (1)
oy(&.t) _ ons

0vA

with Ais a second order differential operator, which is

ay(&,t)

linear and symmetric;
dVA

a nonlinear operator defined fro?(Q) to L?(Q) in

is the conormal and/” is

order to ensure the existence and the uniqueness of th

solution of (1) which is augmented with the following

output function
z(t) =Cy(.,1) (2)
whereC: L?(Q) — IR4 (g is the number of sensors), is the

observation operator which depends on the number of the

sensors.
Without loss of generality we denote byy(t) := y(x,t).
Let's consider

W)=< ) ROE
at
0l 1 0 )

(20) 7() = (o

For (y1,Y2) € .Z, with # = L?(Q) x L?(Q), the system
(1) is equivalent to the following one

y(t)

X0 "

yl

and

A:

{ﬂt) = AY(t) +Ny(t); 0<t<T 3)
y(0) =¥°
Augmented with the following output equation

Z(t) = Cy(t) (4)

with C = (C,0). The system3) admits a unique solution
which is expressed as follows : (see [7])

5t = S0P+ [ - NTss

(S(t))r=0 is the semigroup endowed by the operafor
which is defined as follows :
1
€oSy/ —Amt + —=(

S_( ): %ir:zmlkyl’wmj) \/_—)\mVZ-erj)Sin\/Tmt]wmj

.\ /7)\mz Zm\ [(yl,wrm-)sin —Amt+ <y2,ij>COS\/7)\mt} Wi
Considering the following operators :

(5)

Y1
Y2

(6)

—The observability operator :

K:H2(Q) x HY(Q) — L2(0, T;IR9)
(Y1,¥2) — CS(.)(Y1,Y2)

—The restriction operator i :

Xo :H2(Q) x HY{(Q) — H?(w) x HY(w)
(Y1,¥2) = (Y1,¥2)|,

—The restriction operator of :

— 3

Xr :H2(0Q)

1

x H2(9Q) —s H3 (M) x H2 ()

(Y1,¥2) — (Y1,Y2)),

—The trace operatoryy, from H?(Q) x HY(Q) to

Hg(dQ) X H%(o“rQ) which is linear, continue and
surjective over considered spaces.

We give the following definitions :

e
Definition 1(see [9]) The system3}-(4) is said to be

exactly (resp. weaklydo-observable if
Im(XwK*) = H2(w) x HY(w)
(resp.Im(x,K*) = H?(w) x HY(w)).

Definition 2(see [9]). The system3|-(4) is said to be
exactly (resp. weaklyl)y -observable if

Im(Xr oK) = H2 (1)) x H3(I"))

(respIm(Xr oK*) = H3 (")) x H2(I")).
Then we deduce the following proposition :

Proposition 3 1f the system 8) augmented with the output
equation 4) is exactly (resp. weaklydo-observable then

it is exactly (resp. weaklyl)y -observable. (see [9]). To the
system L) we associate the linear one defined by :

2
o ){;(é,t) :AY(X;) ; inQ
y(x,0) = y°(x), yg(t’ )zyl(x) in Q 7)
9y(&.t) _ ons

0vA

which admits a solution:

y € C(0,T;H(Q))nC(0,T;L2(Q)).

3 HUM Approach

The objective of this section is to give an extension of the
Hilbert Uniqueness Method introduced in the linear case
by Lions (see [4]) which allows the determination of the

regional boundary initial conditions dn, and leads to an
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algorithm which is tested through a numerical example.This allows to consider the application

We consider the systeni)(augmented with the output

function @), and the seG as follows:

G = {(¢0,91) € D(A) x HY(Q) suchthatgo = ¢1

OonQ\ w}

with r > 0 sufficiently small and the baB(z r), such that
= U B(zr), and wx = K, N Q. We decompose the

zel
initial state and speed as following

.

The aim is to reconstruct the componggtandyi. We

ygin @

i y1 in ar
Yin Q\ wr

y1in Q\

consider the systeni) supposed observed by an internal

zone sensofD, f) with D ¢ Q andf < L?(D).
For (¢o, ¢1) € G, we consider the semilinear system

2
9 (Z'EZ )+A¢(x H)=A¢(xt) InQ
60 = 9209, 2220 _gr9ina (@)
PEY
which can be decomposed as follows:
2
% = —A¢1(xt) inQ
¢ﬂxm=¢%mﬁﬁ%?9:¢%mmg 9)
9¢1(&.H) =0 onz
0VA
and
2
4 ig’t) =—AB(X,t) + A (0(xt)+ ¢1(xt)) iInQ
o0 =0, 209 _g inQ
060(5,0 = onx
g (10)
The linear system 9 has a unique solution

¢ € C(0,T;H?(Q))NCYO,T;HY(Q))NC?0,T;L3(Q))
(see [6]) and the function

. :
Foc G folle= | [ 10100, 1) ot

induce a semi-norm 0B, with ¢p := (¢o,P1), we
denote byG the completion ofG. If the system 9) is
weakly observable iny, then the semi-norm defines a
norm onG (see [9]).
We define the auxiliary of the syster®) by

2y (x,t)

gtz = AP+ AP = (91(t), F)L2p) (X0) F(X) INQ
pxm) —0, 28T g no
PEH=0 onz

(11)

u:G — G*
(ﬁoi—>P(p(0)

whereP is the projection orG* and we decompos@ as
follows

J=uo+uyn
with g andy, are solutions of the following systems
24p(xt . )
YOUXU) — Ao(t) — (1(0). Tz (X0) () I Q
Yo(x,T) =0, 0lﬂo(§t, ) _o inQ
Wo(&.t) = ons
(12)
and
dZLPl * .
oz =AWt A (ot yn) —(0(), f)iap)(xo) F() InQ
Yr(x,T) =0, X T) _ inQ
Pi(§,1)=0 onx
(13)
which allows to consider the following operator
U (Po) = Pio(0) + Pyn(0).
We define the operatet from G to G* as follows
APo = Pin(0)
Then we have
H(Po) =NP+K§
whereK is a nonlinear operator given by
K:G— G
(ﬁo — P(IJl(O)

We suppose that the linear part of the systeBh i
regionally weakly observable an, thenA is invertible,
and finally we obtain

Fo=A"1PPO0) — A~

We consider the following system

Ko

% = AP+ Pxt) — 21) (Xp) F(¥) in Q
LE( T= dw((;?T) =0 inQ
P(E) = on 2(14)

If @o is chosen such thal(0) = ¢(0) in «w then the
system {4) can be seen as the adjoint of the systdin (
thus the problem of the observability amounts to solving
the equation

$o = ©(fo) (15)
where®(§o) is the solution of the equation
O(fo) = PP(0) —K(¢o) (16)
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thus we obtain the following results

Proposition 4 If the system @) augmented with the

output equationd) is regionally weakly observable iy

and there exists > 0 such that|.#"(x)|| < c||x]|, then the

equation 16) admits a unique fixed point.

Proof
Step 1:We consideip > 0 andB, = B(0, p) x B(0, p), we

have

K(Bp) = {P(1(T)) | (¢0,91) € Bp}

Let’'s consider
Bp = {Pyr(t) | (¢o,91) €Bp, t€[0,T]}

We haveK (Bp) C By, then it's sufficient to show tha,
is relatively compact. We hawg; (.) is a solution of (3).

_ Y
Let's considenj; = % .
ot
Then we obtain

gi(xt) = 0 )
{ Tor —A B+ D(guo<x.,t>+wl<x,t>)f <e<t>,f>XDf<x>] nQ
$(xT)=0 in O
(17)
Lpl(xat)

Without loss of generality we denotg (t) :=
andrp, = 1, then we obtain

0= 3 Al
—(B(t— 1), F o F(X), Win]Sin(v/ At — 1))dT
In the other hand we have :

I = 5. |0 )P

Without loss of generality we denotdip(t) := Wo(x,t),
61(t) := B1(x,t) andgo(t) := do(X,1).
Then

(012

= le / A (Yot = 1) + Pt = 1)) = (B(t = 1), ) F(X), W)

G SR
< o ([ 17 e el ot o)
< 2 ([ eltunte 01+ It opn) oo 1)
andyJ is a solution of {2), then
902 = 5 1[5~ (a1, O o) sindy (=)

< ([ “¢1<t7r>m|fu2dr)2

sinced is a solution of 10) we have
uemuzzzl\/ z _Am
sir;(\/——/\m(t—r))dﬂz

2

10 <\|e<t—r>n+¢1<t—r>n>)

— 1)+t —1)), W)

¢, is a solution of 9) then we have

001 = 5 |(f0.)-+ (b1

2
< 2||¢ho| |2+ ﬁ”fﬁlﬂz =

Using Gronwall theorem we have
1 c
< (=tcR —t
6]l < (ZteR)exp(—t)
Then we obtain
1 2 cT c [T
a0 < eTRIfE (e S ) + 7 [ l4ate=lr

Using Gronwall theorem, we obtain
1 cT cT
t)|| < ScTR|f|I?( 1 hi h
la®)] < TR ( +expl n)>eX|o( )

and thenB, is uniformly bounded. We show th&j, is
equicontinuous, indeed, we obtain

[y (tz) — ga(ta)?
1 /T 2
< F\/ﬁ c(l[goty — )|+ Ilgn(ta — D)) +[16(ts — D] f[|°dT

T
+/tz c(lgoltz— 1)+ [[alta— D)) +[|8(t2— D[ f|[>dT

Therefore® : B, — G* is compact.
Step 2 The map© appliesBp to Bp. System @) is

regionally weakly observable i, then A~1P is
bounded and we have

1O(0)l| < 1A~ *P(@O)] + [y (0))]l,

then using Schauder theorem, the oper&@oadmits a
unique fixed point, this achieve the proof.

Then we obtain the following algorithm
Algorithm :

Step 1:The initial stateyp, the initial speed, the region

w, the domainD, the repartition functionf and the
accuracy threshold.
Step 2:Repeat

—Resolution of §) and obtention of;.
—Resolution of £0) and obtention oB.
—Resolution of {2) and obtention off.
—Resolution of {3) and obtention ofy;.
—Obtention of© (o).

—Resolution offg = ©(§y) and obtention offp.

Until [|o—©($o)]| < &.

Step 3: The solutiondg corresponds to the regional state

to be observed in the subregian and theryy is obtained
as arestriction ofpon 'l .

(@© 2015 NSP
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4 Simulations

We present a numerical example illustrating the previous
algorithm. The obtained results depends on the considere

region and the localization of the sensors. Let's consider

the system defined faR =]0,1[x]0,1[ by the following

equation
0%y(xt) 2 d%y(xt)
dtz Z dx.z
+ Z [(Y(1), @) [(Y(1), Bwi) i (X) In Qx]O, T (18)
yix.0) =Y°(x). ‘”E; O _yi ing
MEY _ g ondQx0,T|
av

with x = (X3,%2) and (¢ ) is a complete family of
H(Q). The system 18) is augmented with the output

Table 1: State and speed errors in different subregions

Subregionwy | State error | Speed error
]0,1[x]0,1] | 6.75x10°3 | 1.74x 10!
410:22x]0,1[ | 549% 1073 | 158x 1072
]0,52[x]0,1[ | 3.31x 1072 | 1.36x 1072
]0,88/x]0,1] | 407x10*4 | 1.35x10°3

We note that the initial estimated state (resp. speed) js ver
close to the initial exact state (resp. speed), which shows
the effectiveness of the considered approach .

The initial state (resp. initial speed) is obtained with the
reconstruction error

Yo — Yoel|? = 4.07x 1074

(resp.[|y1 — Yoeu||* = 1.35x 10°%)
whereyoe (resp.yeer) is the obtained state (resp. speed) by

equation described by a pointwise sensor located irthe previous algorithm.

(b1,by) whereb; = 0.36,b, = 0.98 andT = 8.
z(t) =

We consider the subregian

y(by,b,t), t €]0,T| (19)
=]0,0.88]x]0,1[ and
Yo(X1,X2) = a cog371x) cog31y)

3 coq3mx) cog 3my) 3T

[0,

yi(X1,%2) =

is the observed initial staté, = {0} x [0,1], with a and

The following table shows how the state (resp. the speed)
error grows with respect to the subregion area.

5 Conclusion

The regional boundary observability for distributed

hyperbolic semilinear systems is considered. The regional
internal and boundary observability of linear systems was
explored to solve the problems related to semilinear one
which constitutes a natural extension. We explored

B are chosen for numerical reasons. Using the previou#ilbert Uniqueness reconstruction approach which use

algorithm, we obtain the following results :

T
0.6

Fig. 1. Initial state (continuousline) and estimated state
(discreteline) in .
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Fig. 2. Initial speed (continuousline) and estimated speed
(discreteline) inT".

the fixed point techniques leading to an algorithm which

is implemented numerically. Many questions remain

open, this is the case of the study of the boundary
observability with the sectorial approach and the regional
gradient observability of semilinear hyperbolic systems.

This questions are under consideration and the results will
appear in a separate papers.
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