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Abstract: For any system Eigen value is the characteristic value and It is the characteristic roots for an equation which modeled that
system. In this paper we have introduce Radial Basis Function (RBF) to evaluate Eigen value approximation for any given system.
We have made some approximation to get best possible output with the help of pseudo inverse technique in Radial Basis Functions.
We have experimented and compared the Eigen values of matrices with respect to Gaussian RBF, Multi-Quadratic RBF and Inverse
Multi-Quadratic RBF methods. In this paper we worked on several matrices and calculated their Eigen value by using different RBF
methods.

Keywords: RBF, Eigen value, Gaussian RBF, Multi-Quadratic RBF, Inverse Multi-Quadratic RBF

1 Introduction

Eigen vectors and Eigen values are the characteristic
roots, characteristic values and numbers for a given
system of equations when the system is operated by a set
of matrix equation. Eigen values are modeled by scalar
quantities which are related to a square matrix. Eigen
vectors are the vectors which are related to the same
matrix. Therefore, a system can be characterized by the
Eigen values and eigen vector. The Eigen values are used
in different fields of , science and technology such as
engineering system design, pattern recognition,
mechanics, automatic machine, statistics, computational
intelligence, geometry, economics, astronomy, image
processing, computer, robotics, etc. [4,20,25].

T be a matrix whose dimension is m×m.λ is a number
which is an Eigen value of matrixT when a nonzero vector
v is exists such that.

T v = λv (1)

Vectorv is Eigen vector of matrixT while corresponding
to λ . We can rewrite the above equation as,

(T −λ I)v = 0 (2)

Fig. 1: RBF Neural Network.

Here I is an identity matrix whose dimension is m×m.
For a nonzero vectorv, (T −λ I) cannot be invertible. So,
the determinant of(T − λ I) must be zero. Thus,q(λ ) =
det(T −λ I) is the characteristic polynomial ofT . So, the
Eigen value ofT is the characteristic polynomial ofT [4].
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The RBF neural network architecture is given here. It
has three layers. First layer is input layer. The second
layer is hidden layer which is different from the
computational unit structure of the multilayer network.
The computational units are known as radial centers
which are being represented byc1,c2,c3.....ch vectors.
Dimension of each center for am input network ism×1.
The centers have the same vector dimension as that of the
input. The input space is the space where all possible data
are located. The centers represent the clusters in the input
space. The output of each center which isφiis the function
of the Euclidian distance betweenci and x. Output is
obtain by proper choice ofw j,which is the weight ofjth

center. The output is simply the summation ofφiw j.
Transformation from input space to hidden unit space in
nonlinear and transformation from hidden unit space to
output space is linear. Here||x − c j|| is the Euclidian
distance [1,2,7,8,9,12,13,21,22,25].

y =
n

∑
h=1

φhwh (3)

φ = φ(||x− ch||) (4)

The reminder of the paper is organized as follows.
Section 2 reviews Radial Basis Function types and basics.
Section 3 describes simulation, analysis,results and
discussions. Section 4 gives conclusion.

2 Radial Basis Function

Radial Basis Function (RBF) gives non-zero response
while input is in small localized area. Different Radial
functions are available namely Gaussian RBF, Quadratic
RBF and Inverse Quadratic RBF etc[14,15,16].

Function for Gaussian RBF is given below, wherez
is the Euclidian distance,σ is the maximum distance of
center[3,24].

φ(z) = e−z/2σ2
(5)

Function for Quadratic RBF is as follows, wherer is
any numerical number which is greater than zero andz is
the Euclidian distance[17,19].

φ(z) = (z2+ r2)1/2 (6)

Function for Inverse Quadratic RBF is as follows,
where r is any numerical number which is greater than
zero andz is the Euclidian distance[6].

φ(z) = (z2+ r2)−1/2 (7)

2.1 RBF network learning process

Training of Radial Basis Function Network (RBFN)
requires optimal selection of the parameter vectorsci and
wi, i = 1...h. Both layers are optimized using different
techniques and in different time scales[5,10,11,18].

Following techniques are used to update the weights
and centers of a RBFN.

1.Pseudo-Inverse Technique.
2.Gradient Descent Learning.
3.Hybrid Learning.

2.1.1 Pseudo-Inverse Technique

This is a least square problem. Assume a fixed radial basis
functions e.g. Gaussian functions. The centers are chosen
randomly. The function is normalized i.e. for anyx,∑φi =
1. The standard deviation (width) of the radial function is
determined by an adhoc choice[5].

2.1.2 Gradient Descent Learning

One of the most popular approaches to updatec andw, is
supervised training by error correcting term which is
achieved by a gradient descent technique[18].

2.1.3 Hybrid Learning

In hybrid learning, the radial basis functions relocate their
centers in a self-organized manner while the weights are
updated using supervised learning. When a pattern is
presented to RBFN, either a new center is grown if the
pattern is sufficiently novel or the parameters in both
layers are updated using gradient descent [11].
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Table 1: Comparison of Eigen Values of Matrix A3 Using
Normal Method and Different RBF Methods.

Theoritical Gaussian Multi-Quadratic Inverse
RBF RBF Multi-Quadratic RBF

-1.000000000000000 -1.000000000000001 -0.980392156862739 -0.980392156862743

1.438447187191170 1.438447187191170 1.410242340383501 1.410242340383501

5.561552812808831 5.561552812808832 5.452502757655707 5.452502757655715

Table 2: Comparison of Error of Eigen Values of Matrix A3 for
Different RBF Methods.

Error in Error in Error in Inverse
Gaussian RBF Multi-Quadratic RBF Multi-Quadratic RBF

0.000000000000001 0.019607843137261 0.019607843137257

0.000000000000000 0.028204846807669 0.028204846807669

0.000000000000001 0.109050055153124 0.109050055153116

Table 3: Comparison of Eigen Values of Matrix A4 Using
Normal Method and Different RBF Methods.

Theoritical Gaussian Multi-Quadratic Inverse
RBF RBF Multi-Quadratic RBF

10.227535796937078 10.227535796937078 10.026995879350071 10.026995879350075

-1.790729366741630 -1.790729366741630 -1.755617026217285 -1.755617026217275

0.000000000000002 0.000000000000001 0.000000000000011 0.000000000000000

-0.436806430195437 -0.436806430195437 -0.428241598230823 -0.428241598230817

Table 4: Comparison of Error of Eigen Values of Matrix A4 for
Different RBF Methods

Error in Error in Error in Inverse
Gaussian RBF Multi-Quadratic RBF Multi-Quadratic RBF

0.000000000000000 0.200539917587006 0.200539917587003

0.000000000000000 0.035112340524345 0.035112340524355

0.000000000000001 0.000000000000010 0.000000000000002

0.000000000000000 0.008564831964614 0.008564831964620

Table 5: Comparison of Eigen Values of Matrix A5 Using
Normal Method and Different RBF Methods.

Theoritical Gaussian Multi-Quadratic Inverse
RBF RBF Multi-Quadratic RBF

12.183971475785187 12.183971475785189 11.945070074299124 11.945070074299194

0.369769129398551 0.369769129398549 0.362518754312240 0.362518754312308

0.000000000000001 0.000000000000000 -0.000000000000056 -0.000000000000003

-1.553740605183741 -1.553740605183741 -1.523275103121381 -1.523275103121312

-1.000000000000000 -1.000000000000004 -0.980392156862742 -0.980392156862749

Table 6: Comparison of Error of Eigen Values of Matrix A5 for
Different RBF Methods

Error in Error in Error in Inverse
Gaussian RBF Multi-Quadratic RBF Multi-Quadratic RBF

0.000000000000002 0.238901401486062 0.238901401485993

0.000000000000002 0.007250375086311 0.007250375086243

0.000000000000001 0.000000000000057 0.000000000000004

0.000000000000001 0.030465502062360 0.030465502062429

0.000000000000004 0.019607843137258 0.019607843137251

3 Results and discussions

Six matrices are being experimented. The matrices are
A3,A4,A5,A6,A7 and A8. Dimension of matrices
A3,A4,A5,A6,A7,A8 are 3×3, 4×4,5×5, 6×6,7×7 and
8×8 respectively. Matrices are input. We have compared
the Eigen values of these matrices with three different
RBF methods namely Gaussian, Quadratic and Inverse
Quadratic respectively. Fig 2.shows the comparison of
errors of Eigen values for matrix A3 with respect to
Gaussian, Quadratic and Inverse Quadratic methods. Here
error is less in Gaussian RBF method. figure 3.shows the
comparison of errors of Eigen values for matrix A4 with
respect to Gaussian, Quadratic and Inverse Quadratic
methods. Here error is less in Gaussian RBF method.
figure 4.shows comparison of errors of Eigen values for
the matrix A5. Here, error in Quadratic and Inverse
Quadratic RBF is quite close but Gaussian RBF shows
better result. figure 5.shows the comparison of errors of
Eigen values for matrix A6 with respect to Gaussian,
Quadratic and Inverse Quadratic methods. Here error is
less in Gaussian RBF method. figure 6.shows comparison
of Eigen values of matrix A7. Here, Gaussian RBF gives
best result with respect to the other two methods. figure
7.shows comparison of Eigen values of matrix A8. Here,
Gaussian RBF gives best result with respect to the other
two methods. Table 1, Table 3, Table 5, Table 7, Table 9
and Table 11 show the Eigen values. While Table 2, Table
4 and Table 6, Table 8, Table 10 and Table 12 give
demonstrate of the relative errors.
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Table 7: Comparison of Eigen Values of Matrix A6 Using
Normal Method and Different RBF Methods.

Theoritical Gaussian Multi-Quadratic Inverse
RBF RBF Multi-Quadratic RBF

-0.516457847340464 -0.516457847340464 -0.506331222882816 -0.506331222882810

0.563873934620447 0.563873934620443 0.552817582961246 0.552817582961224

1.100739385595450 1.100739385595446 1.079156260387692 1.079156260387693

3.023694707307639 3.023694707307634 2.964406575791775 2.964406575791801

3.346716161469828 3.346716161469827 3.281094275950823 3.281094275950810

10.481433658347100 10.481433658347100 10.275915351320661 10.275915351320688

Table 8: Comparison of Error of Eigen Values of Matrix A6 for
Different RBF Methods.

Error in Error in Error in Inverse
Gaussian RBF Multi-Quadratic RBF Multi-Quadratic RBF

0.000000000000000 0.010126624457648 0.010126624457654

0.000000000000004 0.011056351659201 0.011056351659223

0.000000000000004 0.021583125207757 0.021583125207756

0.000000000000005 0.059288131515864 0.059288131515838

0.000000000000001 0.065621885519005 0.065621885519018

0.000000000000000 0.205518307026439 0.205518307026413

Table 9: Comparison of Eigen Values of Matrix A7 Using
Normal Method and Different RBF Methods.

Theoritical Gaussian Multi-Quadratic Inverse
RBF RBF Multi-Quadratic RBF

0.000000000000000 0.000000000000000 -0.000000000000066 0.000000000000002

0.000000000000001 0.000000000000000 -0.000000000000035 -0.000000000000001

0.913869802348507 0.913869802348507 0.895950786616148 0.895950786616183

1.999999999999999 2.000000000000000 1.960784313725466 1.960784313725489

2.000000000000000 1.999999999999999 1.960784313725481 1.960784313725489

3.571993268316203 3.571993268316202 3.501954184623703 3.501954184623728

5.514136929335290 5.514136929335289 5.406016597387500 5.406016597387540

Table 10: Comparison of Error of Eigen Values of Matrix A7 for
Different RBF Methods

Error in Error in Error in Inverse
Gaussian RBF Multi-Quadratic RBF Multi-Quadratic RBF

0.000000000000000 0.000000000000067 0.000000000000001

0.000000000000001 0.000000000000035 0.000000000000002

0.000000000000000 0.017919015732358 0.017919015732324

0.000000000000001 0.039215686274533 0.039215686274510

0.000000000000001 0.039215686274520 0.039215686274511

0.000000000000001 0.070039083692500 0.070039083692475

0.000000000000001 0.108120331947791 0.108120331947751

Fig. 2: Comparison of error of Eigen values of Matrix A3 for
different RBF methods.

Fig. 3: Comparison of error of Eigen values of Matrix A4 for
different RBF methods.

Fig. 4: Comparison of error of Eigen values of Matrix A5 for
different RBF methods.
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Table 11: Comparison of Eigen Values of Matrix A8 Using
Normal Method and Different RBF Methods.

Theoritical Gaussian Multi-Quadratic Inverse
RBF RBF Multi-Quadratic RBF

0.000000000000000 0.000000000000000 0.000000000000127 0.000000000000127

0.000000000000000 -0.000000000000001 0.000000000000081 0.000000000000082

0.000000000000000 0.000000000000000 0.000000000000075 0.000000000000075

2.000000000000000 2.000000000000001 1.960784313725525 1.960784313725525

2.000000000000001 2.000000000000001 1.960784313725535 1.960784313725535

2.000000000000001 2.000000000000002 1.960784313725546 1.960784313725546

4.000000000000001 4.000000000000003 3.921568627451014 3.921568627451014

6.000000000000002 6.000000000000001 5.882352941176585 5.882352941176585

Table 12: Comparison of Error of Eigen Values of Matrix A8 for
Different RBF Methods

Error in Error in Error in Inverse
Gaussian RBF Multi-Quadratic RBF Multi-Quadratic RBF

0.000000000000001 0.000000000000127 0.000000000000001

0.000000000000001 0.000000000000081 0.000000000000001

0.000000000000001 0.000000000000075 0.000000000000001

0.000000000000001 0.039215686274475 0.039215686274512

0.000000000000001 0.039215686274465 0.039215686274511

0.000000000000001 0.039215686274455 0.039215686274510

0.000000000000002 0.078431372548986 0.078431372549022

0.000000000000002 0.117647058823417 0.117647058823532

Fig. 5: Comparison of error of Eigen values of Matrix A6 for
different RBF methods.

4 Conclusion

Gaussian RBF gives better result for the calculation of
Eigen values of matrices. In every experiment Gaussian
RBF shows better result corresponding to Quadratic and
Inverse Quadratic RBF methods. The experiments are
done using MATLAB 7.6.0 software tools. Choosing the
proper weight in RBF neural network experimental
results are satisfactory. Thus we can conclude that
Gaussian RBF may be used for getting good results in the
neural network.

Fig. 6: Comparison of error of Eigen values of Matrix A7 for
different RBF methods.

Fig. 7: Comparison of error of Eigen values of Matrix A8 for
different RBF methods.
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